PART OF THE SOLUTIONS TO EXERCISES IN $\emptyset K S E N D A L ' S$ BOOK

CHI DONG

Exercise. 2.1

Proof. (a) (\Rightarrow): Assume X is a random variable, i.e., a measurable function from (Ω, \mathcal{F}) to $(\mathbb{R}, \mathcal{B})$. Since $\left\{a_{k}\right\} \in \mathcal{B}$ for all $k=1,2, \ldots, X^{-1}\left(a_{k}\right) \in \mathcal{F}$ by definition of measurable function. (\Leftarrow) : Now assume $X^{-1}\left(a_{k}\right) \in \mathcal{F}$ for all $k=1,2, \ldots$ Then $\forall A \in \mathcal{B}$, we can show that

$$
X^{-1}(A)=X^{-1}\left(A \cap \bigcup_{k=1}^{\infty}\left\{a_{k}\right\}\right)=\bigcup_{k=1}^{\infty} X^{-1}\left(A \cap\left\{a_{k}\right\}\right) \in \mathcal{F}
$$

for $A \cap\left\{a_{k}\right\}$ equals either $\left\{a_{k}\right\}$ or \varnothing. By definition, X is a random variable.
(b) Since $\Omega=\bigcup_{k=1}^{\infty}\left\{X=a_{k}\right\}$ is a partition, then define nonnegative piecewise simple function as follows

$$
\varphi_{n}(\omega)= \begin{cases}\sum_{k=1}^{n}\left|a_{k}\right| 1_{\left\{X=a_{k}\right\}} & \omega \in \bigcup_{k=1}^{n}\left\{X=a_{k}\right\} \\ 0 & \text { others }\end{cases}
$$

See that $\varphi_{n}=|X|$ on $\bigcup_{k=1}^{n}\left\{X=a_{k}\right\}$ and obviously $\varphi_{n} \nearrow|X|$ as $n \rightarrow \infty$. Therefore, by the property of integral of nonnegative measurable function, as $E[|X|]=\int_{\Omega}|X| d P$,

$$
E[|X|]=\lim _{n \rightarrow \infty} \int_{\Omega} \varphi_{n} d P=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left|a_{k}\right| \int_{\left\{X=a_{k}\right\}} d P=\sum_{k=1}^{\infty}\left|a_{k}\right| P\left(X=a_{k}\right)
$$

(c) When $E[|X|]<\infty,|X|$ is integrable and then $E[X]=\int_{\Omega} X d P \leq$ $E[|X|]<\infty$. Similarly with (b) let's define

$$
\varphi_{n}(\omega)= \begin{cases}\sum_{k=1}^{n} a_{k} 1_{\left\{X=a_{k}\right\}} & \omega \in \bigcup_{k=1}^{n}\left\{X=a_{k}\right\} \\ 0 & \text { others }\end{cases}
$$

Clearly $\varphi_{n} \rightarrow X$ as $n \rightarrow \infty$. For $\varphi_{n} \leq|X|$ and $|X|$ is integrable, by Lebesgue Dominated Convergence Theorem,

$$
E[X]=\int_{\Omega} X d P=\lim _{n \rightarrow \infty} \int_{\Omega} \varphi_{n} d P=\sum_{k=1}^{\infty} a_{k} P\left(X=a_{k}\right)
$$

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOOK

(d) Since f is bounded and measurable, $\exists M>0$, s.t. $\int_{\Omega} f(X) d P \leq M<$ ∞. Similarly with (c), let's define

$$
\varphi_{n}(\omega)= \begin{cases}\sum_{k=1}^{n} f\left(a_{k}\right) 1_{\left\{X=a_{k}\right\}} & \omega \in \bigcup_{k=1}^{n}\left\{X=a_{k}\right\} \\ 0 & \text { others }\end{cases}
$$

Then $\varphi_{n} \rightarrow f(X)$ as $n \rightarrow \infty$. Therefore, since $\varphi_{n} \leq M$ which is integrable, also by Lebesgue Dominated Convergence Theorem we show that

$$
E[f(X)]=\int_{\Omega} f(X) d P=\lim _{n \rightarrow \infty} \int_{\Omega} \varphi_{n} d P=\sum_{k=1}^{\infty} f\left(a_{k}\right) P\left(X=a_{k}\right)
$$

and ends the proof.

Exercise. 2.2

Proof. (a) (i) By definition of probability measure, $0 \leq F(x)=P(X \leq x) \leq$ $P(\Omega)=1$. Secondly, since we know that $P(\varnothing)=0$ then let $x_{n} \searrow-\infty$, then $\left\{X \leq x_{n}\right\} \searrow \varnothing$. By upper continuity of probability measure,

$$
\lim _{n \rightarrow \infty} P\left(X \leq x_{n}\right)=P\left(\bigcap_{n=1}^{\infty}\left\{X \leq x_{n}\right\}\right)=0
$$

Hence $\forall \varepsilon>0, \exists M>0, N>0$, s.t. $\forall x<-M<x_{N}$,

$$
F(x)=P(X \leq x) \leq P\left(X \leq x_{N}\right)<\varepsilon
$$

By definition, $\lim _{x \rightarrow-\infty} F(x)=0$. At last, almost completely the same, see that $\left\{X \geq x_{n}\right\} \searrow \varnothing$ as $x_{n} \nearrow \infty$, then in the same way $\lim _{x \rightarrow \infty} F(x)=1$.
(ii) Clearly $F\left(x_{1}\right)=P\left(X \leq x_{1}\right) \leq P\left(X \leq x_{2}\right)=F\left(x_{2}\right)$, as $x_{1} \leq x_{2}$, $x_{1}, x_{2} \in \mathbb{R}$ and $\left\{X \leq x_{1}\right\} \subset\left\{X \leq x_{2}\right\}$.
(iii) For $x \in \mathbb{R}, F(x+h)-F(x)=P(x<X \leq x+h)$, where $h>0$. Let $h_{n} \searrow 0$, then $P\left(x<X \leq x+h_{n}\right) \searrow 0$ for the same reason as (i). Then $\forall \varepsilon>0, \exists \delta>0$ and $N>0$, s.t. $\forall 0<h<\delta<h_{N}$,

$$
P(x<X \leq x+h) \leq P\left(x<X \leq x+h_{N}\right)<\varepsilon
$$

which means $F(x+h)-F(x)=P(x<X \leq x+h) \rightarrow 0$ as $h \rightarrow 0$ and ends the proof.
(b) Let $\left\{X^{-1}\left(A_{n}\right)\right\}_{n \in \mathbb{N}}$ be a measurable partition of Ω, where $A_{n}=$ $\left(a_{n}, b_{n}\right] \in \mathcal{B}, a_{n+1}=b_{n}, a_{0}=-\infty, b_{n} \nearrow \infty$. Via $E[|g(X)|]<\infty$ firstly we can show that

$$
E[g(X)]=\int_{\Omega} g(X) d P=\sum_{n=0}^{\infty} \int_{\left\{X \in A_{n}\right\}} g(X) d P<\infty
$$

As the property of expectation as a probability integral, we directly state that

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOOK

$$
\sum_{n=0}^{\infty} \int_{\left\{X \in A_{n}\right\}} g(X) d P=E[g(X)]=\int_{\mathbb{R}} g P \circ X^{-1}=\sum_{n=0}^{\infty} \int_{A_{n}} g d P \circ X^{-1}
$$

Since for $\left(a_{n}, b_{n}\right]$, as we proved in (a), denote L-S measure induced by distribution function F by m_{F}, then

$$
m_{F}\left(A_{n}\right)=F\left(b_{n}\right)-F\left(a_{n}\right)=P \circ X^{-1}\left(A_{n}\right)
$$

By the uniqueness of extension of measure, $P \circ X^{-1}=m_{F}$. Then we are able to transform the expectation integral as follows:

$$
\sum_{n=0}^{\infty} \int_{A_{n}} g d P \circ X^{-1}=\sum_{n=0}^{\infty} \int_{A_{n}} g d F=\int_{\mathbb{R}} \sum_{n=0}^{\infty} g 1_{A_{k}} d F<\infty
$$

According to the two equations above,

$$
E[g(X)]=\int_{\mathbb{R}} \sum_{n=0}^{\infty} g 1_{A_{k}} d F=\int_{-\infty}^{\infty} g d F<\infty
$$

(c) Denote the density of B_{t}^{2} by $p_{B_{t}^{2}}$, then for $y \geq 0$, show that

$$
\int_{-\infty}^{y} p_{B_{t}^{2}}(x) d x=P\left(B_{t}^{2} \leq y\right)=P\left(\left|B_{t}\right| \leq \sqrt{y}\right)=\int_{-\sqrt{y}}^{\sqrt{y}} p(x) d(\sqrt{y})
$$

Then by simple calculation we have

$$
p_{B_{t}^{2}}(y)=\frac{1}{2 \sqrt{2 y \pi t}} e^{-\frac{y}{2 t}}+\frac{1}{2 \sqrt{2 y \pi t}} e^{-\frac{y}{2 t}}=\frac{1}{\sqrt{2 y \pi t}} e^{-\frac{y}{2 t}}
$$

Exercise. 2.3

Proof. Firstly, since $\varnothing \in \mathcal{H}_{i}$ for all $i \in I, \varnothing \in \bigcap_{i \in I} \mathcal{H}_{i}$. Secondly, $A^{c} \in$ $\bigcap_{i \in I} \mathcal{H}_{i}$ given $A \in \bigcap_{i \in I} \mathcal{H}_{i}$, for $A^{c} \in \mathcal{H}_{i}$ for all $i \in I$. At last, let $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ be a set sequence in $\bigcap_{i \in I} \mathcal{H}_{i}$, since in each $\mathcal{H}_{i}, \bigcup_{n=0}^{\infty} A_{n} \in \mathcal{H}_{i}$, hence $\bigcup_{n=0}^{\infty} A_{n} \in$ $\bigcap_{i \in I} \mathcal{H}_{i}$. Based on all above we conclude that $\bigcap_{i \in I} \mathcal{H}_{i}$ is again a sigma algebra.

Exercise. 2.8

Proof. (a) Directly by (2.2.3), let $k=n=1$, we can conclude $E^{0}\left[\exp \left(i u B_{t}\right)\right]=$ $\exp \left(-\frac{1}{2} u^{2} t\right)$, here $\forall u \in \mathbb{R}$.
(b) Denote $E\left[B_{t}^{n}\right]=m^{(n)}\left(B_{t}\right)$. For fixed t, in (a),

$$
E\left[e^{i u B_{t}}\right]=\sum_{n=0}^{\infty} m^{(n)}\left(B_{t}\right) \frac{(i u)^{n}}{n!}=e^{-\frac{u^{2}}{2} t}
$$

Then let $f(t)=e^{-\frac{u^{2}}{2} t}$,

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOOK

$$
\sum_{n=0}^{\infty} m^{(n)}\left(B_{t}\right) \frac{u^{n} i^{n}}{n!}=\sum_{n=0}^{\infty} f^{(n)}(0) \frac{t^{n}}{n!}
$$

See that $f^{(n)}(0)=\left(-\frac{u^{2}}{2}\right)^{n}$, therefore,

$$
\sum_{n=0}^{\infty} m^{(n)}\left(B_{t}\right) \frac{u^{n} i^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}} \frac{u^{2 n} t^{n}}{n!}
$$

Compare the term of u of same power, we could see

$$
m^{(2 n)}\left(B_{t}\right)=\frac{(-1)^{n} 2 n!}{2^{n} i^{2 n} n!} t^{n}=\frac{2 n!}{2^{n} n!} t^{n}
$$

Finally let $n=2$, we get $E\left[B_{t}^{4}\right]=3 t^{2}$ and proof ends.
(c) From (2.2.2) we know $P^{0}\left(B_{t} \in A\right)=\int_{A} p(t, 0, y) d y$, here $A \in \mathcal{B}$ and $p(t, x, y)=\frac{1}{\sqrt{2 \pi t}} \exp \left(-\frac{y^{2}}{2 t}\right)$. Then for measurable function f, by the conclusion of 2.2 , (b),

$$
E\left[f\left(B_{t}\right)\right]=\frac{1}{\sqrt{2 \pi t}} \int_{\mathbb{R}} f(x) \exp \left(-\frac{x^{2}}{2 t}\right) d x
$$

(d) Firstly see that $E^{x}\left[\left|B_{t}-B_{s}\right|^{4}\right]=E\left[\left|B_{|t-s|}\right|^{4}\right]=E\left[\left(\sum_{i=1}^{n}\left(B_{|t-s|}^{(i)}\right)^{2}\right)^{2}\right]$. Then expand the summation, we get

$$
E^{x}\left[\left|B_{t}-B_{s}\right|^{4}\right]=E\left[\sum_{i=1}^{n}\left(B_{|t-s|}^{(i)}\right)^{4}+\sum_{1 \leq j \neq k \leq n}\left(B_{|t-s|}^{(j)}\right)^{2}\left(B_{|t-s|}^{(k)}\right)^{2}\right]
$$

Since we know $E\left[\left(B_{|t-s|}^{(i)}\right)^{4}\right]=3|t-s|^{2}$ from (b), and $B_{|t-s|}^{(j)}$ and $B_{|t-s|}^{(k)}$ are independent where $j<k$, thus

$$
\begin{aligned}
E^{x}\left[\left|B_{t}-B_{s}\right|^{4}\right] & =3 n|t-s|^{2}+n(n-1) E\left[\left(B_{|t-s|}^{(j)}\right)^{2}\right] E\left[\left(B_{|t-s|}^{(k)}\right)^{2}\right] \\
& =3 n|t-s|^{2}+n(n-1)|t-s|^{2} \\
& =n(n+2)|t-s|^{2}
\end{aligned}
$$

Exercise. 2.16

Proof. Without loss of generality, assume $\left\{B_{t}\right\}_{t \geq 0}$ starts at 0 . In fact we can rewrite $\widetilde{B}_{t}=B_{t}-B_{0}$ by B_{t}. Since $\left\{B_{t}\right\}_{t \geq 0}$ is a Gaussian process, thus $Z=\left(B_{t_{1}}, \ldots, B_{t_{k}}\right)$ obeys multi normal distribution for any fixed $0 \leq t_{1} \leq$ $\ldots \leq t_{k}$ and any $k=1,2, \ldots$. According to the property of Gaussian random variable, $\hat{B}_{t_{i}}=\frac{1}{c} B_{c^{2} t_{i}}$ is also Gaussian random variable for $i=1, \ldots, k$. Consequently, $\hat{Z}=\left(\hat{B}_{t_{1}}, \ldots, \hat{B}_{t_{k}}\right)$ is also k-dimensional Gaussian vector.

