PART OF THE SOLUTIONS TO EXERCISES IN )KSENDAL'S
BOOK

CHI DONG

Exercise. 2.1

Proof. (a) (=): Assume X is a random variable, i.e., a measurable function
from (Q,F) to (R,B). Since {ai} € B for all k = 1,2,..., X" (az) € F by
definition of measurable function. (<): Now assume X !(ay) € F for all
k=1,2,.... ThenVA € B, we can show that

X 1A =Xx"14An G{ak} U X YAn{a}) €
k=1

for AN{ay} equals either {a;} or @. By definition, X is a random variable.
(b) Since Q@ = Up2{X = ax} is a partition, then define nonnegative
piecewise simple function as follows

n_ liv— X =
on(w) = > k=1 lak] {X=a,} WE Urk=11{ ar}
0 others

See that ¢, = | X| on J;p_1{X = ax} and obviously ¢,, /|X| as n — oc.
Therefore, by the property of integral of nonnegative measurable function,
as E[|X|] = [|X]|dP,

E[|X|] = lim /%dp— lim Z\ak\/ dP = |ag| P(X = a)
n— oo Q n—>ook:1 {X:ak} k;:l

(c) When E[|X]|] < oo, |X] is integrable and then E[X] = [, XdP <
E[|X]] < oo. Similarly with (b) let's define

n_ lex— T {X =
SDn(W) _ Zkf1 aplix=q, wE ka1{ ak}
0 others

Clearly ¢, — X as n — oo. For ¢, < |X|and |X]| is integrable, by
Lebesgue Dominated Convergence Theorem,

/ XdP = lim / 0 dP = ZakP = ay)
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(d) Since f is bounded and measurable, IM > 0, s.t. [, f(X)dP < M <
oo. Similarly with (c), let's define

(W) = Shot fla)lix—ay w € Upoi{X = ai}
o 0 others

Then ¢,, — f(X) asn — oo. Therefore, since ¢, < M which is integrable,
also by Lebesgue Dominated Convergence Theorem we show that

BICO) = [ 100P = i [ udP = 3 fa)P(X = a0
k=1

and ends the proof. O

Exercise. 2.2

Proof. (a) (i) By definition of probability measure, 0 < F'(z) = P(X < z) <
P(€) = 1. Secondly, since we know that P(0) = 0 then let z,, \, —oo, then
{X < z,} \(O. By upper continuity of probability measure,

n—oo

lim P(X <uz,) = P(ﬁ {X <z,})=0
n=1

Hence Ve > 0, dM >0, N > 0, s.t.Voe < —M < xp,
Flz)=P(X<z)<P(X<zy)<e
By definition, Em F(x) = 0. At last, almost completely the same, see
X —0o0

that {X > z,} \ O as x,, / 00, then in the same way lim,_,o, F(z) = 1.
(ii) Clearly F(z1) = P(X < x1) < P(X < x2) = F(22), as 1 < 9,
x1,29 € Rand {X <21} C{X <z}
(iii) For x € R, F(z +h) — F(x) = P(x < X <x+ h), where h > 0. Let
hn, N\ 0, then P(x < X < z+ hy) N\ 0 for the same reason as (i). Then
Ve >0,3d0 >0and N >0, s.t.VO< h < < hy,

Po<X<z+h)<Pla<X<z+hy)<e

which means F(x + h) — F(z) = Ple < X <z +h) — 0as h — 0 and
ends the proof.

(b) Let {X~1(A,)}nen be a measurable partition of 2, where A4, =
(an,bn) € B, apnt1 = by, ap = —o0, by,  o0o. Via E|g(X)|] < oo firstly
we can show that

Blox)) = [orap =3 [ gxap <o
n=0 €An

As the property of expectation as a probability integral, we directly state
that
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> /{XeA}g<X)dP — Blg(X)] = fugPo X = 3 [ gapox!

Since for (an,by], as we proved in (a), denote L-S measure induced by
distribution function F' by mpg, then

mp(An) = F(by) — Flan) = Po X 1(A,)

By the uniqueness of extension of measure, P o X! = mp. Then we are
able to transform the expectation integral as follows:

Z/ gdPoX 1 = / gdF = /ZglAde<oo
—0/ A

According to the two equatlons above,

/ ZglAde / gdF < o0

(c) Denote the density of B? by pp2, then for y > 0, show that

Y v
| partwie =82 <) = PUBI< v = [ sty
oo Y

Then by simple calculation we have

1 1 . 1
PeY) = g Mt g e N

Exercise. 2.3

Proof. Firstly, since @ € H; for all i € I, © € (V;c;Hi . Secondly, A° €
Micr Hi given A € ;e Hi, for A° € H; for all i € I. At last, let {A,}nen be
a set sequence in (;c; H;, since in each H;, UpZg An € H;, hence U, 2o Ay €
Nicr Hi- Based on all above we conclude that (;c; H; is again a sigma
algebra. (|

Exercise. 2.8
Proof. (a) Directly by (2.2.3),let k = n = 1, we can conclude E°[exp(iuB;)] =
exp(—3u?t), here Vu € R.

(b) Denote E[B}] = m(™(B,). For fixed t, in (a),

o ) 2

zuBt Z m

1/.2
Then let f(t) =e 2¢,
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u™y" X )
— = Z £ 0)=
n=0
See that £ (0) = (—“72)”, therefore,
n;n oo (_1)71 u2ntn

e n UL
nz;;m< )(By) " => o

: n=0

n!

