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This is a solution manual for the SDE book by Øksendal, Stochastic Differential Equations, Sixth Edition.
It is complementary to the books own solution, and can be downloaded at www.math.fsu.edu/z̃eng. If you
have any comments or find any typos/errors, please email me at yz44@cornell.edu.

This version omits the problems from the chapters on applications, namely, Chapter 6, 10, 11 and 12. I
hope I will find time at some point to work out these problems.

2.8. b)

Proof.

E[eiuBt ] =
∞∑
k=0

ik

k!
E[Bkt ]uk =

∞∑
k=0

1
k!

(− t
2

)ku2k.

So

E[B2k
t ] =

1
k! (−

t
2 )k

(−1)k

(2k)!

=
(2k)!
k! · 2k

tk.

d)

Proof.

Ex[|Bt −Bs|4] =
n∑
i=1

Ex[(B(i)
t −B(i)

s )4] +
∑
i6=j

Ex[(B(i)
t −B(i)

s )2(B(j)
t −B(j)

s )2]

= n · 4!
2! · 4

· (t− s)2 + n(n− 1)(t− s)2

= n(n+ 2)(t− s)2.

2.11.

Proof. Prove that the increments are independent and stationary, with Gaussian distribution. Note for
Gaussian random variables, uncorrelatedness=independence.

2.15.

Proof. Since Bt −Bs ⊥ Fs := σ(Bu : u ≤ s), U(Bt −Bs) ⊥ Fs. Note U(Bt −Bs)
d= N(0, t− s).

3.2.
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Proof. WLOG, we assume t = 1, then

B3
1 =

n∑
j=1

(B3
j/n −B

3
(j−1)/n)

=
n∑
j=1

[(Bj/n −B(j−1)/n)3 + 3B(j−1)/nBj/n(Bj/n −B(j−1)/n)]

=
n∑
j=1

(Bj/n −B(j−1)/n)3 +
n∑
j=1

3B2
(j−1)/n(Bj/n −B(j−1)/n)

+
n∑
j=1

3B(j−1)/n(Bj/n −B(j−1)/n)2

:= I + II + III

By Problem EP1-1 and the continuity of Brownian motion.

I ≤ [
n∑
j=1

(Bj/n −B(j−1)/n)2] max
1≤j≤n

|Bj/n −B(j−1)/n| → 0 a.s.

To argue II → 3
∫ 1

0
B2
t dBt as n → ∞, it suffices to show E[

∫ 1

0
(B2

t − B
(n)
t )2dt] → 0, where B

(n)
t =∑n

j=1B
2
(j−1)/n1{(j−1)/n<t≤j/n}. Indeed,

E[
∫ 1

0

|B2
t −B

(n)
t |2dt] =

n∑
j=1

∫ j/n

(j−1)/n

E[(B2
t −B2

(j−1)/n)2]dt

We note (B2
t −B2

j−1
n

)2 is equal to

(Bt −B j−1
n

)4 + 4(Bt −B j−1
n

)3B j−1
n

+ 4(Bt −B j−1
n

)2B2
j−1
n

so E[(B2
(j−1)/n −B

2
t )2] = 3(t− (j − 1)/n)2 + 4(t− (j − 1)/n)(j − 1)/n, and

∫ j
n

j−1
n

E[(B2
j−1
n

−B2
t )2]dt =

2j + 1
n3

Hence E[
∫ 1

0
(Bt −B(n)

t )2dt] =
∑n
j=1

2j−1
n3 → 0 as n→∞.

To argue III → 3
∫ 1

0
Btdt as n→∞, it suffices to prove

n∑
j=1

B(j−1)/n(Bj/n −B(j−1)/n)2 −
n∑
j=1

B(j−1)/n(
j

n
− j − 1

n
)→ 0 a.s.
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By looking at a subsequence, we only need to prove the L2-convergence. Indeed,

E

 n∑
j=1

B(j−1)/n[(Bj/n −B(j−1)/n)2 − 1
n

]

2

=
n∑
j=1

E

(
B2

(j−1)/n[(Bj/n −B(j−1)/n)2 − 1
n

]2
)

=
n∑
j=1

j − 1
n

E

[
(Bj/n −B(j−1)/n)4 − 2

n
(Bj/n −B(j−1)/n)2 +

1
n2

]

=
n∑
j=1

j − 1
n

(3
1
n2
− 2

1
n2

+
1
n2

)

=
n∑
j=1

2(j − 1)
n3

→ 0

as n→∞. This completes our proof.

3.9.

Proof. We first note that∑
j

B tj+tj+1
2

(Btj+1 −Btj )

=
∑
j

[
B tj+tj+1

2
(Btj+1 −B tj+tj+1

2
) +Btj (B tj+tj+1

2
−Btj )

]
+
∑
j

(B tj+tj+1
2
−Btj )2.

The first term converges in L2(P ) to
∫ T

0
BtdBt. For the second term, we note

E


∑

j

(
B tj+tj+1

2
−Btj

)2

− t

2

2


= E


∑

j

(
B tj+tj+1

2
−Btj

)2

−
∑
j

tj+1 − tj
2

2


=
∑
j, k

E

[((
B tj+tj+1

2
−Btj

)2

− tj+1 − tj
2

)((
B tk+tk+1

2
−Btk

)2

− tk+1 − tk
2

)]

=
∑
j

E

[(
B2
tj+1−tj

2

− tj+1 − tj
2

)2
]

=
∑
j

2 ·
(
tj+1 − tj

2

)2

≤ T

2
max

1≤j≤n
|tj+1 − tj | → 0,

since E[(B2
t − t)2] = E[B4

t − 2tB2
t + t2] = 3E[B2

t ]2 − 2t2 + t2 = 2t2. So∑
j

B tj+tj+1
2

(Btj+1 −Btj )→
∫ T

0

BtdBt +
T

2
=

1
2
B2
T in L2(P ).
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3.10.