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOOK

Since k and $\left\{t_{i}\right\}_{i=1, \ldots, k}$ is arbitrary, $\left\{\hat{B}_{t}\right\}_{\text {is a Gaussian process. Secondly by }}$ property of standard Brownian motion $\left\{B_{t}\right\}_{t \geq 0}$ show that

$$
\begin{aligned}
\operatorname{Cov}\left(\hat{B}_{s}, \hat{B}_{t}\right) & =\frac{1}{c^{2}} \operatorname{Cov}\left(B_{c^{2} s}, B_{c^{2} t}\right)=\frac{1}{c^{2}} \min \left\{c^{2} s, c^{2} t\right\}=\min \{s, t\} \\
E\left(\hat{B}_{t}\right) & =\frac{1}{c} E\left(B_{c^{2} t}\right)=0
\end{aligned}
$$

for arbitrary fixed $t \geq 0$ and $s \geq 0$. Consequently, $\left\{\hat{B}_{t}\right\}_{t \geq 0}$ is a Brownian motion. Moreover, to directly prove by definition, see that for fixed $t \geq 0$, $B_{t} \sim N(0, t)$, hence $B_{c^{2} t} \sim N\left(0, c^{2} t\right)$ and $\hat{B}_{t}=\frac{1}{c} B_{c^{2} t} \sim N(0, t)$. Then the k-dimension distribution of \hat{B}_{t} generates
$\hat{v}_{t_{1} \ldots t_{k}}\left(A_{1} \times \ldots \times A_{k}\right)=\int_{A_{1} \times \ldots \times A_{k}} p\left(t_{1}, 0, x_{1}\right) \ldots p\left(t_{k}-t_{k-1}, x_{k-1}, x_{k}\right) d x_{1} \ldots d x_{k}$
as the same measure generated by the k-dimensional distribution of $\left\{B_{t}\right\}_{t \geq 0}$, where $p(t, x, y)$ is the density of normal distribution. So in the canonical defining way of Brownian motion by Kolmogorov Extension Theorem, $\left\{\hat{B}_{t}\right\}_{t \geq 0}$ is a Browinian motion.

Exercise. 3.2

Proof. To begin with, let $0=t_{0}<t_{1}<\ldots<t_{n}<t_{n+1}=t$ be a uniform partition of $[0, t], t_{k+1}-t_{k}=t_{k}-t_{k-1}$ for all $1 \leq k \leq n$, and denote variation $\triangle_{j}^{m}\left(B_{t}^{k}\right)=\left(B_{t_{j+1}}^{k}-B_{t_{j}}^{k}\right)^{m}, \triangle_{j}(t)=t_{j+1}-t_{j}, j=0,1, \ldots, n$.

The proof is based on the key variation equation as below

$$
\triangle_{j}\left(B_{t}^{3}\right)=\triangle_{j}^{3}\left(B_{t}\right)+3 B_{t_{j}}^{2} \triangle_{j}\left(B_{t}\right)+3 B_{t_{j}} \triangle_{j}^{2}\left(B_{t}\right)
$$

and rewrite the equation by defining two variational summations
$I_{n}^{(1)}:=\sum_{j=0}^{n} B_{t_{j}}^{2} \triangle_{j}\left(B_{t}\right)+\frac{1}{3} \sum_{j=0}^{n} \triangle_{j}^{3}\left(B_{t}\right)=\frac{1}{3} B_{t}^{3}-\sum_{j=0}^{n} B_{t_{j}} \triangle_{j}^{2}\left(B_{t}\right):=\frac{1}{3} B_{t}^{3}-I_{n}^{(2)}$
In order to prove the proposition directly by the definition of Itô integral, we are to prove an equivalent statement that $I_{n}^{(1)}$ converges to $\int_{0}^{t} B_{s}^{2} d B_{s}$ and $I_{n}^{(2)}$ in right side converges to $\int_{0}^{t} B_{s} d s$ both in sense of $L^{2}(P)$, as $n \rightarrow \infty$ (i.e., $t_{k+1}-t_{k} \rightarrow 0$).

Firstly, to deal with $I_{n}^{(1)}$, define elementary function sequence in the form of $\phi_{n}(s, \omega):=\sum_{j=0}^{n} B_{t_{j}}^{2} \cdot 1_{\left[t_{j}, t_{j+1}\right)}(s)$ and claim that

$$
E\left[\int_{0}^{t}\left(\phi_{n}-B_{s}^{2}\right)^{2} d s\right]=\sum_{j=0}^{n} \int_{t_{j}}^{t_{j+1}} E\left[\left(\phi_{n}-B_{s}^{2}\right)^{2}\right] d s \rightarrow 0
$$

See $B_{s} \in L^{4}$ and $\phi_{n} \geq 0$, so that $\left(\phi_{n}-B_{s}^{2}\right)^{2}$ is dominated by B_{s}^{4}. And we can also show

$$
\phi_{n}-B_{s}^{2}=B_{t_{j}}^{2}-B_{s}^{2} \xrightarrow{L_{1}} 0
$$

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOOK

as $n \rightarrow \infty$ (i.e., $t_{k+1}-t_{k} \rightarrow 0$). Since $(\cdot)^{2}$ is a continuous function, by Lebesgue Dominated Convergence Theorem, then we can take the limit in probability (implied by L_{1} convergence) inside the expectation and obtain $E\left[\left(\phi_{n}-B_{s}^{2}\right)^{2}\right] \rightarrow 0$. Meanwhile, since $\frac{1}{3} \sum_{j=0}^{n}\left(B_{t_{j+1}}-B_{t_{j}}\right)^{3} \xrightarrow{L_{1}} 0$, by Itô Isometry we obtain $I_{n}^{(1)} \xrightarrow{L^{2}(P)} \int_{0}^{t} B_{s}^{2} d B_{s}$.

Secondly, to deal with $I_{n}^{(2)}$, see that

$$
\begin{aligned}
E\left[\left|I_{n}^{(2)}-\int_{0}^{t} B_{s} d s\right|^{2}\right]= & E \mid \sum_{j=0}^{n} B_{t_{j}}\left(\triangle_{j}^{2}\left(B_{t}\right)-\triangle_{j}(t)\right) \\
& +\sum_{j=0}^{n} B_{t_{j-1}} \triangle_{j}(t)-\left.\int_{0}^{t} B_{s} d s\right|^{2}
\end{aligned}
$$

Since $(x+y)^{2} \leq 2 x^{2}+2 y^{2}$ for all $x, y \in \mathbb{R}$, we can control $E\left[\left|I_{n}^{(2)}-\int_{0}^{t} B_{s} d s\right|^{2}\right]$ by inequality

$$
\begin{aligned}
2 E_{1}+2 E_{2} & \geq E\left[\left|I_{n}^{(2)}-\int_{0}^{t} B_{s} d s\right|^{2}\right] \\
E_{1} & :=E\left[\sum_{j=0}^{n} B_{t_{j}}\left(\triangle_{j}^{2}\left(B_{t}\right)-\triangle_{j}(t)\right)\right]^{2} \\
E_{2} & :=E\left[\sum_{j=0}^{n} B_{t_{j}} \triangle_{j}(t)-\int_{0}^{t} B_{s} d s\right]^{2}
\end{aligned}
$$

Now we claim that both E_{1} and E_{2} converge to zero. For E_{1}, expand the sqaure into two parts as follows

$$
\begin{gathered}
E_{1}:=E_{3}+E_{4} \\
E_{3}:=E\left[\sum_{j=0}^{n}\left(B_{t_{j}}-B_{0}\right)^{2}\left(\triangle_{j}^{2}\left(B_{t}\right)-\triangle_{j}(t)\right)^{2}\right] \\
E_{4}=\sum_{i<j} E_{i, j}:=\sum_{i<j} E\left[B_{t_{j}} B_{t_{i}}\left(\triangle_{j}^{2}\left(B_{t}\right)-\triangle_{j}(t)\right)\left(\triangle_{i}^{2}\left(B_{t}\right)-\triangle_{i}(t)\right)\right]
\end{gathered}
$$

About E_{3}, as $\sum_{j=0}^{n} E\left[\triangle_{j}^{2}\left(B_{t}\right)-\triangle_{j}(t)\right]^{2} \rightarrow 0$, by the independent increment of $\left\{B_{t}\right\}_{t \geq 0}$, obviously

$$
E_{3}=\sum_{j=0}^{n} E\left[\left(B_{t_{j}}-B_{0}\right)^{2}\right] E\left[\left(\triangle_{j}^{2}\left(B_{t}\right)-\triangle_{j}(t)\right)^{2}\right] \rightarrow 0
$$

About E_{4}, via a partition of Ω see that

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOOK

$$
\begin{aligned}
\left|E_{i, j}\right| \leq & \int_{\left\{\left|B_{t_{j}}\right|,\left|B_{t_{i}}\right| \leq M\right\}}\left|B_{t_{i}} B_{t_{j}}\right|\left|\triangle_{j}^{2}\left(B_{t}\right)-\triangle_{j}(t)\right|\left|\triangle_{i}^{2}\left(B_{t}\right)-\triangle_{i}(t)\right| d P \\
& +\int_{\left\{\left|B_{t_{j}}\right|,\left|B_{t_{i}}\right| \leq M\right\}^{c}}\left|B_{t_{i}} B_{t_{j}}\right|\left|\triangle_{j}^{2}\left(B_{t}\right)-\triangle_{j}(t)\right|\left|\triangle_{i}^{2}\left(B_{t}\right)-\triangle_{i}(t)\right| d P \\
\leq & M^{2} E\left[\left|\triangle_{j}^{2}\left(B_{t}\right)-\triangle_{j}(t)\right|\left|\triangle_{i}^{2}\left(B_{t}\right)-\triangle_{i}(t)\right|\right]+\varepsilon
\end{aligned}
$$

for the function inside the expectations are all integrable. Then as $M \nearrow 0$, the second integral above is bounded by given $\varepsilon>0$. As $n \rightarrow 0$ (i.e., $\left.t_{k+1}-t_{k} \rightarrow 0\right)$ and $\varepsilon \rightarrow 0$, by the independent increment of $\left\{B_{t}\right\}_{t \geq 0}$ again, $E_{4} \rightarrow 0$ and then $E_{1} \rightarrow 0$.

In the second expectation, as we already know $\int_{0}^{t} s d B_{s}=t B_{t}-\int_{0}^{t} B_{s} d s$ and $E\left[\int_{0}^{t} f d B_{s}\right]=0$ for all $f \in \mathcal{V}(0, t)$, by Itô Isometry we have

$$
\begin{aligned}
E\left[\left(\int_{0}^{t} B_{s} d s\right)^{2}\right] & =E\left[\left(\int_{0}^{t} s d B_{s}-t B_{t}\right)^{2}\right] \\
& =\int_{0}^{t} s^{2} d s+E\left[t^{2} B_{t}^{2}\right]-2 t E\left[\int_{0}^{t} B_{t} s d B_{s}\right]<\infty
\end{aligned}
$$

and therefore, the function inside E_{2} is integrable. Fix $\omega \in \Omega$, as the trajectory $B_{s}(\omega)$ is continuous, then take limit $n \rightarrow \infty$ in the Riemann sum, we obtain $\sum_{j=0}^{n} B_{t_{j}}(\omega) \triangle_{j}(t)-\int_{0}^{t} B_{s}(\omega) d s \rightarrow 0$, i.e., $\sum_{j=0}^{n} B_{t_{j}} \triangle_{j}(t) \xrightarrow{\text { a.s. }} \int_{0}^{t} B_{s} d s$ (actually pointwise?). So $E_{2} \rightarrow 0$ so that $I_{n}^{(2)} \xrightarrow{L_{2}(P)} \int_{0}^{t} B_{s} d s$. Consequently, we conclude that

$$
\int_{0}^{t} B_{s}^{2} d B_{s} \stackrel{L^{2}(P)}{=} \lim _{n \rightarrow \infty} I_{n}^{(1)}=\lim _{n \rightarrow \infty}\left(\frac{1}{3} B_{t}^{3}-I_{n}^{(2)}\right) \stackrel{L^{2}(P)}{=} \frac{1}{3} B_{t}^{3}-\int_{0}^{t} B_{s} d s
$$

and ends the proof.