Compare the term of u of same power, we could see

(=n"2n! , 2n!
. = t
2nq2np) 2nn)
Finally let n = 2, we get F[B}}] = 3t> and proof ends.
(c) From (2.2.2) we know P°(B; € A) = J4p(t,0,y)dy, here A € B
1

V2mt
conclusion of 2.2, (b),

2
E[f(B)] \/ﬁ/ f(z —g)df’?

= Bl (B2,

m(2n) (Bt) _

and p(t,z,y) = exp(—g—j). Then for measurable function f, by the

(d) Firstly see that E*[|B; — B|*] )B“ s
Then expand the summation, we get

Ex[‘Bt—Bs’4]: [Z(B\(Z)Sﬂ + Z |t s| B\(tk)s|)2}

i=1 1<j#k<n

Since we know E[(B|(t) s|) |=3t— S|2 from (b), and B\(tj)s| and B|(t )s\ are

independent where j < k, thus
PIEI(BL,))

Eﬂf“Bt — BS|4] = 3n |t — 8|2 + n(n . 1)E[(B(J) .

jt—s|
= 3n|t—s>+nn—1)t—s?
= n(n+2)t— s/

Exercise. 2.16

Proof. Without loss of generality, assume {B;};>o starts at 0. In fact we
can rewrite B; = B; — By by B:. Since {B:}+>0 is a Gaussian process, thus
Z = (B, ..., B,) obeys multi normal distribution for any fixed 0 < ¢; <
.. <trand any k = 1,2, .... According to the property of Gaussian random
variable, Eti = %BCQti is also Gaussian random variable for ¢ = 1,..., k.

Consequently, Z = (By,, ..., By,) is also k—dimensional Gaussian vector.
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Since k and {t;};=1,. j is arbitrary, {Et}is a Gaussian process. Secondly by
property of standard Brownian motion {B;}+>0 show that

A 1 1
Cov(Bs,By) = —Cov(Beag, Bey) = — min{c?s, c*t} = min{s, ¢}
c c
A 1
E(B;) = EE(Bczt) =0

for arbitrary fixed ¢ > 0 and s > 0. Consequently, {Bt}tzo is a Brownian

motion. Moreover , to directly prove by definition, see that for fixed ¢ > 0,

By ~ N(0,t), hence B, ~ N(0,c¢*t) and B; = 1Beai ~ N(0,t). Then the

k—dimension distribution of B, generates

ﬁtl...tk (A1 X ... X Ak) = / p(tl, 0, xl)...p(tk — tk—la Th—1, .Z‘k)dl'ld.%k
Al X... XA

as the same measure generated by the k—dimensional distribution of { B; }+>0,
where p(t,x,y) is the density of normal distribution. So in the canoni-
cal defining way of Brownian motion by Kolmogorov Ezxtension Theorem,
{Bi}¢>0 is a Browinian motion. O

Exercise. 3.2

Proof. To begin with, let 0 =ty < t; < ... < t,, < ty41 = t be a uniform
partition of [0, ], tp11 —tx = tx, —tx—1 for all 1 < k < n, and denote variation
AT(B#) = (ij-%l - ij)m’ Aj(t) = tj+1 - tj, j = 0, 1, ey T

The proof is based on the key variation equation as below

Nj(BY) = A3(Bi)+3B; Aj (Bi) + 3By, AF (Br)
and rewrite the equation by defining two variational summations

i 1 1 " 1.
IW .= 2}) B} A (By)+ 3 > ANBy) = ng —> "B, A} (By) = ng —12
j:

§=0 §=0
In order to prove the proposition directly by the definition of It6 integral,
we are to prove an equivalent statement that L(zl) converges to fot B2dB, and
112 in right side converges to fot Bgds both in sense of L?(P), as n — oo
(i.e., tk+1 — tk — 0)
Firstly, to deal with I,(Ll), define elementary function sequence in the form
of gn(s,w) =377, ij “1t,4,41)(s) and claim that

t n tir1
B[ (6~ B = [ El(on— B2Plds 0
0 j=0"71;
See Bs € L* and ¢, > 0, so that (¢, — B?)? is dominated by Bf . And

we can also show
2 _ p2 2 In
¢7L—BS_Btj_Bs 0
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as n — oo (i.e., tpy1 — tp — 0). Since (-)? is a continuous function, by
Lebesgue Dominated Convergence Theorem, then we can take the limit in
probability (implied by L; convergence) inside the expectation and obtain
E[(¢n — B2)? — 0. Meanwhile since 3 (By,,, — By,)® % 0, by Ito
Isometry we obtain IT(L ) fo BQdB
Secondly, to deal with LS ), see that

t
I — / B.ds
0

2

E = B By (AXBY) - 05())

=0

n t
+> By, A (t)—/ Buds |?
=0 0

2
Since (z+y)? < 222+2y? for all 2,y € R, we can control E¥ Ulr(f) - fg Bsds‘ }
by inequality

2F1 +2Fy > FE

2
B, = E ZBtj(A?(Bt)—Aj(t))
i—0
- , 2
E2 = E ZBtj A] (t) —/ Bst
=0 "

Now we claim that both E; and Es converge to zero. For E7, expand the
sqaure into two parts as follows

FEy .= FE3+ Ey
Zn: (Bt, — Bo)* (A3 (Br) — £4(1))]

Ey=7) EBij:= ) BlByB:(L5(Br) — £;(0) (A7 (Br) — Di(t))]

1<j 1<j

About E3, as Y7_o E[A3(B;)—Aj(t)]* — 0, by the independent increment
of {Bt}+>0, obviously

n

E3 =Y E[(By;, — Bo)’|E[(A}(Br) — 8()*] = 0

=0

About Ey4, via a partition of €2 see that
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Bl < | 1B, B, ||A2(B.) - 8,00| [ 82(By) - £(0)| ap
{|Bt]’|’|Bti’SM}

o
(1B Bu|<mn)e

< MQE[‘AJZ(Bt) - Aj(t)\ ’A?(Bt) - Ai(t)‘] +e

By, By,

NI(By) = 05(0)] [A2(By) = Au(t)| dP

for the function inside the expectations are all integrable. Then as M 0,
the second integral above is bounded by given ¢ > 0. As n — 0 (i.e.,
tr+1 —ty — 0) and € — 0, by the independent increment of {B;}i>0 again,
E4 — 0 and then E; — 0.