Proof. According to the result of Exercise 3.9., it suffices to show

E

∣∣∣∣∣∣
∑
j

f(tj , ω)∆Bj −
∑
j

f(t′j , ω)∆Bj

∣∣∣∣∣∣
→ 0.

Indeed, note

E

∣∣∣∣∣∣
∑
j

f(tj , ω)∆Bj −
∑
j

f(t′j , ω)∆Bj

∣∣∣∣∣∣


≤
∑
j

E[|f(tj)− f(t′j)||∆Bj |]

≤
∑
j

√
E[|f(tj)− f(t′j)|2]E[|∆Bj |2]

≤
∑
j

√
K|tj − t′j |

1+ε
2 |tj − t′j |

1
2

=
√
K
∑
j

|tj − t′j |1+ ε
2

≤ T
√
K max

1≤j≤n
|tj − t′j |

ε
2

→ 0.

3.11.

Proof. Assume W is continuous, then by bounded convergence theorem, lims→tE[(W (N)
t −W (N)

s )2] = 0.
Since Ws and Wt are independent and identically distributed, so are W (N)

s and W
(N)
t . Hence

E[(W (N)
t −W (N)

s )2] = E[(W (N)
t )2]− 2E[W (N)

t ]E[W (N)
s ] + E[(W (N)

s )2] = 2E[(W (N)
t )2]− 2E[W (N)

t ]2.

Since the RHS=2V ar(W (N)
t ) is independent of s, we must have RHS=0, i.e. W

(N)
t = E[W (N)

t ] a.s. Let
N →∞ and apply dominated convergence theorem to E[W (N)

t ], we get Wt = 0. Therefore W· ≡ 0.

3.18.

Proof. If t > s, then

E

[
Mt

Ms
|Fs
]

= E
[
eσ(Bt−Bs)− 1

2σ
2(t−s)|Fs

]
=
E[eσBt−s ]
e

1
2σ

2(t−s)
= 1

The second equality is due to the fact Bt −Bs is independent of Fs.

4.4.

Proof. For part a), set g(t, x) = ex and use Theorem 4.12. For part b), it comes from the fundamental
property of Itô integral, i.e. Itô integral preserves martingale property for integrands in V.

Comments: The power of Itô formula is that it gives martingales, which vanish under expectation.

4.5.
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Proof.

Bkt =
∫ t

0

kBk−1
s dBs +

1
2
k(k − 1)

∫ t

0

Bk−2
s ds

Therefore,

βk(t) =
k(k − 1)

2

∫ t

0

βk−2(s)ds

This gives E[B4
t ] and E[B6

t ]. For part b), prove by induction.

4.6. (b)

Proof. Apply Theorem 4.12 with g(t, x) = ex and Xt = ct+
∑n
j=1 αjBj . Note

∑n
j=1 αjBj is a BM, up to a

constant coefficient.

4.7. (a)

Proof. v ≡ In×n.

(b)

Proof. Use integration by parts formula (Exercise 4.3.), we have

X2
t = X2

0 + 2
∫ t

0

XsdX +
∫ t

0

|vs|2ds = X2
0 + 2

∫ t

0

XsvsdBs +
∫ t

0

|vs|2ds.

So Mt = X2
0 + 2

∫ t
0
XsvsdBs. Let C be a bound for |v|, then

E

[∫ t

0

|Xsvs|2ds
]
≤ C2E

[∫ t

0

|Xs|2ds
]

= C2

∫ t

0

E

[∣∣∣∣∫ s

0

vudBu

∣∣∣∣2
]
ds

= C2

∫ t

0

E

[∫ s

0

|vu|2du
]
ds ≤ C4t2

2
.

So Mt is a martingale.

4.12.

Proof. Let Yt =
∫ t

0
u(s, ω)ds. Then Y is a continuous {F (n)

t }-martingale with finite variation. On one hand,

〈Y 〉t = lim
∆tk→0

∑
tk≤t

|Ytk+1 − Ytk |2 ≤ lim
∆tk→0

(total variation of Y on [0, t]) ·max
tk
|Ytk+1 − Ytk | = 0.

On the other hand, integration by parts formula yields

Y 2
t = 2

∫ t

0

YsdYs + 〈Y 〉t.

So Y 2
t is a local martingale. If (Tn)n is a localizing sequence of stopping times, by Fatou’s lemma,

E[Y 2
t ] ≤ lim

n
E[Y 2

t∧Tn ] = E[Y 2
0 ] = 0.

So Y· ≡ 0. Take derivative, we conclude u = 0.

4.16. (a)

Proof. Use Jensen’s inequality for conditional expectations.

(b)
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Proof. (i) Y = 2
∫ T

0
BsdBs. So Mt = T + 2

∫ t
0
BsdBs.

(ii) B3
T =

∫ T
0

3B2
sdBs + 3

∫ T
0
Bsds = 3

∫ T
0
B2
sdBs + 3(BTT −

∫ T
0
sdBs). So Mt = 3

∫ t
0
B2
sdBs + 3TBt −

3
∫ t

0
sdBs =

∫ t
0

3(B2
s + (T − s)dBs.

(iii)Mt = E[exp(σBT )|Ft] = E[exp(σBT − 1
2σ

2T )|Ft] exp(1
2σ

2T ) = Zt exp( 1
2σ

2T ), where Zt = exp(σBt−
1
2σ

2t). Since Z solves the SDE dZt = ZtσdBt, we have

Mt = (1 +
∫ t

0

ZsσdBs) exp(
1
2
σ2T ) = exp(

1
2
σ2T ) +

∫ t

0

σ exp(σBs +
1
2
σ2(T − s))dBs.