Exercise. 3.10

Proof. By definition of Itô integral, in fact obviously we know

$$
I=\int_{0}^{T} f(t, \omega) d B_{t} \stackrel{L_{2}(P)}{=} \lim _{n \rightarrow \infty} \sum_{j=0}^{n} f\left(t_{j}, \omega\right) \triangle_{j}\left(B_{t}\right)
$$

For all $t_{j}^{\prime} \in\left[t_{j}, t_{j+1}\right]$, in order to show the equality in sense of $L_{1}(P)$, we just prove

$$
E\left[\left|I-\sum_{j=0}^{n} f\left(t_{j}^{\prime}\right) \triangle_{j}\left(B_{t}\right)\right|\right] \rightarrow 0
$$

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOOK

Firstly by Holder Inequality,

$$
\begin{aligned}
E\left[\left|\sum_{j=0}^{n}\left(f\left(t_{j}\right)-f\left(t_{j}^{\prime}\right)\right) \triangle_{j}\left(B_{t}\right)\right|\right] & \leq \sum_{j=0}^{n}\left(E\left[\left|f\left(t_{j}\right)-f\left(t_{j}^{\prime}\right)\right|^{2}\right]\right)^{\frac{1}{2}}\left(E\left[\left|\triangle_{j}\left(B_{t}\right)\right|^{2}\right]\right)^{\frac{1}{2}} \\
& \leq K^{\frac{1+\varepsilon}{2}} \sum_{j=0}^{n}\left|\triangle_{j}(t)\right|^{\frac{1+\varepsilon}{2}} \cdot\left|\triangle_{j}(t)\right|^{\frac{1}{2}} \\
& \leq \max _{j}\left|\triangle_{j}(t)\right|^{\frac{\varepsilon}{2}} \cdot\left(K^{\frac{1+\varepsilon}{2}} T\right)
\end{aligned}
$$

simply by the smooth property of f we assumed. Let $\max _{0 \leq j \leq n}\left\{\triangle_{j}(t)\right\} \rightarrow 0$,

$$
E\left[\left|\sum_{j=0}^{n}\left(f\left(t_{j}\right)-f\left(t_{j}^{\prime}\right)\right) \triangle_{j}\left(B_{t}\right)\right|\right] \rightarrow 0
$$

Secondly by definition of Itô integral and Holder Inequality, we can show

$$
E\left[\left|I-\sum_{j=0}^{n} f\left(t_{j}\right) \triangle_{j}\left(B_{t}\right)\right|\right] \leq\left(E\left[\left|I-\sum_{j=0}^{n} f\left(t_{j}\right) \triangle_{j}\left(B_{t}\right)\right|^{2}\right]\right)^{\frac{1}{2}} \rightarrow 0
$$

By the two limits above, clearly by the inequality as below

$$
\begin{aligned}
E\left[\left|I-\sum_{j=0}^{n} f\left(t_{j}^{\prime}\right) \triangle_{j}\left(B_{t}\right)\right|\right] \leq & E\left[\left|\sum_{j=0}^{n}\left(f\left(t_{j}\right)-f\left(t_{j}^{\prime}\right)\right) \triangle_{j}\left(B_{t}\right)\right|\right] \\
& +E\left[\left|I-\sum_{j=0}^{n} f\left(t_{j}\right) \triangle_{j}\left(B_{t}\right)\right|\right]
\end{aligned}
$$

the left side converges to zero as $n \rightarrow 0$, i.e., $\max _{0 \leq j \leq n}\left\{\triangle_{j}(t)\right\} \rightarrow 0$. As a simple corollary,

$$
\int_{0}^{T} f(t, \omega) d B(t, \omega)=\int_{0}^{T} f(t, \omega) \circ d B(t, \omega)
$$

Exercise. 3.13

Proof. a) This is a quite obvious statement. $E\left[B^{2}(t, \omega)\right]=t<\infty$ for all $t \geq 0$. Then see that $E\left[\left(B_{t}-B_{s}\right)^{2}\right]=|s-t| \rightarrow 0$ as $s \rightarrow t$ for all $t \geq 0$, thus Brownian motion $\left\{B_{t}\right\}_{t \geq 0}$ is continuous in mean square.
b) Firstly we prove $E\left[f^{2}\left(B_{t}\right)\right]<\infty$. See that

$$
E\left[\left(f\left(B_{t}\right)-f\left(B_{0}\right)\right)^{2}\right]=E\left[f^{2}\left(B_{t}\right)\right]-2 E\left[f\left(B_{t}\right) f\left(B_{0}\right)\right]+f^{2}\left(B_{0}\right)
$$

therefore by property of f as a Lipschitz function, since $B_{0}=0$, thus $E\left[f\left(B_{t}\right)-f(0)\right] \leq C E\left[\left|B_{t}\right|\right]$. Then we have

$$
E\left[f^{2}\left(B_{t}\right)\right] \leq C^{2} E\left[\left|B_{t}\right|^{2}\right]+2 C f(0) E\left[\left|B_{t}\right|\right]+f^{2}(0)
$$

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOOK

As for certain $t \geq 0, E\left[\left|B_{t}\right|^{2}\right]<\infty$, consequently, we have shown $E\left[f^{2}\left(B_{t}\right)\right]<$ ∞. Secondly show that

$$
E\left[\left(f\left(B_{t}\right)-f\left(B_{s}\right)\right)^{2}\right] \leq C E\left[\left(B_{t}-B_{s}\right)^{2}\right]=C|t-s| \rightarrow 0
$$

as $s \rightarrow t$ for all $t \geq 0$ and certain constant $0<C<\infty$. To conclude, $Y_{t}=f\left(B_{t}\right)$ is continuous in mean square.
c) In order to prove the integral equality, see that

$$
\begin{aligned}
E\left[\int_{S}^{T}\left(X_{t}-\phi_{n}(t)\right)^{2} d t\right] & =\sum_{j=0}^{n} E\left[\int_{t_{j}}^{t_{j+1}}\left(X_{t}-X_{t_{j}}\right)^{2} d t\right] \\
& =\sum_{j=0}^{n} \int_{t_{j}}^{t_{j+1}} E\left[\left(X_{t}-X_{t_{j}}\right)^{2}\right] d t
\end{aligned}
$$

Simply as X_{t} is continuous in mean square, then

$$
0 \leq \sum_{j=0}^{n} \int_{t_{j}}^{t_{j+1}} E\left[\left(X_{t}-X_{t_{j}}\right)^{2}\right] d t<\varepsilon(T-S) \rightarrow 0
$$

Consequently, by definition, $\int_{S}^{T} \phi_{n}(t, \omega) d B(t, \omega) \xrightarrow{L_{2}(P)} \int_{S}^{T} X_{t} d B_{t}$.

Exercise. 3.17

Proof. a) As $E[X \mid \mathcal{G}]$ is \mathcal{G}-measurable, then $\forall c \in E[X \mid \mathcal{G}](\Omega)$,

$$
E[X \mid \mathcal{G}]^{-1}(c) \in \mathcal{G}
$$

Consequently we can conlude the finity of $E[X \mid \mathcal{G}](\Omega)$ simply for

$$
\left\{E[X \mid \mathcal{G}]^{-1}(c): c \in E[X \mid \mathcal{G}](\Omega)\right\} \subset \mathcal{G}
$$

And by the property of such finite \mathcal{G}, there exists finite number of $G_{n_{1}}, \ldots, G_{n_{k}}$, $k=1, \ldots, n$, such that

$$
E[X \mid \mathcal{G}]^{-1}(c)=\bigcup_{j=1}^{k} G_{n_{j}}
$$

which implies for any such $G_{i},\left.E[X \mid \mathcal{G}]\right|_{G_{i}}=c$. Since c is arbitrary, then we conclude that $E[X \mid \mathcal{G}]$ is a constant on each G_{i}.
b) By definition of $E[X \mid \mathcal{G}]$ and the conclusion of a), let $\left.E[X \mid \mathcal{G}]\right|_{G_{i}}=c_{i}$, $i=1, \ldots, n$,

$$
\int_{G_{i}} E[X \mid \mathcal{G}] d P=\int_{G_{i}} X d P=c_{i} P\left(G_{i}\right)
$$

and directly we get $E[X \mid \mathcal{G}]=c_{i}=\frac{\int_{G_{i}} X d P}{P\left(G_{i}\right)}$ when $P\left(G_{i}\right)>0$.
c) In the same way as a) we can prove $\left.X\right|_{G_{i}}=a_{k_{i}}$ for some $k_{i}=1, \ldots, m$. Thus when $P\left(G_{i}\right)>0, P\left(X=a_{k} \mid G_{i}\right)=0$ except $k=k_{i}$ where $P(X=$

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOOK

$\left.a_{k_{i}} \mid G_{i}\right)=1$, so simply by showing two equalities

$$
\begin{aligned}
E\left[X \mid G_{i}\right] & =\sum_{k=1}^{m} a_{k} P\left(X=a_{k} \mid G_{i}\right)=a_{k_{i}} \\
\int_{G_{i}}(E[X \mid \mathcal{G}]-X) d P & =\left(c_{i}-a_{k_{i}}\right) P\left(G_{i}\right)=0
\end{aligned}
$$

we have $\left.E[X \mid \mathcal{G}]\right|_{G_{i}}=c_{i}=a_{k_{i}}=E\left[X \mid G_{i}\right]$. However, when $P\left(G_{i}\right)=0$, even if $\left.E[X \mid \mathcal{G}]\right|_{G_{i}}=c_{i} \neq a_{k_{i}}=\left.X\right|_{G_{i}}, \int_{G_{i}} E[X \mid \mathcal{G}] d P=\int_{G_{i}} X d P$ still holds, and without any contradiction, they two are inequal.

Exercise. 3.18

Proof. Note that $M(x)=\exp \left(\sigma x-\frac{1}{2} \sigma^{2} t\right)$ is a continuous function on \mathbb{R}, thus as B_{t} is \mathcal{F}_{t}-measurable, M_{t} is also \mathcal{F}_{t}-measurable. Secondly, clearly $M(x)$ is a Lipschitz function, so by conclusion of $3.13 \mathbf{b}$), $E\left[\left|M_{t}\right|\right]<\infty$ implied by $E\left[M_{t}^{2}\right]<\infty$. At last, for $s>t$, clearly see that

$$
\begin{aligned}
E\left[\left.\exp \left(\sigma B_{s}-\frac{1}{2} \sigma^{2} s\right) \right\rvert\, \mathcal{F}_{t}\right] & =E\left[\left.\exp \left(\sigma\left(B_{s}-B_{t}\right)\right) \cdot \exp \left(\sigma B_{t}-\frac{1}{2} \sigma^{2} s\right) \right\rvert\, \mathcal{F}_{t}\right] \\
& =E\left[\exp \left(\sigma\left(B_{s}-B_{t}\right)\right)\right] \cdot E\left[\left.\exp \left(\sigma B_{t}-\frac{1}{2} \sigma^{2} s\right) \right\rvert\, \mathcal{F}_{t}\right] \\
& =e^{\frac{1}{2} \sigma^{2}(s-t)} \cdot e^{-\frac{1}{2} \sigma^{2} s} \cdot E\left[\exp \left(\sigma B_{t}\right) \mid \mathcal{F}_{t}\right] \\
& =\exp \left(\sigma B_{t}-\frac{1}{2} \sigma^{2} t\right)=M_{t}
\end{aligned}
$$

Consequently, by definition, $\left\{M_{t}\right\}_{t \geq 0}$ is an \mathcal{F}_{t}-martingale.