In the second expectation, as we already know fg sdB, = tB; — fot Bds

and E[fg fdBs] =0 for all f € V(0,t), by Ité Isometry we have

t t
21 _ s —tB;)?
B[ Bas? = BI([ sdB— B
t t
- /s2ds+E[t2B§]—2tE[/ BysdBs] < oo
0 0

and therefore, the function inside FEs is integrable. Fix w € (2, as the trajec-
tory Bs(w) is contlnuous then take limit n — oo in the Rz’emann sum, we
obtain > By, (w )~ Ji Bs(w)ds — 0, i.e. Z _o B A\j(t % (Y Byds

(actually pomtw1se7) So E5 — 0 so that I{? L2(B

we conclude that

fo Byds. Consequently,
1 2(p) 1 t
/ B2dB, ") tim 1 = lim (B} — 1) P Bf—/ Byds
n—00 n—oo - 3 3 0

and ends the proof. O

Exercise. 3.10

Proof. By definition of It6 integral, in fact obviously we know
P
I—/ ft(ddBt = llmetjy )

For all t; € [t;,t;11], in order to show the equality in sense of L1 (P), we
just prove

n

1= f(t) Aj(By)

Jj=0

E —0
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Firstly by Holder Inequality,

B (S0 -1 ;e < 3 (B[l - 1) (B [155m07)
=0 =0
< K I01F 18,0
7=0
< max; [A;(0)]7 - (K5°T)

simply by the smooth property of f we assumed. Let maxo<j<n,{A;(t)} — 0,

n

> (f(ty) = F(t)) &5 (B)

J=0

FE —0

Secondly by definition of It6 integral and Holder Inequality, we can show

[NIE

2
n

I=Y"f(t;) & (Br)

=0

E <|FE —0

1= f(t;) D (By)
=0

By the two limits above, clearly by the inequality as below

E I—if(t;-mjwt)] < B[S0 - 1) 25 (B
i =0 =0
+E I_if(tj)Aj(Bt)
=0

the left side converges to zero as n — 0, i.e., maxo<j<,{A;(t)} = 0. As a
simple corollary,

T T
/ F(tw)dB(tw) = / f(t,w) 0 dB(t,w)
0 0

Exercise. 3.13

Proof. a) This is a quite obvious statement. E[B%(t,w)] = t < oo for all
t > 0. Then see that E[(B; — Bs)?] = |s —t| — 0 as s — t for all t > 0, thus
Brownian motion {By};>¢ is continuous in mean square.

b) Firstly we prove E[f%(B;)] < oo. See that

E[(f(Bi) = f(Bo))’] = E[f*(B)] — 2E[f(B:) f(Bo)] + *(Bo)

therefore by property of f as a Lipschitz function, since By = 0, thus
E[f(B:) — f(0)] < CE[|B:|]. Then we have

E[f*(By)] < C*E[|B.[*] +2C(0)E[|B:|] + f*(0)

[NIE
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As for certain t > 0, E[|B;|?] < 0o, consequently, we have shown E[f2(B;)] <
00. Secondly show that

E[(f(By) = f(Bs))’] < CE[(By— B,)’| =C|t —s| = 0

as s — t for all ¢ > 0 and certain constant 0 < C' < oo. To conclude,
Y, = f(By) is continuous in mean square.
¢) In order to prove the integral equality, see that

E[/ST(Xt—%(t)fdt] - ZEU - X)) dt]
- /J+1 (X, — Xy,)2dt

Simply as X; is continuous in mean square, then
"t
0< Z/ E[(X; — Xy,)Ydt <e(T—8) =0
j=0"1%j

La(P)

Consequently, by definition, fg On(t,w)dB(t,w) — fST X;dB;. O

Exercise. 3.17
Proof. a) As E[X | G] is G—measurable, then Vc € E[X | G|(),
E[X 1G]\ (¢) € G
Consequently we can conlude the finity of E[X | G](Q2) simply for
{BIX 1G] (c) :c€ E[X | GI(Q)} c g
And by the property of such finite G, there exists finite number of Gy, , ..., G, ,

k=1,...,n, such that
k

BIX G ()= | Gy,

j=1

which implies for any such G;, E[X | G] |g,= ¢. Since c is arbitrary, then
we conclude that E[X | G| is a constant on each Gj.

b) By definition of E[X | G] and the conclusion of a), let E[X | G| |¢,= ¢i,
1=1,...,n

/G_ E[X | GldP :/ XdP = ¢;P(G;)

and directly we get F[X | G] = ¢; = /GPT) when P(G;) > 0.

c) In the same way as a) we can prove X |g,= a, for some k; = 1,...,m.
Thus when P(G;) > 0, P(X = ai | G;) = 0 except k = k; where P(X =
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ai, | Gi) = 1, so simply by showing two equalities

E[X ’ Gl] = ZakP(X = ag ’ Gz) = A,
k=1

| (BIX 161 =X)dP = (e =) P(G) =0

we have E[X | G] |g,= ¢ = ar, = E[X | G;]. However, when P(G;) = 0,
even if E[X | G| |g,= ¢ # ax, = X |, fGiE[X | GldP = fGi XdP still
holds, and without any contradiction, they two are inequal. O

Exercise. 3.18

Proof. Note that M (z) = exp(ox—302t) is a continuous function on R, thus
as By is J;—measurable, M, is also F;—measurable. Secondly, clearly M (x)
is a Lipschitz function, so by conclusion of 3.13 b), E[|M;|] < co implied by
E[M?] < co. At last, for s > t, clearly see that

1 1
Elexp(cBs — 5025) | Ft]| = FElexp(c(Bs— By)) - exp(cBy — 50'28) | Fi]
1
= FElexp(o(Bs — By))] - Elexp(cBy — 5025) | Fi]
= A0 A Blexp(0B,) | B
1
= exp(oB; — 50%) =M,

Consequently, by definition, {M;};>¢ is an F;—martingale. O

Exercise. 4.6
Proof. (a) Let Xy = g(By,t) = exp{ct + aB:}, then by Ité6 Formula,
1 1
dX; = cXpdt + aXydB; + §a2Xt(dBt)2 =(c+ 5a2)Xtdt + aX;dB;

(b) Still let Xy = g(By,t) = exp{ct + >_7_; a;B;(t)}, then by the Multi-
dimensional Ito6 Formula,

n 1 n
dX; = cXydt+ Xy a;dBj(t) + 5 X > a3 (dB;(t))?
j=1 j=1
1 n n
= (c +352 a§> Xydt + X, ( adej(t))
=1 i=1

Exercise. 4.7
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Proof. (a) Let v = (1,0,...,0) € V*(0,T), then X; = B; € R. Obviously
X? = B? is not a martingale.