5.1. (ii)

Proof. Set f(t, x) = x/(1 + t), then by Itô’s formula, we have

dXt = df(t, Bt) = − Bt
(1 + t)2

dt+
dBt
1 + t

= − Xt

1 + t
dt+

dBt
1 + t

(iii)

Proof. By Itô’s formula, dXt = cosBtdBt − 1
2 sinBtdt. So Xt =

∫ t
0

cosBsdBs − 1
2

∫ t
0
Xsds. Let τ = inf{s >

0 : Bs 6∈ [−π2 ,
π
2 ]}. Then

Xt∧τ =
∫ t∧τ

0

cosBsdBs −
1
2

∫ t∧τ

0

Xsds

=
∫ t

0

cosBs1{s≤τ}dBs −
1
2

∫ t∧τ

0

Xsds

=
∫ t

0

√
1− sin2Bs1{s≤τ}dBs −

1
2

∫ t∧τ

0

Xsds

=
∫ t∧τ

0

√
1−X2

sdBs −
1
2

∫ t∧τ

0

Xsds.

So for t < τ , Xt =
∫ t

0

√
1−X2

sdBs − 1
2

∫ t
0
Xsds.

(iv)

Proof. dX1
t = dt is obvious. Set f(t, x) = etx, then

dX2
t = df(t, Bt) = etBtdt+ etdBt = X2

t dt+ etdBt

5.3.

Proof. Apply Itô’s formula to e−rtXt.

5.5. (a)

Proof. d(e−µtXt) = −µe−µtXtdt+ e−µtdXt = σe−µtdBt. So Xt = eµtX0 +
∫ t

0
σeµ(t−s)dBs.

(b)
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Proof. E[Xt] = eµtE[X0] and

X2
t = e2µtX2

0 + σ2e2µt(
∫ t

0

e−µsdBs)2 + 2σe2µtX0

∫ t

0

e−µsdBs.

So

E[X2
t ] = e2µtE[X2

0 ] + σ2e2µt

∫ t

0

e−2µsds

since
∫ t

0
e−µsdBs is a martingale vanishing at time 0

= e2µtE[X2
0 ] + σ2e2µt e

−2µt − 1
−2µ

= e2µtE[X2
0 ] + σ2 e

2µt − 1
2µ

.

So V ar[Xt] = E[X2
t ]− (E[Xt])2 = e2µtV ar[X0] + σ2 e2µt−1

2µ .

5.6.

Proof. We find the integrating factor Ft by the follows. Suppose Ft satisfies the SDE dFt = θtdt + γtdBt.
Then

d(FtYt) = FtdYt + YtdFt + dYtdFt

= Ft(rdt+ αYtdBt) + Yt(θtdt+ γtdBt) + αγtYtdt

= (rFt + θtYt + αγtYt)dt+ (αFtYt + γtYt)dBt. (1)

Solve the equation system {
θt + αγt = 0
αFt + γt = 0,

we get γt = −αFt and θt = α2Ft. So dFt = α2Ftdt− αFtdBt. To find Ft, set Zt = e−α
2tFt, then

dZt = −α2e−α
2tFtdt+ e−α

2tdFt = e−α
2t(−α)FtdBt = −αZtdBt.

Hence Zt = Z0 exp(−αBt − α2t/2). So

Ft = eα
2tF0e

−αBt− 1
2α

2t = F0e
−αBt+ 1

2α
2t.

Choose F0 = 1 and plug it back into equation (1), we have d(FtYt) = rFtdt. So

Yt = F−1
t (F0Y0 + r

∫ t

0

Fsds) = Y0e
αBt− 1

2α
2t + r

∫ t

0

eα(Bt−Bs)− 1
2α

2(t−s)ds.

5.7. (a)

Proof. d(etXt) = et(Xtdt+ dXt) = et(mdt+ σdBt). So

Xt = e−tX0 +m(1− e−t) + σe−t
∫ t

0

esdBs.

(b)
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Proof. E[Xt] = e−tE[X0] +m(1− e−t) and

E[X2
t ] = E[(e−tX0 +m(1− e−t))2] + σ2e−2tE[

∫ t

0

e2sds]

= e−2tE[X2
0 ] + 2m(1− e−t)e−tE[X0] +m2(1− e−t)2 +

1
2
σ2(1− e−2t).

Hence V ar[Xt] = E[X2
t ]− (E[Xt])2 = e−2tV ar[X0] + 1

2σ
2(1− e−2t).

5.9.

Proof. Let b(t, x) = log(1 + x2) and σ(t, x) = 1{x>0}x, then

|b(t, x)|+ |σ(t, x)| ≤ log(1 + x2) + |x|

Note log(1 + x2)/|x| is continuous on R − {0}, has limit 0 as x → 0 and x → ∞. So it’s bounded on R.
Therefore, there exists a constant C, such that

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|)

Also,

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ 2|ξ|
1 + ξ2

|x− y|+ |1{x>0}x− 1{y>0}y|

for some ξ between x and y. So

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ |x− y|+ |x− y|

Conditions in Theorem 5.2.1 are satisfied and we have existence and uniqueness of a strong solution.

5.10.

Proof. Xt = Z +
∫ t

0
b(s,Xs)ds +

∫ t
0
σ(s,Xs)dBs. Since Jensen’s inequality implies (a1 + · · · + an)p ≤

np−1(ap1 + · · ·+ apn) (p ≥ 1, a1, · · · , an ≥ 0), we have

E[|Xt|2] ≤ 3

(
E[|Z|2] + E

[∣∣∣∣∫ t

0

b(s,Xs)ds
∣∣∣∣2
]

+ E

[∣∣∣∣∫ t

0

σ(s,Xs)dBs

∣∣∣∣2
])

≤ 3
(
E[|Z|2] + E[

∫ t

0

|b(s,Xs)|2ds] + E[
∫ t

0

|σ(s,Xs)|2ds]
)

≤ 3(E[|Z|2] + C2E[
∫ t

0

(1 + |Xs|)2ds] + C2E[
∫ t

0

(1 + |Xs|)2ds])

= 3(E[|Z|2] + 2C2E[
∫ t

0

(1 + |Xs|)2ds])

≤ 3(E[|Z|2] + 4C2E[
∫ t

0

(1 + |Xs|2)ds])

≤ 3E[|Z|2] + 12C2T + 12C2

∫ t

0

E[|Xs|2]ds

= K1 +K2

∫ t

0

E[|Xs|2]ds,

where K1 = 3E[|Z|2] + 12C2T and K2 = 12C2. By Gronwall’s inequality, E[|Xt|2] ≤ K1e
K2t.