Exercise. 4.6

Proof. (a) Let $X_{t}=g\left(B_{t}, t\right)=\exp \left\{c t+\alpha B_{t}\right\}$, then by Itô Formula,

$$
d X_{t}=c X_{t} d t+\alpha X_{t} d B_{t}+\frac{1}{2} \alpha^{2} X_{t}\left(d B_{t}\right)^{2}=\left(c+\frac{1}{2} \alpha^{2}\right) X_{t} d t+\alpha X_{t} d B_{t}
$$

(b) Still let $X_{t}=g\left(B_{t}, t\right)=\exp \left\{c t+\sum_{j=1}^{n} \alpha_{j} B_{j}(t)\right\}$, then by the Multidimensional Itô Formula,

$$
\begin{aligned}
d X_{t} & =c X_{t} d t+X_{t} \sum_{j=1}^{n} \alpha_{j} d B_{j}(t)+\frac{1}{2} X_{t} \sum_{j=1}^{n} \alpha_{j}^{2}\left(d B_{j}(t)\right)^{2} \\
& =\left(c+\frac{1}{2} \sum_{j=1}^{n} \alpha_{j}^{2}\right) X_{t} d t+X_{t}\left(\sum_{j=1}^{n} \alpha_{j} d B_{j}(t)\right)
\end{aligned}
$$

Exercise. 4.7

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOOK

Proof. (a) Let $v=(1,0, \ldots, 0) \in \mathcal{V}^{n}(0, T)$, then $X_{t}=B_{t} \in \mathbb{R}$. Obviously $X_{t}^{2}=B_{t}^{2}$ is not a martingale.
(b) Let's define the filtration as $\mathcal{F}_{t}:=\sigma\left(\left\{B_{s}\right\}_{0 \leq s \leq t}\right)$. Obviously X_{t} and $\int_{0}^{t} v_{s}^{2} d s$ are $\mathcal{F}_{t}-$ measurable, thus M_{t} is $\mathcal{F}_{t}-$ measurable. Secondly, since $\left|v_{s}\right|<\infty$, by Itô Isometry,

$$
E\left[\left|M_{t}\right|\right] \leq E\left[X_{t}^{2}\right]+E\left[\int_{0}^{t} v_{s}^{2} d s\right]=2 E\left[\int_{0}^{t} v_{s}^{2} d s\right]<\infty
$$

At last, we need to show $E\left[M_{t} \mid \mathcal{F}_{s}\right]=M_{s}$ for all $t \geq s$. Show that

$$
\begin{aligned}
E\left[X_{t}^{2} \mid \mathcal{F}_{s}\right] & =E\left[\left(\int_{0}^{s} v_{u} d B_{u}+\int_{s}^{t} v_{u} d B_{u}\right)^{2} \mid \mathcal{F}_{s}\right] \\
& =\left(\int_{0}^{s} v_{u} d B_{u}\right)^{2}+E\left[\left(\int_{s}^{t} v_{u} d B_{u}\right)^{2} \mid \mathcal{F}_{s}\right] \\
& =\left(\int_{0}^{s} v_{u} d B_{u}\right)^{2}+E\left[\int_{s}^{t} v_{u}^{2} d u \mid \mathcal{F}_{s}\right]
\end{aligned}
$$

Therefore we obtain

$$
\begin{aligned}
E\left[M_{t} \mid \mathcal{F}_{s}\right] & =\left(\int_{0}^{s} v_{u} d B_{u}\right)^{2}+E\left[\int_{s}^{t} v_{u}^{2} d u \mid \mathcal{F}_{s}\right]-E\left[\int_{0}^{t} v_{u}^{2} d u \mid \mathcal{F}_{s}\right] \\
& =\left(\int_{0}^{s} v_{u} d B_{u}\right)^{2}-\int_{0}^{s} v_{u}^{2} d u \\
& =M_{s}
\end{aligned}
$$

So far, we have justified that $\left\{M_{t}\right\}_{t \geq 0}$ is a \mathcal{F}_{t}-martingale w.r.t. the filtration we defined.

Exercise. 4.8

Proof. (a) Apply the Multidimensional Itô Formula to $\left\{f\left(B_{t}\right)\right\}_{t \geq 0}$, then

$$
d f\left(B_{t}\right)=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}\left(B_{t}\right) d B_{j}(t)+\frac{1}{2} \sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{j}^{2}}\left(B_{t}\right)\left(d B_{j}(t)\right)^{2}
$$

By taking the integral of both sides, we obtain that

$$
f\left(B_{t}\right)-f\left(B_{0}\right)=\int_{0}^{t} \nabla f\left(B_{s}\right) d B_{s}+\frac{1}{2} \int_{0}^{t} \triangle f\left(B_{s}\right) d s
$$

(b) Since g^{\prime} is a.e. differentiable, then it is absolutely continuous, and $g^{\prime} \in$ $C(\mathbb{R})$. By Weiestrass Theorem, there exists a polynomial sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ such that $f_{n} \xrightarrow{u} g, f_{n}^{\prime} \xrightarrow{u} g^{\prime}$. More importantly, as f_{n}^{\prime} is differentiable,

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOO反

$f_{n}^{\prime \prime} \xrightarrow{\text { a.e. }} g^{\prime \prime}$, where $f_{n}^{\prime \prime} \rightarrow g^{\prime \prime}$ outside $\left\{z_{1}, \ldots, z_{N}\right\}$. For each f_{n}, we can apply the result of (a) and get

$$
f_{n}\left(B_{t}\right)-f\left(B_{0}\right)=\int_{0}^{t} f_{n}^{\prime}\left(B_{s}\right) d B_{s}+\frac{1}{2} \int_{0}^{t} f_{n}^{\prime \prime}\left(B_{s}\right) d s
$$

As $\left|g^{\prime \prime}(x)\right| \leq M$, a.e., then g^{\prime} is also a.e. bounded on $[0, t]$. By Lebesgue Bounded Convergence Theorem, take a.e. limit of both sides and conclude that

$$
g\left(B_{t}\right)=g\left(B_{0}\right)+\int_{0}^{t} g^{\prime}\left(B_{s}\right) d B_{s}+\frac{1}{2} \int_{0}^{t} g^{\prime \prime}\left(B_{s}\right) d s
$$

Exercise. 4.13

Proof. Apply Itô Formula to $M_{t}=\exp \left\{-\int_{0}^{t} u_{r} d B_{r}-\frac{1}{2} \int_{0}^{t} u_{r}^{2} d r\right\}$,

$$
d M_{t}=-\frac{1}{2} u^{2} M_{t} d t-u M_{t} d B_{t}+\frac{1}{2} u^{2} M_{t} d t=-u M_{t} d B_{t}
$$

Then by the general Integration by Parts Formula,

$$
\begin{aligned}
d Y_{t} & =X_{t} d M_{t}+M_{t} d X_{t}+d X_{t} d M_{t} \\
& =u X_{t} M_{t} d B_{t}+u M_{t} d t+M_{t} d B_{t}-u M_{t} d B_{t}\left(u d t+d B_{t}\right) \\
& =\left(u X_{t} M_{t}+M_{t}\right) d B_{t}
\end{aligned}
$$

Hence $Y_{t}=\int_{0}^{t}\left(u X_{r} M_{r}+M_{r}\right) d B_{r}$ is a \mathcal{F}_{t}-martingale, where as u is bounded, $u X_{r} M_{r}+M_{r} \in \mathcal{V}(0, t)$ for all $t \geq 0$.

Exercise. 4.16

Proof. (a) By the Jensen Inequality,

$$
E\left[M_{t}^{2}\right]=E\left[\left|E\left[Y \mid \mathcal{F}_{t}\right]\right|^{2}\right] \leq E\left[E\left[|Y|^{2} \mid \mathcal{F}_{t}\right]\right]=E\left[|Y|^{2}\right]<\infty
$$

for all $t \in[0, T]$.
(b) (i) Since $B_{t}^{2}-t=2 \int_{0}^{t} B_{s} d B_{s}$ is a \mathcal{F}_{t}-martingale, then

$$
E\left[M_{0}\right]-T=E\left[B_{T}^{2} \mid \mathcal{F}_{0}\right]-T=E\left[B_{T}^{2}-T \mid \mathcal{F}_{0}\right]=0
$$

As a result, show that

$$
M_{t}=E\left[B_{T}^{2}-T \mid \mathcal{F}_{t}\right]+T=E\left[M_{0}\right]+\int_{0}^{t} g d B_{t}
$$

where we set $g:=2 B_{t}$.
(ii) Since $B_{t}^{3}-3 t B_{t}=\int_{0}^{t} B_{s}^{2} d B_{s}-\int_{0}^{t} 3 s d B_{s}$ is a $\mathcal{F}_{t}-$ martingale, then

$$
E\left[M_{0}\right]=E\left[B_{T}^{3}-3 T B_{T} \mid \mathcal{F}_{0}\right]+3 T E\left[B_{T} \mid \mathcal{F}_{0}\right]=0
$$

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOOk

As a result, show that

$$
M_{t}=E\left[B_{T}^{3}-3 T B_{T} \mid \mathcal{F}_{t}\right]+3 T E\left[B_{T} \mid \mathcal{F}_{t}\right]=E\left[M_{0}\right]+\int_{0}^{t} g d B_{s}
$$

where we set $g(s, \omega):=3 T-3 s+B_{s}^{2}$.
(iii) Since $\exp \left\{\sigma B_{t}-\frac{1}{2} \sigma^{2} t\right\}$ is a \mathcal{F}_{t}-martingale, then

$$
E\left[M_{0}\right]=e^{\frac{1}{2} \sigma^{2} T} E\left[\left.\exp \left\{\sigma B_{T}-\frac{1}{2} \sigma^{2} T\right\} \right\rvert\, \mathcal{F}_{0}\right]=e^{\frac{1}{2} \sigma^{2} T}
$$

Then apply Itô Formula to $Y_{t}=\exp \left\{\sigma B_{t}-\frac{1}{2} \sigma^{2} t\right\}$, show that

$$
d Y_{t}=-\frac{1}{2} \sigma^{2} Y_{t} d t+\sigma Y_{t} d B_{t}+\frac{1}{2} \sigma^{2} Y_{t} d t=\sigma Y_{t} d B_{t}
$$

hence $Y_{T}=Y_{0}+\int_{0}^{T} \sigma Y_{t} d B_{t}$. As $Y_{0}=1$, finally we obtain that

$$
M_{t}=E\left[\left.Y_{T} e^{\frac{1}{2} \sigma^{2} T} \right\rvert\, \mathcal{F}_{t}\right]=e^{\frac{1}{2} \sigma^{2} T}+\int_{0}^{t} \sigma e^{\frac{1}{2} \sigma^{2} T} Y_{s} d B_{s}=E\left[M_{0}\right]+\int_{0}^{t} g d B_{s}
$$

so we set $g(s, \omega)=\sigma e^{\frac{1}{2} \sigma^{2} T} Y_{s}$.

Exercise. 5.1

Proof. (i) By Ito Formla,

$$
\begin{aligned}
d X_{t} & =0 d t+e^{B_{t}} d B_{t}+\frac{1}{2} e^{B_{t}}\left(d B_{t}\right)^{2} \\
& =\frac{1}{2} X_{t} d t+X_{t} d B_{t}
\end{aligned}
$$

(ii) By Ito Formula,

$$
\begin{aligned}
d X_{t} & =-\frac{B_{t}}{(1+t)^{2}} d t+\frac{1}{1+t} d B_{t}-\frac{1}{2} \cdot 0 \cdot\left(d B_{t}\right)^{2} \\
& =-\frac{1}{1+t} B_{t} d t+\frac{1}{1+t} d B_{t}
\end{aligned}
$$

(iii) By Ito Formula, for $t<\inf \left\{s>0: B_{s} \notin\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right\}, \cos B_{s} \leq 1$, hence

$$
\begin{aligned}
d X_{t} & =\cos B_{t} d B_{t}-\frac{1}{2} \sin B_{t}\left(d B_{t}\right)^{2} \\
& =-\frac{1}{2} X_{t} d t+\sqrt{1-X_{t}^{2}} d B_{t}
\end{aligned}
$$

(iv) By Ito Formula,

$$
\begin{aligned}
d X_{1}(t) & =1 \\
d X_{2}(t) & =e^{t} B_{t} d t+e^{t} d B_{t} \\
& =X_{2}(t) d t+e^{X_{1}} d B_{t}
\end{aligned}
$$

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOOK

So we can verify that

$$
\left[\begin{array}{l}
d X_{1} \\
d X_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
X_{2}
\end{array}\right] d t+\left[\begin{array}{c}
0 \\
e^{X_{1}}
\end{array}\right] d B_{t}
$$

(v) By Ito Formula,

$$
\begin{aligned}
d X_{1}(t) & =d\left(\frac{e^{B_{t}}+e^{-B_{t}}}{2}\right) \\
& =\frac{e^{B_{t}}-e^{-B_{t}}}{2} d B_{t}+\frac{1}{2}\left(\frac{e^{B_{t}}+e^{-B_{t}}}{2}\right) d\left(B_{t}\right)^{2} \\
& =\frac{1}{2} X_{1}(t) d t+X_{2}(t) d B_{t} \\
d X_{2}(t) & =d\left(\frac{e^{B_{t}}-e^{-B_{t}}}{2}\right) \\
& =\frac{e^{B_{t}}+e^{-B_{t}}}{2} d B_{t}+\frac{1}{2}\left(\frac{e^{B_{t}}-e^{-B_{t}}}{2}\right) d\left(B_{t}\right)^{2} \\
& =\frac{1}{2} X_{2}(t) d t+X_{1}(t) d B_{t}
\end{aligned}
$$

So we can verify that

$$
\left[\begin{array}{l}
d X_{1} \\
d X_{2}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] d t+\left[\begin{array}{l}
X_{2} \\
X_{1}
\end{array}\right] d B_{t}
$$

Exercise. 5.5

Proof. (a) Multiplying the integrating factor $e^{-\mu t}$ to both sides of the equation we can see that

$$
e^{-\mu t} d\left(X_{t}\right)=e^{-\mu t} \mu X_{t} d t+\sigma e^{-\mu t} d B_{t}
$$

At the same time

$$
d\left(e^{-\mu t} X_{t}\right)=-\mu e^{-\mu t} X_{t} d t+e^{-\mu t} d X_{t}
$$

So that

$$
d\left(e^{-\mu t} X_{t}\right)=\sigma e^{-\mu t} d B_{t}
$$

Take integral of both sides, we obtain that

$$
X_{t}=e^{\mu t} X_{0}+\int_{0}^{t} \sigma e^{\mu(t-s)} d B_{s}
$$

where $X_{0} \in \mathbb{R}$ is the starting point.