(b) Let's define the filtration as F; := o({Bs}o<s<t). Obviously X; and
fg v?ds are JFi;—measurable, thus M; is Fy—measurable. Secondly, since
|vs| < o0, by Ito Isometry,

< 00

E[|M;|) < E[X}]+ E l/otvgds] =2FE l/otvgds

At last, we need to show E[M; | Fs| = M, for all ¢ > s. Show that

S t 2
(/ vudBu—l—/ vudBu> |]:5}
0 s
s 2 t 2
( / vudBu) 4 E ( / uudBu> | 7
0 s
s 2 t
= ( / vudBu) +FE / vgdu\};]
0 S

Therefore we obtain
s 2 t t
E[Mt "Fs] = (/ UudBu> + FE / Uidufs‘| —El/ ’UﬁdU|f;|
0 s 0

s 2 s
= (/ vudBu) / vzdu
0 0

= M,

EX{|F) = E

So far, we have justified that {M;}¢>0 is a Fy—martingale w.r.t. the fil-
tration we defined. O

Exercise. 4.8
Proof. (a) Apply the Multidimensional It6 Formula to {f(Bt)}+>0, then

n n 2
F(B) =Y 2L (BB (1) + 53 5% (B (@B,(1)’
j=1 9%

j=1 8xj

By taking the integral of both sides, we obtain that

f(B) ~ £(B0) = [ i+ [ arpas

(b) Since ¢’ is a.e. differentiable, then it is absolutely continuous, and ¢’ €
C(R). By Weiestrass Theorem, there exists a polynomial sequence { f;, } nen
such that f, —— g, f, —— ¢’. More importantly, as f’ is differentiable,
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a.e.

1= ¢", where f! — ¢"” outside {z1,...,2n}. For each f,, we can apply
the result of (a) and get

t t
FulB) = 1(B0) = [ fu(ByaB+ 5 [ fiBds

As |g"(x)] < M, a.e., then ¢’ is also a.e. bounded on [0,¢]. By Lebesgue
Bounded Convergence Theorem, take a.e. limit of both sides and conclude
that

9(By) —Q(Bo)+/0 g’(Bs)stJr;/o 9" (Bs)ds

Exercise. 4.13

Proof. Apply Ito Formula to M; = exp{— fot urdB, — %fot u2dr},

1 1
th = —§U2Mtdt — ’LLMtdBt + §U2Mtdt = —’LLMtdBt

Then by the general Integration by Parts Formula,

ayy = XydM; + MydX; + dXdM,;
= U,XtMtdBt + UMtdt + MtdBt — UMtClBt('LLdt + dBt)
== (uXtMt + Mt)dBt

Hence Y; = fg(uXTMT + M,)dB, is a F;—martingale, where as u is
bounded, uX, M, + M, € V(0,t) for all £ > 0. 0

Exercise. 4.16
Proof. (a) By the Jensen Inequality,
EMP) = E |[ElY | FP| < BIE[Y]” | A = B[V "] < o0

for all ¢t € [0, 7).
(b) (i) Since B —t =2 fg BsdB; is a Fy—martingale, then

E[Mo) ~T = E[B} | o] =T = E[B} = T | Fo] = 0
As a result, show that
t
M; = E[B: —T | Fi|+ T = E[Mo] + / gdB;
0
where we set g := 2B;.
(i) Since B} — 3tB, = [} B2dB, — [; 3sdB; is a F;—martingale, then
E[Mo) = E[B3 — 3T By | Fo) + 3TE[Br | Fo] =0
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As a result, show that
t
M; = E[B} — 3T Br | 4] + 3TE[Br | i) = E[Mo] + / gdBs
0

where we set g(s,w) := 3T — 3s + B2.
(iii) Since exp{oB; — 302t} is a F;—martingale, then

E[My] = e%UQTE[exp{UBT — %JQT} | Fo] = 27T
Then apply It6 Formula to Y; = exp{ocB; — 10%t}, show that
dY; = —%a%ftdt + oY;dB; + %a%dt = oY;dB,
hence Y7 = Yo + [ oYidB;. As Yy = 1, finally we obtain that

t t
M, = ElYre:®'T | F] = e37°T + / oe:”TY,dB, = E[My] + / gdB,
0 0

so we set g(s,w) = oe2’TY,. O

Exercise. 5.1

Proof. (i) By Ito Formla,

1
dX, = Odt+eBtdBt+§eBt(dBt)2

1
= §Xtdt+XtdBt
(ii) By Ito Formula,
Bt 1 1 2
dX;y = -— dt dBy — - -0-(dB
! T A Tt (dB:)
1 1
= ———DBydt+ ——dB
R e

(iii) By Ito Formula, for t < inf{s > 0: Bs ¢ [-7, §]}, cosBs < 1, hence
1
dX; = cosBydB; — 5sinBt(dBt)2
1
= —iXtdt +1/1 — X?dB,
(iv) By Ito Formula,
Xm(t) = 1

dXo(t) ' Bydt + €' d By
= Xo(t)dt + eX1dB;
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So we can verify that

ax; 1 [ 1 0
oy | =[x, Joe [ o om
(v) By Ito Formula,

By —B;
dXi(t) = d(eJFG)

2
eBt — e~ Bt 1 eBt 4 e Bt
= — — dBj+ - (—————)d(B;)?
5 d t+2( B) )d(B)
1
= §X1(t)dt+X2(t)dBt
By _ ,—Bi
dXo(t) = d(e 26 )
eBt 4 e~ Bt 1 eBr — =B
= dB; + - d(By)?
5 t+2( 5 )d(B)
1
= §X2(t)dt+X1(t)dBt