5.11.
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Proof. First, we check by integration-by-parts formula,

dYt =
(
−a+ b−

∫ t

0

dBs
1− s

)
dt+ (1− t) dBt

1− t
=
b− Yt
1− t

dt+ dBt

Set Xt = (1− t)
∫ t

0
dBs
1−s , then Xt is centered Gaussian, with variance

E[X2
t ] = (1− t)2

∫ t

0

ds

(1− s)2
= (1− t)− (1− t)2

So Xt converges in L2 to 0 as t → 1. Since Xt is continuous a.s. for t ∈ [0, 1), we conclude 0 is the unique
a.s. limit of Xt as t→ 1.

5.14. (i)

Proof.

dZt = d(u(B1(t), B2(t)) + iv(B1(t), B2(t)))

= 5u · (dB1(t), dB2(t)) +
1
2

∆udt+ i5 v · (dB1(t), dB2(t)) +
i

2
∆vdt

= (5u+ i5 v) · (dB1(t), dB2(t))

=
∂u

∂x
(B(t))dB1(t)− ∂v

∂x
(B(t))dB2(t) + i(

∂v

∂x
(B(t))dB1(t) +

∂u

∂x
(B(t))dB2(t))

= (
∂u

∂x
(B(t)) + i

∂v

∂x
(B(t)))dB1(t) + (i

∂v

∂x
+ i

∂u

∂x
(B(t)))dB2(t)

= F ′(B(t))dB(t).

(ii)

Proof. By result of (i), we have deαB(t) = αeαB(t)dB(t). So Zt = eαB(t) + Z0 solves the complex SDE
dZt = αZtdB(t).

5.15.

Proof. The deterministic analog of this SDE is a Bernoulli equation dyt
dt = rKyt− ry2

t . The correct substitu-
tion is to multiply −y−2

t on both sides and set zt = y−1
t . Then we’ll have a linear equation dzt = −rKzt + r.

Similarly, we multiply −X−2
t on both sides of the SDE and set Zt = X−1

t . Then

−dXt

X2
t

= −rKdt
Xt

+ rdt− β dBt
Xt

and

dZt = −dXt

X2
t

+
dXt · dXt

X3
t

= −rKZtdt+ rdt− βZtdBt +
1
X3
t

β2X2
t dt = rdt− rKZtdt+ β2Ztdt− βZtdBt.

Define Yt = e(rK−β2)tZt, then

dYt = e(rK−β2)t(dZt + (rK − β2)Ztdt) = e(rK−β2)t(rdt− βZtdBt) = re(rK−β2)tdt− βYtdBt.

Now we imitate the solution of Exercise 5.6. Consider an integrating factor Nt, such that dNt = θtdt+γtdBt
and

d(YtNt) = NtdYt + YtdNt + dNt · dYt = Ntre
(rK−β2)tdt− βNtYtdBt + Ytθtdt+ YtγtdBt − βγtYtdt.
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Solve the equation {
θt = βγt
γt = βNt,

we get dNt = β2Ntdt+ βNtdBt. So Nt = N0e
βBt+

1
2β

2t and

d(YtNt) = Ntre
(rK−β2)tdt = N0re

(rK− 1
2β

2)t+βBtdt.

Choose N0 = 1, we have NtYt = Y0 +
∫ t

0
re(rK− β

2

2 )s+βBsds with Y0 = Z0 = X−1
0 . So

Xt = Z−1
t = e(rK−β2)tY −1

t =
e(rK−β2)tNt

Y0 +
∫ t

0
re(rK− 1

2β
2)s+βBsds

=
e(rK− 1

2β
2)t+βBt

x−1 +
∫ t

0
re(rK− 1

2β
2)s+βBsds

.

5.15. (Another solution)

Proof. We can also use the method in Exercise 5.16. Then f(t, x) = rKx − rx2 and c(t) ≡ β. So Ft =
e−βBt+

1
2β

2t and Yt satisfies
dYt = Ft(rKF−1

t Yt − rF−2
t Y 2

t )dt.

Divide −Y 2
t on both sides, we have

−dYt
Y 2
t

=
(
−rK
Yt

+ rF−1
t

)
dt.

So dY −1
t = −Y −2

t dYt = (−rKY −1
t + rF−1

t )dt, and

d(erKtY −1
t ) = erKt(rKY −1

t dt+ dY −1
t ) = erKtrF−1

t dt.

Hence erKtY −1
t = Y −1

0 + r
∫ t

0
erKseβBs−

1
2β

2sds and

Xt = F−1
t Yt = eβBt−

1
2β

2t erKt

Y −1
0 + r

∫ t
0
eβBs+(rK− 1

2β
2)sds

=
e(rK− 1

2β
2)t+βBt

x−1 + r
∫ t

0
e(rK− 1

2β
2)s+βBsds

.

5.16. (a) and (b)

Proof. Suppose Ft is a process satisfying the SDE dFt = θtdt+ γtdBt, then

d(FtXt) = Ft(f(t,Xt)dt+ c(t)XtdBt) +Xtθtdt+XtγtdBt + c(t)γtXtdt

= (Ftf(t,Xt) + c(t)γtXt +Xtθt)dt+ (c(t)FtXt + γtXt)dBt.