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOOK

(b) $E X_{t}=e^{\mu t} E X_{0}$, and by Ito Isometry,

$$
\begin{aligned}
\operatorname{Var} X_{t} & =E\left[\sigma^{2}\left(\int_{0}^{t} e^{\mu(t-s)} d B_{s}\right)^{2}\right] \\
& =-\frac{\sigma^{2}}{2 \mu} e^{2 \mu t} E\left[\int_{0}^{t}(-2 \mu) e^{-2 \mu s} d s\right] \\
& =\frac{\sigma^{2}}{2 \mu} e^{2 \mu t}\left(1-e^{-2 \mu t}\right) \\
& =\frac{\sigma^{2}}{2 \mu}\left(e^{2 \mu t}-1\right)
\end{aligned}
$$

Exercise. 5.10
Proof. Let's prove this by calculating straight forward, apply Ito Isometry, $(p+q+r)^{2} \leq 3 p^{2}+3 q^{2}+3 r^{2}$ and Holder Inequality that $\left(\int_{0}^{t} b d s\right)^{2} \leq$ $\left(\left(\int_{0}^{t} b^{2} d s\right)^{\frac{1}{2}}\left(\int_{0}^{t} d s\right)^{\frac{1}{2}}\right)^{2}=t \int_{0}^{t} b^{2} d s$, so that for any $t \leq T$ we have

$$
\begin{aligned}
E\left[\left|X_{t}\right|^{2}\right] & =E\left[\left(Z+\int_{0}^{t} b d s+\int_{0}^{t} \sigma d B_{s}\right)^{2}\right] \\
& \leq 3 E\left[|Z|^{2}\right]+3 T E\left[\int_{0}^{t} b^{2} d s\right]+3 E\left[\int_{0}^{t} \sigma^{2} d s\right] \\
& \leq 3 E\left[|Z|^{2}\right]+3(T+1) E\left[\int_{0}^{t}\left(b^{2}+\sigma^{2}\right) d s\right] \\
& \leq 3 E\left[|Z|^{2}\right]+3(T+1) E\left[\int_{0}^{t}(|b|+|\sigma|)^{2} d s\right]
\end{aligned}
$$

Further more by (5.2.1) and apply the trick $(p+q)^{2} \leq 2 p^{2}+2 q^{2}$ again,

$$
\begin{aligned}
E\left[\left|X_{t}\right|^{2}\right] & \leq 3 E\left[|Z|^{2}\right]+3(T+1) \int_{0}^{t} E\left[(|b|+|\sigma|)^{2}\right] d s \\
& \leq 3 E\left[|Z|^{2}\right]+3(T+1) \int_{0}^{t} E\left[\left(C+C\left|X_{s}\right|\right)^{2}\right] d s \\
& \leq 3 E\left[|Z|^{2}\right]+6 T(T+1) C^{2}+6(T+1) C^{2} \int_{0}^{t}\left|X_{t}\right|^{2} d s \\
& \leq K_{1}+K_{2} \int_{0}^{t}\left|X_{t}\right|^{2} d s
\end{aligned}
$$

Here $K_{1}:=3 E\left[|Z|^{2}\right]+6 T(T+1) C^{2}$ and $K_{2}=6(T+1) C^{2}$ as stated in the problem. Consequently by the Gronwall Lemma, easily we reached our

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOOK

 aim as below$$
E\left[\left|X_{t}\right|^{2}\right] \leq K_{1} \cdot \exp \left\{K_{2} t\right\}
$$

Exercise. 5.13

Proof. (i) Just check that

$$
\begin{aligned}
A X_{t} & =\left[\begin{array}{c}
x_{t}^{\prime} \\
-\omega^{2} x_{t}-a_{0} x_{t}^{\prime}
\end{array}\right] \\
K X_{t} & =\left[\begin{array}{c}
0 \\
-\alpha_{0} \eta x_{t}^{\prime}
\end{array}\right]
\end{aligned}
$$

Hence the right side is

$$
\left[\begin{array}{c}
x_{t}^{\prime} d t \\
-\omega^{2} x_{t} d t-a_{0} x_{t}^{\prime} d t-a_{0} \eta x_{t}^{\prime} d B_{t}+T_{0} \eta d B_{t}
\end{array}\right]
$$

According to the original equation,

$$
x_{t}^{\prime \prime}=-\omega^{2} x_{t}-a_{0} x_{t}^{\prime}+\left(T_{0}-a_{0} x_{t}^{\prime}\right) \eta d B_{t}
$$

So it's verified that we can rewrite

$$
d X_{t}=\left[\begin{array}{l}
d x_{t} \\
d x_{t}^{\prime}
\end{array}\right]=A X_{t} d t+K X_{t} d B_{t}+M d B_{t}
$$

(ii) See that $X_{t}=e^{A t} \int_{0}^{t} e^{-A s}\left(K X_{s}+M\right) d B_{t}$, so obviously $\frac{\partial X_{t}}{\partial t}=A X_{t}$. Then by Ito Formula,

$$
\left\{\begin{array}{l}
d X_{t}=A X_{t} d t+\int_{0}^{t} e^{A(t-s)}\left(K X_{s}+M\right) d B_{s} \quad t \geq 0 \\
X_{0}=0
\end{array}\right.
$$

(iii) At the right side of the equation,

$$
\left(\cos \xi t+\frac{\lambda}{\xi} \sin \xi t\right) I+\frac{1}{\xi} A \sin \xi t=I \cos \xi t+\frac{1}{\xi} J \sin \xi t
$$

Here we define $J:=\lambda I+A=\left(\begin{array}{cc}\lambda & 1 \\ -\omega^{2} & -\lambda\end{array}\right)$, and it's easy to check that $J^{2}=-\xi^{2} I$. Then we obtain

$$
\begin{aligned}
e^{J t} & =I \cdot \sum_{n=0}^{\infty} \frac{(-1)^{n}(\xi t)^{2 n}}{2 n!}+\frac{1}{\xi} J \cdot \sum_{n=0}^{\infty} \frac{(-1)^{n}(\xi t)^{2 n+1}}{(2 n+1)!} \\
& =I \cos \xi t+\frac{1}{\xi} J \sin \xi t
\end{aligned}
$$

At the left side, similarly we can show

$$
e^{A t}=e^{J t} \cdot \sum_{n=0}^{\infty} \frac{(-\lambda t)^{n}}{n!} I^{n}=e^{J t} \cdot e^{-\lambda t} I
$$

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOOK

By the three equalities above, finally we justify that

$$
e^{A t}=e^{-\lambda t} \cdot e^{J t}=\frac{e^{-\lambda t}}{\xi}\{(\xi \cos \xi t+\lambda \sin \xi t) I+A \sin \xi t\}
$$

In the matrix form of the equation's solution,

$$
\begin{aligned}
{\left[\begin{array}{c}
x_{t} \\
x_{t}^{\prime}
\end{array}\right] } & =\int_{0}^{t} e^{A(t-s)}\binom{0}{\eta\left(T_{0}-\alpha x_{s}^{\prime}\right)} d B_{s} \\
& =\int_{0}^{t} e^{A(t-s)}\binom{0}{\eta\left(T_{0}-\alpha x_{s}^{\prime}\right) d B s}
\end{aligned}
$$

According to our result above, now denote $u:=\cos \xi(t-s), v:=\sin \xi(t-s)$ and $y_{t}=x_{t}^{\prime}$, then

$$
e^{A(t-s)}=\frac{e^{-\lambda(t-s)}}{\xi}\left(\begin{array}{cc}
\xi u+\lambda v & v \\
-\omega^{2} v & \xi u-\lambda v
\end{array}\right)
$$

and we obtain that

$$
\begin{aligned}
{\left[\begin{array}{c}
x_{t} \\
x_{t}^{\prime}
\end{array}\right] } & =\int_{0}^{t} \frac{e^{-\lambda(t-s)}}{\xi} \cdot\binom{\eta v\left(T_{0}-\alpha y_{s}\right) d B_{s}}{(\xi u-\lambda v) \eta\left(T_{0}-\alpha y_{s}\right) d B_{s}} \\
& =\left[\begin{array}{c}
\eta \int_{0}^{t} \frac{e^{-\lambda(t-s)} v}{\xi}\left(T_{0}-\alpha y_{s}\right) d B_{s}^{(2)} \\
\eta \int_{0}^{t} \frac{e^{-\lambda(t-s)}}{\xi}(\xi u-\lambda v)\left(T_{0}-\alpha y_{s}\right) d B_{s}^{(2)}
\end{array}\right]
\end{aligned}
$$

As $\zeta:=-\lambda+i \xi$, it's easy to check

$$
\begin{aligned}
e^{\zeta(t-s)} & =e^{-\lambda(t-s)} \cdot e^{i \xi(t-s)}=e^{-\lambda(t-s)}(u+i v) \\
\zeta e^{\zeta(t-s)} & =-e^{-\lambda(t-s)}(u \lambda+v \xi)+e^{-\lambda(t-s)}(u \xi-v \lambda) i
\end{aligned}
$$

Hence $g_{t}=\frac{1}{\xi} \operatorname{Im}\left(e^{\zeta t}\right)=\frac{1}{\xi} e^{-\lambda t} v$, and similarly $h_{t}=\frac{1}{\xi} \operatorname{Im}\left(\zeta e^{\zeta t}\right)=\frac{1}{\xi} e^{-\lambda t}(\xi u-$ $\lambda v)$. Therefore,

$$
\left[\begin{array}{c}
x_{t} \\
x_{t}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
\eta \int_{0}^{t} g_{t-s}\left(T_{0}-\alpha_{0} y_{s}\right) d B_{s} \\
\eta \int_{0}^{t} h_{t-s}\left(T_{0}-\alpha_{0} y_{s}\right) d B_{s}
\end{array}\right]
$$

Exercise. 5.18

Proof. Consider second order differentiable function $x=e^{y}$ and let $Y_{t}=$ $\ln X_{t}$, by Ito Formula we can rewrite the equation as below

$$
d X_{t}=\left[\frac{\partial X_{t}}{\partial Y_{t}} \frac{\partial Y_{t}}{\partial t}+\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial Y_{t} \partial B_{t}} \frac{\partial Y_{t}}{\partial B_{t}}+\frac{1}{2} \frac{\partial X_{t}}{\partial Y_{t}} \frac{\partial^{2} Y_{t}}{\partial B_{t}^{2}}\right] d t+\frac{\partial X_{t}}{\partial Y_{t}} \frac{\partial Y_{t}}{\partial B_{t}} d B_{t}=0
$$

As $\frac{\partial X_{t}}{\partial Y_{t}}=X_{t}$, then we have

$$
d X_{t}=\left[\frac{\partial Y_{t}}{\partial t}+\frac{1}{2}\left(\frac{\partial Y_{t}}{\partial B_{t}}\right)^{2}+\frac{1}{2} \frac{\partial^{2} Y_{t}}{\partial B_{t}^{2}}\right] X_{t} d t+\frac{\partial Y_{t}}{\partial B_{t}} X_{t} d B_{t}=0
$$

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOOK

Now by the definition of certain X_{t} and Y_{t}, it's not difficult to check that $\frac{\partial Y_{t}}{\partial B_{t}}=\sigma, \frac{\partial^{2} Y_{t}}{\partial B_{t}^{2}}=0$, and

$$
\begin{aligned}
\frac{\partial Y_{t}}{\partial t} & =-k \ln x e^{-k t}+k\left(\alpha-\frac{\sigma^{2}}{2 k}\right) e^{-k t}-k \sigma e^{-k t} \int_{0}^{t} e^{k s} d B_{s} \\
& =-k Y_{t}+k\left(\alpha-\frac{\sigma^{2}}{2 k}\right) \\
& =k\left(\alpha-Y_{t}\right)-\frac{\sigma^{2}}{2}
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
d X_{t} & =\left[k\left(\alpha-Y_{t}\right)-\frac{1}{2} \sigma^{2}+\frac{1}{2} \sigma^{2}\right] d t+\sigma X_{t} d B_{t} \\
& =k\left(\alpha-\ln X_{t}\right) X_{t} d t+\sigma X_{t} d B_{t}
\end{aligned}
$$