So we can verify that

=g e | ] em

Exercise. 5.5

Proof. (a) Multiplying the integrating factor e #* to both sides of the equa-
tion we can see that

e Md(Xy) = e MuXidt+ oceMdB;
At the same time
d(e_“tXt) = *,U,e_’utXtdt + 6_‘“th,5

So that
d(e " X;) = ge " dB;
Take integral of both sides, we obtain that

t
X, = e X, —I—/ oelt=9)q B,
0

where X € R is the starting point.
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(b) EX; = e EXy, and by Ito Isometry,

n 2
2 ( / e“(ts)st>
0

2 t
= —Zemp l/ (—2u)e_2“5ds]

VarX, = FE

2p 0
2
— %ueQut(l _ 672ut)
2
= (-1
20

Exercise. 5.10

Proof. Let's prove this by calculating straight forward, apply Ito Isometry,
(p+q+71)% < 3p* +3¢% + 3r? and Holder Inequality that (fot bds)? <

2
((fg’ b2d3)%(f0t ds)%) = tf(f b%ds, so that for any t < T we have
t t 2
Z+/ bds +/ UdBS>
0 0

¢ ¢
/ b*ds / a2ds]

0 0

< 3E|[|ZP| +3(T + 1)E l/t(bQ + 0—2)64
0

E|X[] = E

IN

3B [|Z°] +3TE +3F

< 3E [\zﬂ +3(T+1)E l/ot(|b| + |o])?ds

Further more by (5.2.1) and apply the trick (p + ¢q)? < 2p? + 2¢? again,

B 1x.p]

IN

3B [|Z]°] +3(T +1) /OtE (o] + |o1)?] ds

IN

t
3B [|Z°] +3(T + 1)/ E[(C+C|X,))?] ds
0
t
< 3F [|Zﬂ +6T(T +1)C? +6(T + 1)02/ | X% ds
0
t
< K1+K2/ X, 2 ds
0

Here K, := 3E [|Z|2} +6T(T +1)C? and Ko = 6(T + 1)C? as stated in
the problem. Consequently by the Gronwall Lemma, easily we reached our
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aim as below
E [|Xt|2} < K - exp{Kat}

Exercise. 5.13

Proof. (i) Just check that

552
AXy = [ —w?x; — apx} ]
KX, = 0
£t —aonry

Hence the right side is

xydt
—w?zydt — apx}dt — agnr,dBy + Tond By
According to the original equation,
z) = —w?x; — apz) + (Ty — apz})nd By

So it's verified that we can rewrite

dCCt

dX; =
¢ dx;

} = AXydt + KX dB; + MdB,

(ii) See that X; = eAtf e *(KXs + M)dBy, so obviously % 8Xt = AX;.
Then by Ito Formula,

{dXt = AXydt + [} M) (KX + M)dBs t>0
Xo=0

(iii) At the right side of the equation,
A 1 1
(cos&t + Esinﬁt)] + EAsinft = Icos&t + EJsingt

1

Here we define J := [+ A = ( AQ
—w® =

J? = —€2I. Then we obtain

), and it's easy to check that

(ft)2n+1

o ) L SO
e_IZ JZ 2n+1

= Jcosét + nginft

At the left side, similarly we can show

At — ot Z (=AD)"

ot =t e N
n!
n=0
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By the three equalities above, finally we justify that

—At
eM =M. elt = %{({cosft + Asinét)I + Asinét}

In the matrix form of the equation's solution,

t
x| _ A(t—s) 0
)= [ ey )8
_ ! SA(t=3) 0
0 n(To — ax’)dBs

According to our result above, now denote u := cos{(t—s), v := sin&(t—s)
and y; = z}, then

A(t—s) _ e =9 ( Eu+ v v )
€ = 2
£ —w*v  fu— v

and we obtain that

5] = L (e,

[ n [1 20 (T — ay,)d B

0 3

n g e_k(g_s) (Eu — Mv)(Tp — ays)dB§2)
As ( := =\ + i€, it's easy to check
(CU8) = M9 L E(8) — o= AI=5) (3 4 )
CeSt=9) = e M) () 4 vE) 4+ e M) (ug — vA)i

Hence ¢, = tIm(e‘t) = LeMu, and similarly hy = 2Im(Ce’t) = Le M (fu—
€ ¢ ¢ €
Av). Therefore,

|: CE}‘/ :| _ n fé gtfs(TO - aoys)st
Ty 77[0 htfs(TO - aoys)st

Exercise. 5.18

Proof. Consider second order differentiable function x = €Y and let ¥; =
InXy, by Ito Formula we can rewrite the equation as below

X, Y, 1 X, Y, 19X, 0%, 9X; DY,
dX, = | St ¢ = - dt + -t —LdB, =0
' layt ot " 20vi0B,0B, " 20v, 087 | oy, 0B,
As %—)Y({ = X;, then we have
Y, 1,0Y;, 10%, Y,
Ll - Xydt + =— X;dB; =
axe lat +2<8Bt) ) BT 0
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Now by the definition of certain X; and Yz, it's not difficult to check that

g—g’; =0, (6923? =0, and
Y, k o’ k k ! k
5 = —klnze ™ + k(a — ﬂ)ef b koe™ t/o e"*dBs
2
o
= _LkY, _2
kY; + k(o 2k:)
2
o
= k(a—Yt)—j
Therefore we have
15,15
X, = [k‘(a—Y})—§0 —|—§o— |dt + o Xd B,