Solve the equation {
c(t)γt + θt = 0
c(t)Ft + γt = 0,

we have {
γt = −c(t)Ft
θt = c2(t)F (t).

So dFt = c2(t)Ftdt − c(t)FtdBt. Hence Ft = F0e
1
2

∫ t
0 c

2(s)ds−
∫ t
0 c(s)dBs . Choose F0 = 1, we get desired

integrating factor Ft and d(FtXt) = Ftf(t,Xt)dt.
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(c)

Proof. In this case, f(t, x) = 1
x and c(t) ≡ α. So Ft satisfies Ft = e−αBt+

1
2α

2t and Yt satisfies dYt =
Ft · 1

F−1
t Yt

dt = F 2
t Y
−1
t dt. Since dY 2

t = 2YtdYt + dYt · dYt = 2F 2
t dt = 2e−2αBt+α

2tdt, we have Y 2
t =

2
∫ t

0
e−2αBs+α

2sds+ Y 2
0 , where Y0 = F0X0 = X0 = x. So

Xt = eαBt−
1
2α

2t

√
x2 + 2

∫ t

0

e−2αBs+α2sds.

(d)

Proof. f(t, x) = xγ and c(t) ≡ α. So Ft = e−αBt+
1
2α

2t and Yt satisfies the SDE

dYt = Ft(F−1
t Yt)γdt = F 1−γ

t Y γt dt.

Note dY 1−γ
t = (1 − γ)Y −γt dYt = (1 − γ)F 1−γ

t dt, we conclude Y 1−γ
t = Y 1−γ

0 + (1 − γ)
∫ t

0
F 1−γ
s ds with

Y0 = F0X0 = X0 = x. So

Yt = eαBt−
1
2α

2t(x1−γ + (1− γ)
∫ t

0

e−α(1−γ)Bs+
α2(1−γ)

2 sds)
1

1−γ .

5.17.

Proof. Assume A 6= 0 and define ω(t) =
∫ t

0
v(s)ds, then ω′(t) ≤ C +Aω(t) and

d

dt
(e−Atω(t)) = e−At(ω′(t)−Aω(t)) ≤ Ce−At.

So e−Atω(t)−ω(0) ≤ C
A (1− e−At), i.e. ω(t) ≤ C

A (eAt− 1). So v(t) = ω′(t) ≤ C +A · CA (eAt− 1) = CeAt.

5.18. (a)

Proof. Let Yt = logXt, then

dYt =
dXt

Xt
− (dXt)2

2X2
t

= κ(α− Yt)dt+ σdBt −
σ2X2

t dt

2X2
t

= (κα− 1
2
α2)dt− κYtdt+ σdBt.

So
d(eκtYt) = κYte

κtdt+ eκtdYt = eκt[(κα− 1
2
σ2)dt+ σdBt]

and eκtYt − Y0 = (κα− 1
2σ

2) e
κt−1
κ + σ

∫ t
0
eκsdBs. Therefore

Xt = exp{e−κt log x+ (α− σ2

2κ
)(1− e−κt) + σe−κt

∫ t

0

eκsdBs}.

(b)

Proof. E[Xt] = exp{e−κt log x+(α− σ2

2κ )(1−e−κt)}E[exp{σe−κt
∫ t

0
eκsdBs}]. Note

∫ t
0
eκsdBs ∼ N(0, e

2κt−1
2κ ),

so

E[exp{σe−κt
∫ t

0

eκsdBs}] = exp
{

1
2
σ2e−2κt e

2κt − 1
2κ

}
= exp

{
σ2(1− e−2κt)

4κ

}
.
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5.19.

Proof. We follow the hint.

P

[∫ T

0

∣∣∣b(s, Y (K)
s )− b(s, Y (K−1)

s )
∣∣∣ ds > 2−K−1

]

≤ P

[∫ T

0

D
∣∣∣Y (K)
s − Y (K−1)

s

∣∣∣ ds > 2−K−1

]

≤ 22K+2E

(∫ T

0

D
∣∣∣Y (K)
s − Y (K−1)

s

∣∣∣ ds)2


≤ 22K+2E

[
D2

∫ T

0

∣∣∣Y (K)
s − Y (K−1)

s

∣∣∣2 dsT]

≤ 22K+2D2TE

[∫ T

0

∣∣∣Y (K)
s − Y (K−1)

s

∣∣∣2 ds]

≤ D2T22K+2

∫ T

0

AK2 t
K

K!
ds

=
D2T22K+2AK2

(K + 1)!
TK+1.

P

[
sup

0≤t≤T

∣∣∣∣∫ t

0

(
σ(s, Y (K)

s )− σ(s, Y (K−1)
s )

)
dBs

∣∣∣∣ > 2−K−1

]
≤ 22K+2E

[∣∣∣∣∫ t

0

(
σ(s, Y (K)

s )− σ(s, Y (K−1)
s )

)
dBs

∣∣∣∣2
]

≤ 22K+2E

[∫ t

0

(
σ(s, Y (K)

s )− σ(s, Y (K−1)
s )

)2

ds

]
≤ 22K+2E

[∫ t

0

D2|Y (K)
s − Y (K−1)

s |2ds
]

≤ 22K+2D2

∫ T

0

AK2 t
K

K!
dt

=
22K+2D2AK2

(K + 1)!
TK+1.

So

P [ sup
0≤t≤T

|Y (K+1)
t − Y (K)

t | > 2−K ] ≤ D2T
22K+2AK2
(K + 1)!

TK+1 +D2 22K+2AK2
(K + 1)!

TK+1 ≤ (A3T )K+1

(K + 1)!
,

where A3 = 4(A2 + 1)(D2 + 1)(T + 1).