Obviously $X_{0}=x$, thus such X_{t} is the solution to the SDE (5.3.21).
(b) Firstly we know

$$
E\left[X_{t}\right]=e^{e^{-k t} \ln x+\left(\alpha-\frac{\sigma^{2}}{2 k}\right)\left(1-e^{-k t}\right)} \cdot E\left[\exp \left\{\sigma \int_{0}^{t} e^{-k(t-s)} d B_{s}\right\}\right]
$$

Let $Y_{t}=\exp \left\{\sigma \int_{0}^{t} e^{k(s-t)} d B_{s}\right\}$, then

$$
d Y_{s}=\sigma Y_{s} e^{k(s-t)} d B_{s}+\frac{1}{2} \sigma^{2} Y_{s} e^{2 k(s-t)} d s
$$

So that

$$
E\left[Y_{t}\right]=E\left[Y_{0}\right]+\frac{\sigma^{2}}{2} \int_{0}^{t} e^{2 k(s-t)} E\left[Y_{s}\right] d s
$$

Consider $E\left[Y_{t}\right]$ as a function of t, then

$$
\frac{1}{E\left[Y_{s}\right]} \cdot \frac{d E\left[Y_{s}\right]}{d s}=-\frac{\sigma^{2}}{2} e^{2 k(s-t)}
$$

Solve this deterministic ODE we obtain that

$$
\ln \left(E\left[Y_{t}\right]\right)=\frac{\sigma^{2}}{4 k}-\frac{\sigma^{2}}{4 k} e^{-2 k t}
$$

As a result,

$$
E\left[X_{t}\right]=\exp \left\{e^{-k t} \ln x+\left(\alpha-\frac{\sigma^{2}}{2 k}\right)\left(1-e^{-k t}\right)+\frac{\sigma^{2}\left(1-e^{-2 k t}\right)}{4 k}\right\}
$$

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOOK

Proof. Define $f(x)=|x|^{2}=\sum_{i=1}^{n} x_{i}^{2}$ for $x \in \mathbb{R}^{n}$. Notice that $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=0$ for all $i \neq j$, thus

$$
A f(x)=2 \sum_{i=1}^{n} b_{i}(x) x_{i}+\sum_{i=1}^{n} \sigma_{i}^{2}(x)
$$

We know $\sum_{i=1}^{n} \sigma_{i}^{2}(x) \leq|\sigma|^{2}$ and

$$
2 \sum_{i=1}^{n} b_{i}(x) x_{i} \leq \sum_{i=1}^{n} b_{i}^{2}(x)+\sum_{i=1}^{n} x_{i}^{2}=|b|^{2}+|x|^{2}
$$

where ${ }^{`}|\cdot|$ " denotes the norm in \mathbb{R}^{n}. Then we apply the condition ${ }^{`}{ }^{`}|b|+$ $|\sigma| \leq C(1+|x|) "$ and get

$$
\begin{aligned}
A f(x) & \leq|b|^{2}+|x|^{2}+|\sigma|^{2} \\
& \leq C^{2}(1+|x|)^{2}+|x|^{2} \\
& \leq C^{2}+\left(C^{2}+1\right)|x|^{2}+2 C^{2}|x|
\end{aligned}
$$

Again see that $2 C^{2}|x| \leq C^{2}+C^{2}|x|^{2}$, so that for $K>\max \left\{2 C^{2}, 2\left(C^{2}+\right.\right.$ 1) $\} \geq 0$,

$$
A f(x) \leq 2 C^{2}+2\left(C^{2}+1\right)|x|^{2} \leq K\left(1+|x|^{2}\right)
$$

Define $\tau:=t \wedge \tau_{R}$, where $\tau_{R}=\inf \left\{s>0:\left|X_{s}\right|>R\right\}$. Certainly this is a stopping time w.r.t. $\left\{\mathcal{M}_{t}\right\}_{t \geq 0}$, and for all $R>x$,

$$
E^{x}[\tau]=\frac{1}{n}\left(R^{2}-x\right)<\infty
$$

for certain $t \geq 0$. Therefore while applying Lemma 7.3.2, we know that C is independent with t, let $R \rightarrow \infty$ so that $\tau \rightarrow t$,

$$
E^{X_{0}(\omega)}\left[\left|X_{t}\right|^{2}\right] \leq\left|X_{0}\right|^{2}+K \int_{0}^{t}\left(1+E^{X_{0}(\omega)}\left[\left|X_{s}\right|^{2}\right]\right) d s
$$

As $E\left[\left|X_{t}\right|^{2}\right]=E\left[E^{X_{0}(\omega)}\left[\left|X_{t}\right|^{2}\right]\right]$, hence

$$
1+E\left[\left|X_{t}\right|^{2}\right] \leq 1+E\left[\left|X_{0}\right|^{2}\right]+K \int_{0}^{\tau}\left(1+E\left[\left|X_{s}\right|^{2}\right]\right) d s
$$

According to Gronwall Lemma,

$$
E\left[\left|X_{t}\right|^{2}\right] \leq\left(1+E\left[\left|X_{0}\right|^{2}\right]\right) e^{K t}-1
$$

Exercise. 7.9

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOO反

Proof. (a) For any $f \in C_{0}^{2}(\mathbb{R})$,

$$
\begin{equation*}
A f(y)=r y \cdot \frac{\partial f}{\partial x}(y)+\frac{\alpha^{2} y^{2}}{2} \cdot \frac{\partial^{2} f}{\partial x^{2}}(y) \tag{0.1}
\end{equation*}
$$

So the generator A of geometric Brownian motion X_{t} is given by operator $r x \cdot \frac{\partial f}{\partial x}+\frac{\alpha^{2} x^{2}}{2} \cdot \frac{\partial^{2} f}{\partial x^{2}}$ on $C_{0}^{2}(\mathbb{R})$. Since $f(x)=x^{\gamma} \in C_{0}^{2}(\mathbb{R})$, thus

$$
A f(x)=\left(r+\frac{\alpha^{2}}{2}(\gamma-1)\right) \gamma x^{\gamma}
$$

(b) Choose a real number ρ such that $0<\rho<x<R$, a function $f_{\rho} \in$ $C_{0}^{2}(\mathbb{R})$ satisfying $f_{\rho}=f$ on (ρ, R), and define

$$
\tau_{(\rho, R)}:=\inf \left\{t>0: X_{t} \notin(\rho, R)\right\}
$$

It's easy to confirm that $\tau_{(\rho, R)}$ is a stopping time w.r.t. $\left\{\mathcal{M}_{t}\right\}$. Via Dynkin's Formula, for all $k \in \mathbb{N}$ we have

$$
E^{x}\left[f_{\rho}\left(X_{k \wedge \tau_{(\rho, R)}}\right)\right]=f_{\rho}(x)
$$

This is because

$$
\begin{aligned}
A f_{\rho}(x) & =\left(r+\frac{\alpha^{2}}{2}\left(\gamma_{1}-1\right)\right) \gamma_{1} x^{\gamma_{1}} \\
& =\left(r+\frac{\alpha^{2}}{2}\left(1-\frac{2 r}{\alpha^{2}}-1\right)\right)\left(1-\frac{2 r}{\alpha^{2}}\right) x^{1-\frac{2 r}{\alpha^{2}}} \\
& =0
\end{aligned}
$$

The condition that $r<\frac{1}{2} \alpha^{2}$ means $X_{t} \xrightarrow{\text { a.s. }} 0$ as $t \rightarrow \infty$, so that $P\left[\tau_{(\rho, R)}<\infty\right]=$ 1. As a result, $f_{\rho}\left(X_{k \wedge \tau_{(\rho, R)}}\right)$ is a.s. bounded by $R^{\gamma_{1}}$. For f_{ρ} is continuous, let $k \rightarrow \infty$,

$$
f_{\rho}(x)=E^{x}\left[f_{\rho}\left(X_{\tau_{(\rho, R)}}\right)\right]
$$

See that either $X_{\tau(\rho, R)}=\rho$ or $X_{\tau(\rho, R)}=R$, so

$$
\left\{\begin{array}{l}
p:=P^{x}\left[X_{\tau_{(\rho, R)}}=R\right] \\
1-p:=P^{x}\left[X_{\tau_{(\rho, R)}}=\rho\right]
\end{array}\right.
$$

Thus we have

$$
f_{\rho}(x)=f_{\rho}(\rho)(1-p)+f_{\rho}(R) p
$$

Let $\rho \rightarrow 0$, by definition $\rho^{\gamma_{1}}(1-p) \rightarrow 0$, therefore we obtain that

$$
p=\left(\frac{x}{R}\right)^{\gamma_{1}}
$$

(c) Now we just change $f_{\rho}(x)=\ln x$ on (ρ, R),

$$
A f_{\rho}(x)=r x \cdot \frac{1}{x}-\frac{\alpha^{2} x^{2}}{2} \cdot \frac{1}{x^{2}}=r-\frac{1}{2} \alpha^{2}
$$

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOO飞

Hence by Dynkin's Formula,

$$
E^{x}\left[f_{\rho}\left(X_{k \wedge \tau_{(\rho, R)}}\right)\right]=f_{\rho}(x)+\left(r-\frac{1}{2} \alpha^{2}\right) E^{x}\left[k \wedge \tau_{(\rho, R)}\right]
$$

When $r>\frac{1}{2} \alpha^{2}, X_{t} \xrightarrow{\text { a.s. }} \infty$ as $t \rightarrow \infty$, which still implies $\tau_{(\rho, R)}<\infty$, a.s.. Similarly let $k \rightarrow \infty$,

$$
E^{x}\left[\tau_{(\rho, R)}\right]=\frac{f_{\rho}(\rho)(1-p)+f_{\rho}(R) p-f_{\rho}(x)}{r-\frac{1}{2} \alpha^{2}}
$$

Let $\rho \rightarrow 0$, still via $\ln (\rho)(1-p) \rightarrow 0$,

$$
E^{x}\left[\tau_{(\rho, R)}\right]=\frac{\ln \frac{R}{x}}{r-\frac{1}{2} \alpha^{2}}
$$

Exercise. 7.10

Proof. (a) According to the Markov property of Itô diffusion X_{t}, denote $h=T-t$

$$
E^{x}\left[X_{T} \mid \mathcal{F}_{t}\right]=E^{X_{t}^{x}(\omega)}\left[X_{h}\right]=E\left[X_{h}^{X_{t}^{x}(\omega)}\right]
$$

So that we have $E^{x}\left[X_{T} \mid \mathcal{F}_{t}\right]=X_{t}^{x}(\omega) e^{r(T-t)}$ for

$$
E\left[X_{h}^{X_{t}(\omega)}\right]=X_{t}^{x}(\omega) \exp \left\{(T-t)\left[\left(r-\frac{1}{2} \alpha^{2}\right)+\frac{1}{2} \alpha^{2}\right]\right\}=X_{t}^{x} e^{r(T-t)}
$$

(b) As $M_{t}=\exp \left(\alpha B_{t}-\frac{1}{2} \alpha^{2} t\right)$ is a martingale w.r.t. $\left\{\mathcal{F}_{t}\right\}$,

$$
E^{x}\left[X_{T} \mid \mathcal{F}_{t}\right]=x e^{r T} E\left[M_{T} \mid \mathcal{F}_{t}\right]=x e^{r T} M_{t}
$$

Then as $X_{t}=x e^{r t} M_{t}$,

$$
E^{x}\left[X_{T} \mid \mathcal{F}_{t}\right]=x e^{r T} e^{\alpha B_{t}-\frac{1}{2} \alpha^{2} t}=X_{t} e^{r(T-t)}
$$

Exercise. 8.13

Proof. (a) As $b: \mathbb{R} \rightarrow \mathbb{R}$ is a Lipschitz function, X_{t} is a well-defined Itô diffusion. Write $Y_{t}=X_{t}-x$, then we still have $d Y_{t}=b\left(Y_{t}+x\right) d t+d B_{t}$. Since b is Lipschitz continuous, the Novikov condition that $E\left[\exp \left(\frac{1}{2} \int_{0}^{T} b^{2}\left(Y_{s}+x\right) d s\right)\right]<$ ∞ certainly holds for $t \leq T<\infty$, therefore

$$
M_{t}=\exp \left\{-\int_{0}^{t} b\left(Y_{s}+x\right) d B_{s}-\frac{1}{2} \int_{0}^{t} b^{2}\left(Y_{s}+x\right) d s\right\}
$$

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOO反

is a martingale w.r.t. \mathcal{F}_{t} and P. Thus according to Girsanov Theorem I, Y_{t} is a Brownian motion w.r.t. the Girsanov transformed probability measure Q, so that

$$
P\left[X_{t}^{x} \geq M\right]=P\left[Y_{t} \geq M-x\right]=\int_{\left\{Y_{t} \geq M-x\right\}} M_{T} d Q
$$

We know that $M_{T}=\exp \left\{-\int_{0}^{T} b d B_{s}-\frac{1}{2} \int_{0}^{T} b^{2} d s\right\}>0$, a.s., and w.r.t. Q, Y_{t} is a Brownian motion, so that

$$
Q\left[Y_{t} \geq M-x\right]=\int_{M-x}^{\infty} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}} d t
$$

Hence $\int_{\left\{Y_{t} \geq M-x\right\}} M_{T} d Q>0$, i.e., $P\left[X_{t}^{x} \geq M\right]>0$ for sure.
(b) Let $b=-r$, then $d X_{t}^{x}=-r d t+d B_{t}$. Obviously

$$
X_{t}^{x}=x-r t+B_{t}
$$

for all $t \geq 0$. Therefore as $t \rightarrow \infty, X_{t}^{x} \rightarrow-\infty$. Notice that the Novikov condition only holds for finite time interval $[0, T]$ if only with b is Lipschitz function. So when $t \rightarrow \infty$, we can no longer use Novikov condition to ensure M_{t} defined above to be a martingale and Girsanov Theorem is valid to apply here. In this case, it's obviously reasonable that X_{t}^{x} might not satisfy $\left[X_{t}^{x} \geq M\right]>0$.