= k?(O[ — lnXt)Xtdt + O'XtdBt

Obviously X¢ = z, thus such X; is the solution to the SDE (5.3.21).
(b) Firstly we know

e klnzg+(a—2 —ekt t
Bl omgp) e [exp {U/ ek(ts)dBSH
0

Let Y; = exp {0’ fot ek(“”*t)st}, then

1
dYs = oY.e"5dB, + 5021262“5—%13
So that

2 t
Bl =EW|+ % [ VB ds
0

Consider E [Y;] as a function of ¢, then

L dBY) _ 0 e

ElY,] ds 2

Solve this deterministic ODE we obtain that

02 02 _
In(BY]) = 7 = ze 2

As a result,

2 2 —2kt
B Rt o ok, O (1 — e =R
E[Xy] —exp{e Inz + (a 2k:> (1—e )+—4k }

Exercise. 7.5
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Proof. Define f(x) = ]x\Q ="', x? for z € R". Notice that 83?1-281;]- =0 for
all i # j, thus

n

Af(z) =2 bi(2)zi + > of(z)
3 =1

23 bi(2)z; <D0 (x) + > 2f = b + |z

i=1 i=1 i=1

where " |-|" denotes the norm in R™. Then we apply the condition " *|b| +
lo| < C(1+ |z|)" and get

< B+ |2 + [0
< CP(1+ [a])® + [2f
< C24+(C?+1) ) + 202 |z|

Af(x)

Again see that 202 |z| < C% 4+ C? |z|?, so that for K > max{2C2 2(C? +
1)} >0,

Af(x) <207 +2(C* +1) |z)* < K(1 + |z]?)

Define 7 := t A 7g, where 7 = inf{s > 0 : | X;| > R}. Certainly this is a
stopping time w.r.t. {M;}>0, and for all R > z,

Efr] = (R — ) < oo

for certain ¢t > 0. Therefore while applying Lemma 7.3.2, we know that C
is independent with ¢, let R — oo so that 7 — ¢,

EX@ X)) < X + K/Ot (1+ BX@ [|X,]) ds
As B |[X,]°| = B [EX@ [1X,]?]], hence
1+ E (1% <1+ B[ X0l +K/OT (1+EB[1x.P]) ds

According to Gronwall Lemma,

E[1XP] < (1+ B [|xP]) ¥t -1

Exercise. 7.9
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Proof. (a) For any f € C2(R),

8f a2y2 82f

(0.1) Af(y) Zry-%(yH 5 '@(y)

So the generator A of geometric Brownian motion X; is given by operator
2 2 62

re- gf + & 8:1:2 on C2(R). Since f(z) =27 € CZ(R), thus

2

Af(z) = (r + 50— 1)) vz
(b) Choose a real number p such that 0 < p < < R, a function f, €
C3(R) satisfying f, = f on (p, R), and define
T(p,r) = inf{t > 0: Xy ¢ (p, R)}

It's easy to confirm that 7,y is a stopping time w.rt. {M;}. Via
Dynkin's Formula, for all k € N we have

E* [fp(XkAT(p,R))} = fp($)

This is because

Afp(z) = < —Mm-1) ) Yz

- ( - 1)) (1= 2)eteh

=0
The condition that r < a means X; =% 0 ast — 0o, so that P [ T(p,R) < oo} =

1. As a result, fp(XkAT(p R)) is a.s. bounded by R". For f, is continuous,
let £ — oo,

fo@) = B [ fo Xr, )]
See that either X, g) = p or X (, r) = R, so

{p:— * [ X, m = R]
L=p:=P" {X%R):p}

fp(l") = fp(P)(l -p)+ fp(R)p
Let p — 0, by definition p?' (1 — p) — 0, therefore we obtain that

-(7)

(c) Now we just change f,(x) = Inz on (p, R),

Thus we have

1 1 1
Afy(x) = PO S R
x
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Hence by Dynkin's Formula,
X 1 X
E {fp(Xk/\T(p,R))} = fol@) + (r — 502)E [k A 7'(p,R)}

When r > %a2, X; &% 00 as t — oo, which still implies T(p,R) < 00, @.S..
Similarly let & — oo,

B [T(p,R)} _ fp(p)(l - pi t g,if)p - fp($)

Let p — 0, still via In(p)(1 —p) — 0,

Jo [T(p’R)} — r—iéoﬁ

Exercise. 7.10

Proof. (a) According to the Markov property of Ito diffusion X, denote
h=T-—1

h
So that we have E* [X7 | Fy] = X¥(w)e"T—Y for
FE {X})ft(w)] = X (w)exp {(T — 1) {(T _ %oﬂ) + ;QQ]} _ Xfer(T_t)

(b) As M; = exp (aBt - %azt) is a martingale w.r.t. {F;},
E® X1 | F] = 2" B [Mr | Fi] = ze™" M,
Then as X; = xe" M,

E* [XT ’ th] _ IerTeaBt—%QQt _ Xter(T—t)

Exercise. 8.13

Proof. (a) Asb: R — Ris a Lipschitz function, X; is a well-defined Ito diffu-
sion. Write Y; = X; —x, then we still have dY; = b(Y;+z)dt+dBy. Since b is

Lipschitz continuous, the Novikov condition that £ [exp (% fOT b*(Ys + x)ds)} <
oo certainly holds for ¢ < T < oo, therefore

t 1 t
M, :exp{—/ b(Ys + 2)dBs — 2/ b(, +x)ds}
0 0
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is a martingale w.r.t. F; and P. Thus according to Girsanov Theorem I, Y;
is a Brownian motion w.r.t. the Girsanov transformed probability measure
Q, so that

PIXF 2 M =Pz M- = [ MrdQ
(Yi> M-z}

We know that My = exp{—fOT bdB, — % fOT b2ds} > 0, a.s., and w.r.t.
Q, Y; is a Brownian motion, so that

332
e 2tdt

o0 1
QMEM—ﬂfa_%m

Hence f{YtzM—x} Mrpd@ > 0, ie., P[X} > M] > 0 for sure.
(b) Let b = —r, then dX} = —rdt + dB;. Obviously

X =x—rt+ By

for all ¢ > 0. Therefore as t — oo, Xj’ — —oo. Notice that the Novikov
condition only holds for finite time interval [0, 7] if only with b is Lipschitz
function. So when t — oo, we can no longer use Novikov condition to ensure
M; defined above to be a martingale and Girsanov Theorem is valid to
apply here. In this case, it's obviously reasonable that X;* might not satisfy
(X} > M] > 0. O