7.2. Remark: When an Itô diffusion is explicitly given, it’s usually straightforward to find its infinitesimal
generator, by Theorem 7.3.3. The converse is not so trivial, as we’re faced with double difficulties: first, the
desired n-dimensional Itô diffusion dXt = b(Xt)dt + σ(Xt)dBt involves an m-dimensional BM Bt, where m
is unknown a priori; second, even if m can be determined, we only know σσT , which is the product of an
n×m and an m× n matrix. In general, it’s hard to find σ according to σσT . This suggests maybe there’s
more than one diffusion that has the given generator. Indeed, when restricted to C2

0 (R+), BM, BM killed
at 0 and reflected BM all have Laplacian operator as generator. What differentiate them is the domain of
generators: domain is part of the definition of a generator!
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With the above theoretical background, it should be OK if we find more than one Itô diffusion process
with given generator. A basic way to find an Itô diffusion with given generator can be trial-and-error. To
tackle the first problem, we try m = 1, m = 2, · · · . To tackle the second problem, note σσT is symmetric, so
we can write σσT as AMAT where M is the diagonalization of σσT , and then set σ = AM1/2. In general, to
deal directly with σTσ instead of σ, we should use the martingale problem approach of Stoock and Varadhan.
See the preface of their classical book for details.

a)

Proof. dXt = dt+
√

2dBt.

b)

Proof.

d

(
X1(t)
X2(t)

)
=
(

1
cX2(t)

)
dt+

(
0

αX2(t)

)
dBt.

c)

Proof. σσT =
(

1 + x2
1 x1

x1 1

)
. If

d

(
X1(t)
X2(t)

)
=
(

2X2(t)
log(1 +X2

1 (t) +X2
2 (t))

)
dt+

(
a
b

)
dBt,

then σσT has the form
(
a2 ab
ab b2

)
, which is impossible since x2

1 6= (1 + x2
1) · 1. So we try 2-dim. BM as the

driving process. Linear algebra yields σσT =
(

1 x1

0 1

)(
1 0
x1 1

)
. So we can choose

dXt =
(

2X2(t)
log(1 +X2

1 (t) +X2
2 (t))

)
dt+

(
1 X1(t)
0 1

)(
dBt(t)
dB2(t)

)
.

7.3.

Proof. Set FXt = σ(Xs : s ≤ t) and FBt = σ(Bs : s ≤ t). Since σ(Xt) = σ(Bt), we have, for any bounded
Borel function f(x),

E[f(Xt+s)|FXt ] = E[f(xec(t+s)+αBt+s)|FBt ] = EBt [f(xec(t+s)+αBs)] ∈ σ(Bt) = σ(Xt).

So E[f(Xt+s)|FXt ] = E[f(Xt+s)|Xt].

7.4. a)

Proof. Choose b ∈ R+, so that 0 < x < b. Define τ0 = inf{t > 0 : Bt = 0}, τb = inf{t > 0 : Bt = b}
and τ0b = τ0 ∧ τb. Clearly, limb→∞ τb = ∞ a.s. by the continuity of Brownian motion. Consequently,
{τ0 < τb} ↑ {τ0 <∞} as b ↑ ∞. Note (B2

t − t)t≥0 is a martingale, by Doob’s optional stopping theorem, we
have Ex[B2

t∧τ0b ] = Ex[t ∧ τ0b]. Apply bounded convergence theorem to the LHS and monotone convergence
theorem to the RHS, we get Ex[τ0b] = Ex[B2

τ0b
] <∞. In particular, τ0b <∞ a.s. Moreover, by considering

the martingale (Bt)t≥0 and similar argument, we have Ex[Bτ0b ] = Ex[B0] = x. This leads to the equation{
P x(τ0 < τb) · 0 + P x(τ0 > τb) · b = x
P x(τ0 < τb) + P x(τ0 > τb) = 1.

Solving it gives P x(τ0 < τb) = 1− x
b . So P x(τ0 <∞) = limb→∞ P x(τ0 < τb) = 1.
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b)

Proof. Ex[τ ] = limb→∞Ex[τ0b] = limb→∞Ex[B2
τ0b

] = limb→∞ b2 · xb =∞.

Remark: (1) Another easy proof is based on the following result, which can be proved independently
and via elementary method: let W = (Wt)t≥0 be a Wiener process, and T be a stopping time such that
E[T ] <∞. Then E[WT ] = 0 and E[W 2

T ] = E[T ] ([6]).
(2) The solution in the book is not quite right, since Dynkin’s formula assumes Ex[τK ] <∞, which needs

proof in this problem.

7.5.

Proof. The hint is detailed enough. But if we want to be really rigorous, note Theorem 7.4.1. (Dynkin’s
formula) studies Itô diffusions, not Itô processes, to which standard form semi-group theory (in particular,
the notion of generator) doesn’t apply. So we start from scratch, and re-deduce Dynkin’s formula for Itô
processes.

First of all, we note b(t, x), σ(t, x) are bounded in a bounded domain of x, uniformly in t. This suffices
to give us martingales, not just local martingales. Indeed, Itô’s formula says

|X(t)|2

= |X(0)|2 +
∫ t

0

∑
i

2Xi(s)dXi(s) +
∫ t

0

∑
i

〈dXi(s)〉

= |X(0)|2 + 2
∑
i

∫ t

0

Xi(s)bi(s,X(s))ds+ 2
∑
ij

∫ t

0

Xi(s)σij(s,X(s))dBj(s) +
∑
i

∫ t

0

σ2
ii(s,Xs)ds.

Let τ = t ∧ τR where τR = inf{t > 0 : |Xt| ≥ R}. Then by previous remark on the boundedness of σ and b,∫ t∧τR
0

Xi(s)σij(s,X(s))dBj(s) is a martingale. Take expectation, we get

E[|X(τ)|2]

= E[|X(0)|2] + 2
∑
i

E[
∫ τ

0

Xi(s)bi(s,X(s))ds] +
∑
i

∫ t

0

E[σ2
ii(s,X(s))]ds

≤ E[|X(0)|2] + 2C
∑
i

E[
∫ τ

0

|Xi(s)|(1 + |X(s)|)ds] +
∫ t

0

C2E[(1 + |X(s)|)2]ds.