Exercise. 12.1

Proof. (a) (\Rightarrow) Let $\left\{\theta_{t}\right\}_{t \leq T}$ be an arbitrage in the market $\left\{X_{t}\right\}_{t \leq T}$, then for the normalized market $\left\{\bar{X}_{t}\right\}_{t \leq T}$:
(i) θ is self-financing, i.e., $d \bar{V}_{t}^{\theta}=\theta_{t} d \bar{X}_{t}$, which is shown as follows,

$$
\begin{aligned}
d \bar{V}_{t}^{\theta} & =X_{0}^{-1}(t) d V_{t}^{\theta}+V_{t}^{\theta} d X_{0}^{-1}(t) \\
& =X_{0}^{-1}(t) \theta_{t} d X_{t}-\rho_{t} X_{0}^{-1}(t) V_{t}^{\theta} d t \\
& =X_{0}^{-1}(t) \theta_{t}\left[d X_{t}-\rho_{t} X_{t} d t\right] \\
& =\theta_{t} d \bar{X}_{t}
\end{aligned}
$$

(ii) θ is admissible. We know that $\bar{V}_{t}^{\theta}=\exp \left(-\int_{0}^{t} \rho_{s} d s\right) V_{t}^{\theta}$, and V_{t}^{θ} is (t, ω) a.s. lower bounded, so is \bar{V}_{t}^{θ}.
(iii) θ is an arbitrage, just because $V_{t}^{\theta}>0$ is equivalent to $\bar{V}_{t}^{\theta}>0$.

Consequently, $\left\{\theta_{t}\right\}_{t \leq T}$ is an arbitrage in $\left\{\bar{X}_{t}\right\}_{t \leq T}$ if it is an arbitrage in $\left\{X_{t}\right\}_{t \leq T}$.
(\Leftarrow) Conversely, just replace ρ by $-\rho$, then the fact that $\exp \left(-\int_{0}^{t}\left(-\rho_{s}\right) d s\right) \bar{V}_{t}^{\theta}=$ V_{t}^{θ} enables us to confirm $\left\{\theta_{t}\right\}_{t \leq T}$ is an arbitrage in $\left\{X_{t}\right\}_{t \leq T}$ if it is an arbitrage in the normalized market $\left\{\bar{X}_{t}\right\}_{t \leq T}$.

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOO飞

(b) Firstly in a normalized market $\left\{X_{t}\right\}_{t \leq T}$, construct the arbitrage portfolio. Define $\tilde{\theta}=\{\tilde{\theta}(t)\}_{t \leq T} \in \mathbb{R}^{n+1} \times[0, T]$ as follows: $\tilde{\theta}_{i}(t)=\theta_{i}$ for $i=1, \ldots, n, \theta_{0}(t)$ satisfies two conditions as below:
(i) $V_{0}^{\tilde{\theta}}=0$: just let $\tilde{\theta}_{0}(0)=-\sum_{i=1}^{n} \theta_{i}(0) X_{i}(0)$;
(ii) As $V_{t}^{\tilde{\theta}}=\tilde{\theta}_{0}(t)+\sum_{i=1}^{n} \theta_{i}(t) X_{i}(t)$ and $V_{t}^{\theta}=\theta_{0}(t)+\sum_{i=1}^{n} \theta_{i}(t) X_{i}(t)$, then let $\tilde{\theta}_{0}(t):=\theta_{0}(t)-V_{0}^{\theta}$,

$$
V_{t}^{\tilde{\theta}}=V_{t}^{\theta}-V_{0}^{\theta}=\int_{0}^{t} \tilde{\theta}(s) d X_{s}=\int_{0}^{t} \theta(s) d X_{s}-V_{0}^{\theta}
$$

Secondly we prove the equivalence of the existences of an arbitrage and such admissible portfolio $\hat{\theta}$ satisfying (12.3.82).
(\Rightarrow) Let $\hat{\theta}$ be an arbitrage, then $V_{0}^{\hat{\theta}}=0, V_{T}^{\hat{\theta}} \geq 0$ and $P\left[V_{T}^{\hat{\theta}}>0\right]>0$, so that it obviously satisfies (12.3.82): $V_{T}^{\hat{\theta}} \geq V_{0}^{\hat{\theta}}$ and $P\left[V_{T}^{\hat{\theta}}>V_{0}^{\hat{\theta}}\right]>0$.
(\Leftarrow) Let θ be an admissible portfolio satisfying (12.3.82), then $\tilde{\theta}$ constructed above certainly satisfies that:
(i) $V_{0}^{\tilde{\theta}}=0$;
(ii) $V_{T}^{\tilde{\theta}}=V_{t}^{\theta}-V_{0}^{\theta} \geq 0$;
(iii) $P\left[V_{t}^{\tilde{\theta}}>0\right]=P\left[V_{t}^{\theta}-V_{0}^{\theta}>0\right]>0$;

Therefore, $\tilde{\theta}$ is a well-defined arbitrage.

Exercise. 12.10

Proof. We know $X_{t}=X_{0} \exp \left(\left(\alpha-\frac{1}{2} \beta^{2}\right) t+\beta B_{t}\right)$. As X_{t} is defined by original Brownian motion B_{t},

$$
\begin{equation*}
E^{X_{0}}\left[h\left(X_{T-t}\right)\right]=X_{0} e^{\alpha(T-t)} \tag{0.2}
\end{equation*}
$$

Firstly $\frac{\partial}{\partial X_{0}} E^{X_{0}}\left[X_{T-t}\right]=e^{\alpha(T-t)}$ exists. Secondly define

$$
\begin{equation*}
\phi(t)=e^{\alpha(T-t)} \beta X_{t}=\beta X_{0} e^{\alpha T-\frac{1}{2} \beta^{2} t+\beta B_{t}} \in \mathcal{V}(0, T) \tag{0.3}
\end{equation*}
$$

and it's easy to see that

$$
\begin{equation*}
E^{X_{0}}\left[\int_{0}^{t} \phi^{2} d s\right]=\beta^{2} e^{2 \alpha(T-t)} E^{X_{0}}\left[\int_{0}^{t} X_{s}^{2} d s\right]<\infty \tag{0.4}
\end{equation*}
$$

which is confirmed by the property of Itô process. Then via Theorem 12.3.3,

$$
\begin{equation*}
X_{T}=X_{0} \exp \left(\left(\alpha-\frac{1}{2} \beta^{2}\right) t+\frac{1}{2} \beta^{2} t\right)+e^{\alpha(T-t)} \beta \int_{0}^{T} X_{t} d B_{t} \tag{0.5}
\end{equation*}
$$

and $z=X_{0} e^{\alpha t} \in \mathbb{R}$ is what we need.

Exercise. M. 1

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOOK

Proof. (a) The smallest sets in \mathcal{F} are $A_{1} \cap A_{2}=\{5,6\}, A_{1} \backslash A_{2}=\{1,3\}$ and $A_{2} \backslash A_{1}=\{2,4\}$ which is just a partition of Ω. Therefore all sets in \mathcal{F} are: Ø
Two Elements: $A_{1} \backslash A_{2}=\{1,3\}, A_{2} \backslash A_{1}=\{2,4\}, A_{1} \cap A_{2}=\{5,6\}$
Four Elements: $A_{1} \triangle A_{2}=\{1,2,3,4\}, A_{1}=\{1,3,5,6\}, A_{2}=\{2,4,5,6\}$ Ω
which contains totally eight sets.
(b) As $X(\Omega)$ is $\{-1,2\}$, then the (actually the simplest) σ-algebra on the range of X is just $\{\varnothing,\{-1\},\{2\},\{-1,2\}\}$. After checking one by one:

$$
\begin{aligned}
X^{-1}(\{-1\}) & =A_{2} \in \mathcal{F} \\
X^{-1}(\{2\}) & =A_{1} \backslash A_{2} \in \mathcal{F}
\end{aligned}
$$

it's confirmed the preimage of every measurable sets on the range of f is in \mathcal{F}, and by definition f is \mathcal{F}-measurable.
(c) Just let $X=1_{\{1\}}$, obviously $X^{-1}(\{1\})=\{1\}$ and $X^{-1}(\{0\})=$ $\{2,3,4,5,6\}$ are both not \mathcal{F}-measurable. Thus such X is not a \mathcal{F}-measurable mapping.

Exercise. M. 2

Proof. (Approach I) As $\left\{B_{t}\right\}_{t \geq 0}$ is a Gaussian process, the k-dimension random vector $Z:=\left(B_{t_{1}}, \ldots, B_{t_{k}}\right)$ obeys k-dimension Gaussian distribution, $k \geq 1$. Thus with $X_{0}:=B_{0}=0, X_{t}:=t B_{1 / t}, X:=\left(t_{1} B_{t_{1}^{-1}}, \ldots, t_{k} B_{t_{k}^{-1}}\right)$ also k-dimension Gaussian random vector, where $t_{j}>0,1 \leq j \leq k$. So as $\left\{t_{1}, \ldots, t_{k}\right\}$ and $k \geq 1$ are both arbitrary, $\left\{X_{t}\right\}_{t \geq 0}$ is also Gaussian process. Secondly by the property of Brownian motion, show that for any $s, t>0$,

$$
\operatorname{Cov}\left(X_{s}, X_{t}\right)=s t \cdot \operatorname{Cov}\left(B_{s^{-1}}, B_{t^{-1}}\right)=s t \cdot \min \left\{\frac{1}{s}, \frac{1}{t}\right\}=\min \{s, t\}
$$

and when $\min \{s, t\}=0, \operatorname{Cov}\left(X_{s}, X_{t}\right) \equiv 0=\min \{s, t\}$. Meanwhile for arbitrary $t \geq 0, E\left[X_{t}\right]=t E\left[B_{t^{-1}}\right]=0$. Therefore, $\left\{X_{t}\right\}_{t \geq 0}$ is a Brownian motion.
(Approach II) Given arbitrary finitely many time intevals $\left\{\left(s_{i}, t_{i}\right]\right\}_{1 \leq i \leq n}$ pairwise disjoint, where $s_{i}, t_{i} \neq 0,\left\{\left[\frac{1}{t_{i}}, \frac{1}{s_{i}}\right)\right\}_{i \leq n}$ is also pairewise disjoint, so that $\left\{X_{t_{i}}-X_{s_{i}}=B_{t_{i}^{-1}}-B_{s_{i}^{-1}}\right\}_{i \leq n}$ are independent. Once some s_{i} or $t_{i}=0$, the independence still holds obviously as $X_{0}:=0$. Secondly, when $s \neq 0$, $r>0$,

$$
X_{s+r}-X_{s}=(s+r) B_{(s+r)^{-1}}-s B_{s^{-1}} \sim N(0,(s+r) \lambda-s \lambda)=N(0, r \lambda)
$$

and when $s=0, X_{r}-X_{0}=r B_{r^{-1}} \sim N(0, r \lambda)$. At last $\forall \omega \in \Omega, t B_{t^{-1}}(\omega)$ is obviously continuous respect to $t \geq 0$. To conclude, $\left\{X_{t}\right\}_{t \geq 0}$ defined above is verified to have independent, stationary and normal distributed increments and continuous trajectory everywhere on Ω, so is a Brownian motion.