Exercise. 12.1

Proof. (a) (=) Let {0;}+<7 be an arbitrage in the market {X;};<7, then for
the normalized market {X;};<7:

(i) 0 is self-financing, i.e., de = 0;dX, which is shown as follows,

Vi = X;'()ave + vidxg(t)
= X0 dX; — p X )V dt
= Xal(t)ﬁt [dXt — thtdt]
= gtdyt

(ii) 0 is admissible. We know that Vf = exp (— IN psds) VP, and V¢ is

(t,w) a.s. lower bounded, so is Vf.
(iii) @ is an arbitrage, just because V! > 0 is equivalent to Vf > 0.
Consequently, {6;}:<7 is an arbitrage in {X}:<7 if it is an arbitrage in
{Xi <.
(<) Conversely, just replace p by —p, then the fact that exp (— fg(—ps)ds> Vf =
V¥ enables us to confirm {6;};<7 is an arbitrage in {X;};<7 if it is an arbi-
trage in the normalized market {X;};<7.
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(b) Firstly in a normalized market {X;};<7, construct the arbitrage port-
folio. Define § = {A(t)}s<r € R™! x [0,T] as follows: 6;(t) = 6; for
i=1,...,n, Oy(t) satisfies two conditions as below:

(i) V¢ = 0: just let 65(0) = — 7, 0;(0)X;(0);

(i) As V¥ = Bo(t) + X7y 0:(1) Xi(t) and V= 0o(t) + iy 0:(8) Xi(2),
then let 0o (t) := Oo(t) — V¢,

~ t ~ t
‘/;59:‘/;59_‘/()6:/ H(S)dXs:/ H(S)dXs—Vbe
0 0

Secondly we prove the equivalence of the existences of an arbitrage and
such admissible portfolio 6 satisfying (12.3.82).

(=) Let 6 be an arbitrage, then Voé =0, Vqé >0and P {VTQ > 0} >0, so
that it obviously satisfies (12.3.82): V:,é > Voé and P [V:,é > Voé} > 0.

(<) Let 6 be an admissible portfolio satisfying (12.3.82), then 6 con-
structed above certainly satisfies that:

(i) Vi =0;

(i) V2 =V —V§ > 0;

(iii) P [V > 0] = P [V = V{ > 0] > 0;

Therefore, 0 is a well-defined arbitrage. ([l

Exercise. 12.10

Proof. We know X; = Xpexp ((a — 3Bt + ﬁBt). As X; is defined by orig-
inal Brownian motion By,

(0.2) EX0 [h(Xp_y)] = Xoed T
Firstly %EXO [X7_¢] = T exists. Secondly define
(0.3) o(t) = e*TDBX, = BXoe?T 2P +0B: ¢ (0, T)

and it's easy to see that

t t
(0.4) EXo [ / ¢2d3] = 2Tt pXo l / X2ds
0 0

which is confirmed by the property of Ito process. Then via Theorem 12.3.3,

< o0

1 1 r
(0.5) X1 = Xoexp ((a — 5[32)15 + 2ﬂ2t) + ea(Tt)B/ X:dB;
0

and z = Xpe™ € R is what we need. O

Exercise. M.1
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Proof. (a) The smallest sets in F are A1 N Ay = {5,6}, A1\ A2 = {1,3} and
A\ A1 = {2,4} which is just a partition of 2. Therefore all sets in F are:
0
Two Elements:A; \ A2 = {1,3}, A2 \ 41 = {2,4}, A1 N Az = {5,6}
Four Elements:A; A A = {1,2,3,4}, A; = {1,3,5,6}, A2 = {2,4,5,6}
Q

which contains totally eight sets.

(b) As X () is {—1,2}, then the (actually the simplest) o—algebra on
the range of X is just {0, {—1},{2},{—1,2}}. After checking one by one:

XY{-1})) = AyeF
X1{2) = A\AeF

it's confirmed the preimage of every measurable sets on the range of f is in
F, and by definition f is F—measurable.

(c) Just let X = 1gy, obviously X '({1}) = {1} and X '({0}) =
{2,3,4,5,6} are both not F—measurable. Thus such X is not a F —measurable
mapping. O

Exercise. M.2

Proof. (Approach I) As {B;}:>0 is a Gaussian process, the k—dimension
random vector Z := (By,, ..., By, ) obeys k—dimension Gaussian distribution,
k > 1. Thus with X := By = 0, X; :=tBy;, X 1= (tlBtl‘17 ...,thtlzl) also
k—dimension Gaussian random vector, where t; > 0, 1 < j < k. So as
{t1,...,tx} and k > 1 are both arbitrary, {X;}+>0 is also Gaussian process.
Secondly by the property of Brownian motion, show that for any s,¢ > 0,

11
Cov(Xs, X¢) = st- Cov(By-1, By-1) = st - min{—, ;} = min{s, t}
s

and when min{s,t} = 0, Cov(Xs, X;) = 0 = min{s,t}. Meanwhile for
arbitrary ¢t > 0, E[X;] = tE[B;-1] = 0 . Therefore, {X;}:>0 is a Brownian
motion.