Let R→∞ and use Fatou’s Lemma, we have

E[|X(t)|2]

≤ E[|X(0)|2] + 2C
∑
i

E[
∫ t

0

|Xi(s)|(1 + |X(s)|)ds] + C2

∫ t

0

E[(1 + |X(s)|)2]ds

≤ E[|X(0)|2] +K

∫ t

0

(1 + E[|X(s)|2])ds,

for some K dependent on C only. To apply Gronwall’s inequality, note for v(t) = 1 + E[|X(t)|2], we have
v(t) ≤ v(0) +K

∫ t
0
v(s)ds. So v(t) ≤ v(0)eKt, which is the desired inequality.

Remark: Compared with Exercise 5.10, the power of this problem’s method comes from application of
Itô formula, or more precisely, martingale theory, while Exercise 5.10 only resorts to Hölder inequality.

7.7. a)

Proof. Let U be an orthogonal matrix, then B′ = U · B is again a Brownian motion. For any G ∈ ∂D,
µXD(G) = P x(BτD ∈ G) = P x(U · BτD ∈ U · G) = P x(B′τD ∈ U · G) = µxD(U · G). So µxD is rotation
invariant.
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b)

Proof.

u(x) = Ex[φ(BτW )] = Ex[Ex[φ(BτW )|BτD ]] = Ex[Ex[φ(BτW ◦ θτD )|BτD ]]

= Ex[EBτD [φ(BτW ]] = Ex[u(BτD )] =
∫
∂D

u(y)µxD(dy) =
∫
∂D

u(y)σ(dy).

c)

Proof. See, for example, Evans: Partial Differential Equations, page 26.

7.8. a)

Proof. {τ1 ∧ τ2 ≤ t} = {τ1 ≤ t} ∪ {τ2 ≤ t} ∈ Nt. And since {τi ≥ t} = {τi < t}c ∈ Nt, {τ1 ∨ τ2 ≥ t} = {τ1 ≥
t} ∪ {τ2 ≥ t} ∈ Nt.

b)

Proof. {τ < t} = ∪n{τn < t} ∈ Nt.

c)

Proof. By b) and the hint, it suffices to show for any open set G, τG = inf{t > 0 : Xt 6∈ G} is anMt-stopping
time. This is Example 7.2.2.

7.9. a)

Proof. By Theorem 7.3.3, A restricted to C2
0 (R) is rx d

dx + α2x2

2
d2

dx2 . For f(x) = xγ , Af can be calculated by

definition. Indeed, Xt = xe(r−α2
2 )t+αBt , and Ex[f(Xt)] = xγe(r−α2

2 +α2γ
2 )γt. So

lim
t↓0

Ex[f(Xt)]− f(x)
t

= (rγ +
α2

2
γ(γ − 1))xγ

So f ∈ DA and Af(x) = (rγ + α2

2 γ(γ − 1))xγ .

b)

Proof. We choose ρ such that 0 < ρ < x < R. We choose f0 ∈ C2
0 (R) such that f0 = f on (ρ,R).

Define τ(ρ,R) = inf{t > 0 : Xt 6∈ (ρ,R)}. Then by Dynkin’s formula, and the fact Af0(x) = Af(x) =
γ1x

γ1(r + α2

2 (γ1 − 1)) = 0 on (ρ,R), we get

Ex[f0(Xτ(ρ,R)∧k)] = f0(x)

The condition r < α2

2 implies Xt → 0 a.s. as t→ 0. So τ(ρ,R) <∞ a.s.. Let k ↑ ∞, by bounded convergence
theorem and the fact τ(ρ,R) <∞, we conclude

f0(ρ)(1− p(ρ)) + f0(R)p(ρ) = f0(x)

where p(ρ) = P x{Xt exits (ρ,R) by hitting R first}. Then

ρ(p) =
xγ1 − ργ1
Rγ1 − ργ1

Let ρ ↓ 0, we get the desired result.

c)
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Proof. We consider ρ > 0 such that ρ < x < R. τ(ρ,R) is the first exit time of X from (ρ,R). Choose
f0 ∈ C2

0 (R) such that f0 = f on (ρ,R). By Dynkin’s formula with f(x) = log x and the fact Af0(x) =
Af(x) = r − α2

2 for x ∈ (ρ,R), we get

Ex[f0(Xτ(ρ,R)∧k)] = f0(x) + (r − α2

2
)Ex[τ(ρ,R) ∧ k]

Since r > α2

2 , Xt →∞ a.s. as t→∞. So τ(ρ,R) <∞ a.s.. Let k ↑ ∞, we get

Ex[τ(ρ,R)] =
f0(R)p(ρ) + f0(ρ)(1− p(ρ))− f0(x)

r − α2

2

where p(ρ) = P x(Xt exits (ρ,R) by hitting R first). To get the desired formula, we only need to show
limρ→0 p(ρ) = 1 and limρ→0 log ρ(1−p(ρ)) = 0. This is trivial to see once we note by our previous calculation
in part b),

p(ρ) =
xγ1 − ργ1
Rγ1 − ργ1

7.10. a)

Proof. Ex[XT |Ft] = EXt [XT−t]. By Exercise 5.10. or 7.5.,
∫ t

0
XsdBs is a martingale. So Ex[Xt] = x +

r
∫ t

0
Ex[Xs]ds. Set Ex[Xt] = v(t), we get v(t) = x + r

∫ t
0
v(s)ds or equivalently, the initial value problem{

v′(t) = rv(t)
v(0) = x

. So v(t) = xert. Hence Ex[XT |Ft] = Xte
r(T−t).

b)

Proof. Since Mt is a martingale, Ex[XT |Ft] = xerTEx[MT |Ft] = xerTMt = Xte
r(T−t).