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOǑ

Exercise. M. 3

Proof. (a) Let $0=t_{0}<t_{1}<\ldots<t_{n}<t_{n+1}=t, \triangle_{j}^{p}\left(B_{t}^{q}\right)=\left(B_{t_{j+1}}^{q}-B_{t_{j}}^{q}\right)^{p}$ and $\triangle_{j}(t)=t_{j+1}-t_{j}$. In order to make the approximation terms match up, assume $\gamma_{j}, j=0,1, \ldots, n$ satisfy that

$$
\gamma_{j}+4 B_{t_{j}}^{3} \triangle_{j}\left(B_{t}\right)=\triangle_{j}\left(B_{t}^{4}\right)-6 B_{t_{j}}^{2} \triangle_{j}^{2}\left(B_{t}\right)
$$

Then after simplification we obtain that

$$
\gamma_{j}=\left[2 B_{t_{j+1}} B_{t_{j}}+B_{t_{j+1}}^{2}-3 B_{t_{j}}^{2}\right] \triangle_{j}^{2}\left(B_{t}\right)
$$

Then take j-summation of both sides of (3), we have

$$
\sum_{j=0}^{n} B_{t_{j}}^{3} \triangle_{j}\left(B_{t}\right)+\frac{1}{4} \sum_{j=0}^{n} \gamma_{j}=\frac{1}{4} B_{t}^{4}-\frac{3}{2} \sum_{j=0}^{n} B_{t_{j}}^{2} \triangle_{j}^{2}\left(B_{t}\right)
$$

In the left side of (5), just define the approximator as $\varphi_{n}:=\sum_{j=0}^{n} B_{t_{j}}^{3} 1_{\left[t_{j}, t_{j+1}\right)}$ which is $\mathcal{F}_{t_{j}}$-measurable, then

$$
E\left[\int_{0}^{t}\left(\varphi_{n}-B_{s}^{3}\right)^{2} d s\right]=\sum_{j=0}^{n} \int_{t_{j}}^{t_{j+1}} E\left[\left(\varphi_{n}-B_{s}^{3}\right)^{2}\right] d s
$$

Now as as $\max _{0 \leq j \leq n}\left\{\triangle_{j}(t)\right\} \rightarrow 0$, we know firstly $\varphi_{n}-B_{s}^{3} \xrightarrow{L_{1}} 0$ and secondly $\left(\varphi_{n}-B_{s}^{3}\right)^{2}$ is dominated by integrable (finite expectation) function $\left(\left|\varphi_{n}\right|+\left|B_{s}\right|^{3}\right)^{2}$, we can apply Lebesgue Dominated Convergence Theorem together with Itô Isometry then see that as $n \rightarrow 0$,

$$
E\left[\left(\int_{0}^{t} \varphi_{n} d B_{s}-\int_{0}^{t} B_{s}^{3} d B_{s}\right)^{2}\right]=E\left[\int_{0}^{t}\left(\varphi_{n}-B_{s}^{3}\right)^{2} d s\right] \longrightarrow 0 \quad L^{2}(P)
$$

At the same time, since it has term " $\triangle_{j}^{2}\left(B_{t}\right)$ ", the other term in the left side of (5) satisfies that

$$
\sum_{j=0}^{n} \gamma_{j}=\sum_{j=0}^{n}\left[2 B_{t_{j+1}} B_{t_{j}}+B_{t_{j+1}}^{2}-3 B_{t_{j}}^{2}\right] \triangle_{j}^{2}\left(B_{t}\right) \xrightarrow{L_{1}} 0
$$

Hence in the left sides of (5) holds that $\sum_{j=0}^{n} B_{t_{j}}^{3} \triangle_{j}\left(B_{t}\right)+\frac{1}{4} \sum_{j=0}^{n} \gamma_{j} \longrightarrow$ $\int_{0}^{t} B_{s}^{3} d B_{s}$ in $L^{2}(P)$ sense.

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOO反́

In the right side of (5), we are to prove $\sum_{j} B_{t_{j}}^{2} \triangle_{j}^{2}\left(B_{t}\right) \rightarrow \int_{0}^{t} B_{s}^{2} d s$ in $L^{2}(P)$ sense. Obviously it holds that

$$
\begin{aligned}
2 E_{1}+2 E_{2} & \geq E\left[\left|\sum_{j=0}^{n} B_{t_{j}}^{2} \triangle_{j}^{2}\left(B_{t}\right)-\int_{0}^{t} B_{s}^{2} d s\right|^{2}\right] \\
E_{1} & :=E\left[\sum_{j=0}^{n} B_{t_{j}}^{2}\left(\triangle_{j}^{2}\left(B_{t}\right)-\triangle_{j}(t)\right)\right]^{2} \\
E_{2} & :=E\left[\sum_{j=0}^{n} B_{t_{j}}^{2} \triangle_{j}(t)-\int_{0}^{t} B_{s}^{2} d s\right]^{2}
\end{aligned}
$$

Regarding to E_{1}, expand the sqaure into two parts as follows

$$
\begin{gathered}
E_{1}:=E_{3}+E_{4} \\
E_{3}:=E\left[\sum_{j=0}^{n} B_{t_{j}}^{4}\left(\triangle_{j}^{2}\left(B_{t}\right)-\triangle_{j}(t)\right)^{2}\right] \\
E_{4}=2 \sum_{i<j} E_{i, j}:=2 \sum_{i<j} E\left[B_{t_{j}}^{2} B_{t_{i}}^{2}\left(\triangle_{j}^{2}\left(B_{t}\right)-\triangle_{j}(t)\right)\left(\triangle_{i}^{2}\left(B_{t}\right)-\triangle_{i}(t)\right)\right]
\end{gathered}
$$

About E_{3}, it is easy to see that $\sum_{j=0}^{n} E\left[\triangle_{j}^{2}\left(B_{t}\right)-\triangle_{j}(t)\right]^{2} \rightarrow 0$,

$$
E_{3}=\sum_{j=0}^{n} E\left[B_{t_{j}}^{4}\right] E\left[\left(\triangle_{j}^{2}\left(B_{t}\right)-\triangle_{j}(t)\right)^{2}\right]
$$

About E_{4}, based on their integrability we can apply Cauchy-Schwarz Inequality,

$$
\left|E_{i, j}\right| \leq\left(E\left[B_{t_{i}}^{4}\left|\triangle_{i}^{2}\left(B_{t}\right)-\triangle_{i}(t)\right|^{2}\right]\right)^{\frac{1}{2}}\left(E\left[B_{t_{j}}^{4}\left|\triangle_{j}^{2}\left(B_{t}\right)-\triangle_{j}(t)\right|^{2}\right]\right)^{\frac{1}{2}}
$$

Then by the independent increment of $\left\{B_{t}\right\}_{t \geq 0}$, (9) and (10) above certainly implies that as $n \rightarrow \infty$, i.e., $\max _{0 \leq j \leq n}\left\{\triangle_{j}(t)\right\} \rightarrow 0, E_{1}=E_{3}+E_{4} \rightarrow$ 0.

For E_{2} just fix $\omega \in \Omega$, the trajectory $B_{s}(\omega)$ is a.s. continuous, so take the limit $n \rightarrow \infty$, i.e., $\max _{0 \leq j \leq n}\left\{\triangle_{j}(t)\right\} \rightarrow 0$ in the Riemann Sum as below, we can have

$$
\sum_{j=0}^{n} B_{t_{j}}^{2}(\omega) \triangle_{j}(t) \longrightarrow \int_{0}^{t} B_{s}^{2}(\omega) d s
$$

Hence $\sum_{j=0}^{n} B_{t_{j}}^{2} \triangle_{j}(t) \longrightarrow \int_{0}^{t} B_{s}^{2} d s$ pointwisely on Ω results in that $E_{2} \rightarrow$ 0 . So far, we have justified that

$$
\sum_{j=0}^{n} B_{t_{j}}^{2} \triangle_{j}^{2}\left(B_{t}\right) \rightarrow \int_{0}^{t} B_{s}^{2} d s \quad\left(L^{2}(P)\right)
$$

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOO\&

Consequently based on all above, take $L^{2}(P)$ limit of both sides of (5), we finally conclude that

$$
\int_{0}^{t} B_{s}^{3} d B_{s}=\frac{1}{4} B_{t}^{4}-\frac{3}{2} \int_{0}^{t} B_{s}^{2} d s
$$

and the proof ends.
(b) Let $g\left(t, B_{t}\right)=\frac{1}{4} B_{t}^{4}$. By the 1-dimensional Itô Formula,

$$
d\left(\frac{1}{4} B_{t}^{4}\right)=B_{t}^{3} d B_{t}+\frac{3}{2} B_{t}^{2}\left(d B_{t}\right)^{2}=B_{t}^{3} d B_{t}+\frac{3}{2} B_{t}^{2} d t
$$

Therefore $\frac{1}{4} B_{t}^{4}=\int_{0}^{t} B_{s}^{3} d B_{s}+\frac{3}{2} \int_{0}^{t} B_{s}^{2} d s$.

Exercise. M. 4

Proof. Firstly we find the expectation of $I_{1}(t)$ and $I_{2}(t)$. About $I_{2}(t)$, we have two ways to show that

$$
E\left[I_{2}(t)\right]= \begin{cases}\int_{0}^{t}\left(E B_{s}^{2}\right) d s=\frac{1}{2} t^{2} & B_{s} \in L^{2}(P) \\ E\left[\left(\int_{0}^{t} B_{s} d B_{s}\right)^{2}\right]=E\left[\left(\frac{1}{2} B_{t}^{2}-\frac{1}{2} t\right)^{2}\right]=\frac{1}{2} t^{2} & \text { Itô Isometry }\end{cases}
$$

For $I_{1}(t)$, we also has two ways to calculate its expectation. Let $g\left(t, B_{t}\right)=$ $\frac{1}{3}\left(B_{t}+t\right)^{3}$, by Itô Formula,

$$
\frac{1}{3}\left(B_{t}+t\right)^{3}=\int_{0}^{t}\left[\left(B_{t}+t\right)^{2}+\left(B_{t}+t\right)\right] d t+I_{1}(t)
$$

and then after simplification, we can have $E\left[I_{1}(t)\right]=0$. Also we can obtain this for: $\left(B_{s}+s\right)^{2} \in \mathcal{V}(0, t)$ implies the Itô integral of it has null expectation or, $B_{s}+s \in L^{4}(P)$ enables us to switch the integral.

Here I just usually try to get rid of switching the integrals which causes problems frequently.

Meanwhile here to switch the integral is necessary. We definitely know $B_{s}+s \in L^{4}(P)$, thus we are allowed to switch the itegrals. Then by $E\left[I_{1}(t)\right]=0$,

$$
\operatorname{Var}\left[I_{1}(t)\right]=E\left[\int_{0}^{t}\left(B_{s}+s\right)^{4} d s\right]=\int_{0}^{t} E\left[\left(B_{s}+s\right)^{4}\right] d s=\frac{1}{5} t^{5}+\frac{3}{2} t^{4}+t^{3}
$$

To find the variance of $I_{2}(t)$ is more difficult. Show that

$$
E\left[\left(\triangle(t) \sum_{i} B_{t_{i}}^{2}\right)\left(\triangle(t) \sum_{j} B_{t_{j}}^{2}\right)\right]=\triangle^{2}(t) \sum_{i, j} E\left[B_{t_{i}}^{2} B_{t_{j}}^{2}\right] \rightarrow E\left[I_{2}^{2}\right]
$$

and simultaneously we also have the double Rieman sum's limit as

$$
\triangle^{2}(t) \sum_{i, j} E\left[B_{t_{i}}^{2} B_{t_{j}}^{2}\right] \rightarrow \int_{0}^{t} \int_{0}^{t} E\left[B_{s}^{2} B_{u}^{2}\right] d s d u
$$

PART OF THE SOLUTIONS TO EXERCISES IN ØKSENDAL'S BOO®

By (14) and (15), we know that $E\left[\left(I_{2}(t)\right)^{2}\right]=\int_{0}^{t} \int_{0}^{t} E\left[B_{s}^{2} B_{u}^{2}\right] d s d u$. According to the independent increment of Brownian motion we are able to show that

$$
E\left[B_{s}^{2} B_{u}^{2}\right]=E\left[B_{s}^{2}\left(B_{t}-B_{s}\right)^{2}+2 B_{s}^{3}\left(B_{s}+\left(B_{t}-B_{s}\right)\right)-B_{s}^{4}\right]
$$

Hence we can calculate $E\left[\left(I_{2}(t)\right)^{2}\right]$ as below

$$
E\left[\left(I_{2}(t)\right)^{2}\right]=\int_{0}^{t} \int_{0}^{t}\left(s|u-s|+3 u^{2}\right) d s d u=\frac{7}{12} t^{4}
$$

Exercise. M. 5

Proof. (a) Directly apply Itô Formula, we have

$$
\begin{equation*}
M_{t}=\int_{0}^{t}\left(\beta-\frac{1}{2} \alpha^{2}\right) e^{\beta t} \cos \alpha B_{t} d t-\int_{0}^{t} \alpha e^{\beta t} \sin \alpha B_{t} d B_{t} \tag{0.6}
\end{equation*}
$$

We know that if $M_{t}=\int_{0}^{t} \alpha e^{\beta t} \sin \alpha B_{t} d B_{t}$ then M_{t} is a $\mathcal{F}_{t}-$ martingale. As a result $\beta=\frac{1}{2} \alpha^{2}$ can be a sufficient condition to make M_{t} a \mathcal{F}_{t}-martingale.
(b) By the result of (a), $N_{t}=e^{8 t} E\left[\cos 4 B_{t}\right]$ is a \mathcal{F}_{t}-martingale which means

$$
E\left[\cos 4 B_{1}\right]=e^{-8} E\left[N_{1}\right]=e^{-8} E\left[N_{0}\right]=e^{-8}
$$

Hence such r.v. $Z:=B_{1} \sim N(0,1)$ finishes the proof.