(Approach II) Given arbitrary finitely many time intevals {(s;, ti]}1<i<n
pairwise disjoint, where s;,t; # 0, {[%, s%)}lén is also pairewise disjoint, so
that {X;, — X, = B,—1 — B.-1};<p are independent. Once some s; or t; = 0,
the independence still holds obviously as Xy := 0. Secondly, when s # 0,
r >0,

Xsyr — Xs = (s +7)B(sqy)1 — 8Bs-1 ~ N(0,(s +7)A = sA) = N(0,7))

and when s =0, X, — Xg =7B,-1 ~ N(0,7)). At last Vw € , tB;-1(w) is
obviously continuous respect to ¢ > 0. To conclude, { X; }+>¢ defined above is
verified to have independent, stationary and normal distributed increments
and continuous trajectory everywhere on {2, so is a Brownian motion. [
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Exercise. M.3
Proof. (a) Let 0 =t9 < t1 < ... <t <ty =t, AJ(Bf) = (B}, — B’

and Aj(t) = tj11 —t;. In order to make the approximation terms match up,
assume v;, j = 0,1, ..., n satisfy that

v + 4B}, A (By) = Aj(BY) = 6B}, A7 (By)
Then after simplification we obtain that

v = 2B, By, + B, — 3B A% (By)

it
Then take j—summation of both sides of (3), we have
3 4 2 A2
z(:)Btj Aj (By) + 1 z%)%' =48 —35 ;)Btj A (By)

In the left side of (5), just define the approximator as ¢y, 1= "7, Bf’j 1
which is F;; —measurable, then

[t5:ti+1)

! _323:ntj+1 _ B%214s
E[/O«On Bg)d] ZO/ El(gn — B¥?d

Now as as maxo<j<n{2;(t)} — 0, we know firstly ¢, — B2 L1 0 and
secondly (i, — B2)? is dominated by integrable (finite expectation) function
(Jon| + |Bs|*)%, we can apply Lebesgue Dominated Convergence Theorem
together with It6 Isometry then see that as n — 0,

t t
E l(/ gpnst—/ B;”st)Q] =FE
0 0

At the same time, since it has term " A? (By)", the other term in the left
side of (5) satisfies that

/t(son - B?)st] —0 L*P)
0

ti+1

n n
Z’Yj = Z[QBfHIBtj +B,, - 3Bt2j] A? (Br) i> 0
=0 =0

Hence in the left sides of (5) holds that >>7 B;?’j N (By)+ 1% D=0V —
[5 B3dBg in L*(P) sense.
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In the right side of (5), we are to prove >, Btzj A} (By) — fot B2ds in
L%(P) sense. Obviously it holds that

2
2B +2E, > E Z NG (By) - / Bids
:n 2
E, == E Z (AZ(By) — 0(1)
n t 2
By, == FE Zij Aj (t)—/ Bds
=0 0

Regarding to E7, expand the sqaure into two parts as follows

FEy .= FE3+ Ey

n

By = E[Y_ By (AJ(Bi) — £(1))7]
j=0
By =23 Bij =23 BB} BHAKB) - 5500)(D3(By) — £4(0)]
i<j i<j

About E3, it is easy to see that Y7 E[A%(B:) — A;(t)]* — 0,

ZEB4 E[(A3(By) — ()]

About FE4, based on their integrability we can apply Cauchy-Schwarz
Inequality,

= (£ [t oo o] (2 o4 fosero- s

Then by the independent increment of {B;}:>0, (9) and (10) above cer-
tainly implies that as n — oo, i.e., maxo<j<n,{Aj(t)} = 0, By = E3+ E; —
0.

For Es just fix w € Q, the trajectory Bs(w) is a.s. continuous, so take the
limit n — o0, i.e., maxo<j<n{A;(t)} — 0 in the Riemann Sum as below, we

can have
n t
ZB?J_ (w) A () — / B%(w)ds
3=0 0

Hence 377 ij N (t) — fot B2ds pointwisely on €2 results in that Ey —
0. So far, we have justified that

zn:ij A% (By) —>/tB§ds (L*(P))
=0 0
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Consequently based on all above, take L?(P) limit of both sides of (5),
we finally conclude that

t 1 3 t
/ B3dB, = ~B} - / BZds
0 4 2 Jo
and the proof ends.

(b) Let g(t, B;) = 1B{ . By the 1-dimensional It6 Formula,

1 3 3
d(ZBf) = B}dB; + thz(dBt)2 = B}dB; + 5B,?cht
Therefore 1B} = [ B3dB, + 2 [} B2ds. O

Exercise. M.4

Proof. Firstly we find the expectation of I1(t) and I3(t). About I1(t), we
have two ways to show that

JHEB2)ds = B, € L*(P)

E[L1)] = { [foB dBy) } [( B - 1t) } = 1t?  Ito Isometry

For I;(t), we also has two ways to calculate its expectation. Let g(t, By) =
%(Bt + )3, by Ito Formula,

t
é(3t+t)3 :/0 (B, + )% + (B + )ldt + I, (2)
and then after simplification, we can have E[I;(t)] = 0. Also we can obtain
this for: (B, +s5)? € V(0,t) implies the It6 integral of it has null expectation
or, B, + s € L*(P) enables us to switch the integral.

Here I just usually try to get rid of switching the integrals which causes
problems frequently.

Meanwhile here to switch the integral is necessary. We definitely know
Bs + s € L*(P), thus we are allowed to switch the itegrals. Then by
E[L (1)) =0,

Var[li(t)] = E Uot(Bs + 5)4d5] = /Ot E [(BS + 5)4} ds = %t&s n

To find the variance of I3(¢) is more difficult. Show that

(A(t) > Bi) (A(t) > B,i_)

and simultaneously we also have the double Rieman sum's limit as

ZE 3232 //EB“’B2 Jdsdu

34 3
Sttt
St +

= 0303 E BB} - Bl
7
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By (14) and (15), we know that E[(I(t fo fo E[B2B2|dsdu. Ac-
cording to the independent increment of Browman motion we are able to
show that

E[B2B?| = E[BX(B, - B.)? +2B3(B. + (B, - By)) - B!

Hence we can calculate E[(I2(t))?] as below

E[(L // \u—s|+3u)d8du_7

Exercise. M.5
Proof. (a) Directly apply It6 Formula, we have

¢
(0.6) / (8 — foz 2Pt cos aBydt — / aePtsin aB,dB;
0

We know that if M; = f aePt sin aB;dB; then M, is a F;—martingale. As
aresult 5 = %oﬂ can be a sufficient condition to make M; a F;—martingale.
(b) By the result of (a), N; = €® E[cos4B,] is a F;—martingale which
means
E[cosdBy] = e PE[Ni] = e ®E[Ng] = ¢ ®

Hence such r.v. Z := By ~ N(0,1) finishes the proof. O