7.11.

Proof. By change-of-variable formula, we have
∫∞
τ
f(Xt)dt =

∫∞
0
f(Xτ+t)dt =

∫∞
0
f(Xt ◦ θτ )dt. So by

Fubini’s Theorem and strong Markov property,

Ex[
∫ ∞
τ

f(Xt)dt] = Ex[Ex[
∫ ∞

0

f(Xt) ◦ θτdt|Fτ ]] = Ex[EXτ [
∫ ∞

0

f(Xt)dt]] = Ex[g(Xτ )].

7.12. a)

Proof. For any t, s with 0 ≤ s < t ≤ T and τK , we have E[Zt∧τK |Fs] = Zs∧τK . LetK →∞, then Zs∧τK → Zs
a.s. and Zt∧τK → Zt a.s. Since (Zτ )τ≤T is uniformly integrable, Zs∧τK → Zs and Zt∧τK → Zt in L1 as well.
So E[Zt|Fs] = limK→∞E[Zt∧τK |Fs] = limK→∞ Zs∧τK = Zs. Hence (Zt)t≤T is a martingale.

b)

Proof. The given condition implies (Zτ )τ≤T is uniformly integrable.

c)

Proof. Without loss of generality, we assume Z ≥ 0. Then by Fatou’s lemma, for t > s ≥ 0,

E[Zt|Fs] ≤ lim
k→∞

E[Zt∧τk |Fs] = lim
k→∞

Zs∧τk = Zs.
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d)

Proof. Define τk = inf{t > 0 :
∫ t

0
φ2(s, ω)ds ≥ k}, then

Zt∧τk =
∫ t∧τk

0

φ(s, ω)dBs =
∫ t

0

φ(s, ω)1{s≤τk}dBs

is a martingale, since E[
∫ T

0
φ2(s, ω)1{s≤τk}ds] = E[

∫ T∧τk
0

φ2(s, ω)ds] ≤ k.

7.13. a)

Proof. Take f ∈ C2
0 (R2

+) so that f(x) = ln |x| on {x : ε ≤ |x| ≤ R}. Then

df(B(t)) =
2∑
i=1

Bi(t)
|B(t)|2

dBi(t) +
1
2
B2

2(t)−B2
1(t)

|B(t)|4
dt+

1
2
B2

1(t)−B2
2(t)

|B(t)|4
dt

=
2∑
i=1

Bi(t)
|B(t)|2

dBi(t)

=
B(t) · dB(t)
|B(t)|2

.

Since B(t)
|B(t)|2 1{t≤τ} ∈ V(0, T ), we conclude f(B(t ∧ τ)) = ln |B(t ∧ τ)| is a martingale. To show ln |B(t)| is

a local martingale, it suffices to show τ → ∞ as ε ↓ 0 and R ↑ ∞. Indeed, by optional stopping theorem,
ln |x| = Ex[ln |B(t ∧ τ)|] = P x(τε < τR) ln ε + P x(τε > τR) lnR, where τε = inf{t > 0 : |B(t)| ≤ ε} and
τR = inf{t > 0 : |B(t)| ≥ R}. So P x(τε < τR) = lnR−ln |x|

lnR−ln ε . By continuity of B, limR→∞ τR = ∞. If
we define τ0 = inf{t > 0 : |B(t)| = 0}, then τ0 = limε↓0 τε. So P x(τ0 < ∞) = limR↑∞ P x(τ0 < τR) =
limR↑∞ limε↓0 P

x(τε < τR) = 0. This shows limε↓0 τε = τ0 =∞ a.s.

b)

Proof. Similar to part a).

Remark: Note neither example is a martingale, as they don’t have finite expectation.

7.14. a)

Proof. According to Theorem 7.3.3, for any f ∈ C2
0 ,

Af(x) =
∑
i

1
h(x)

∂h(x)
∂xi

∂f(x)
∂xi

+
1
2

∆f(x) =
25 h · 5f + h∆f

2h
=

∆(hf)
2h

,

where the last equation is due to the harmonicity of h.

7.15.

Proof. If we assume formula (7.5.5), then (7.5.6) is straightforward from Markov property. As another
solution, we derive (7.5.6) directly.

We define Mt = Ex[F |Ft] (t ≤ T ), then Mt = E[F ] +
∫ t

0
φ(s)dBs. Set f(z, u) = Ez[(Bu −K)+], then

Mt = Ex[(BT −K)+|Ft] = EBt [(BT−t −K)+] = f(Bt, T − t). By Itô’s formula,

dMt = f ′z(Bt, T − t)dBt + f ′u(Bt, T − t)(−dt) +
1
2
f ′′zz(Bt, T − t)dt.

So φ(t, ω) = f ′z(Bt, T − t). Note by elementary calculus,

f(z, u) =
∫ ∞
−∞

(z + x−K)+ e
−x2/2u

√
2πu

dx =
√
uN ′(

K − z√
u

)− (K − z) + (K − z)N(
K − z√

u
),
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where N(·) is the distribution function of standard normal random variable. So it’s easy to see f ′z(z, u) =

1−N(K−z√
u

). Hence φ(t, ω) = 1−N(K−Bt√
T−t ) = 1√

2π(T−t)

∫∞
K
e−

(x−Bt)2
2(T−t) dx.

7.17.

Proof. If t ≤ τ , then Y clearly satisfies the integral equation corresponding to (7.5.8), since

Yt = Xt = X0 +
∫ t

0

1
3
X

1
3
s ds+

∫ t

0

X
2
3
s dBs = Y0 +

∫ t

0

1
3
Y

1
3
s ds+

∫ t

0

Y
2
3
s dBs.

If t > τ , then Yt = 0 = Xτ =
∫ τ

0
1
3X

1
3
s ds+

∫ τ
0
X

2
3
s dBs+X0 = Y0 +

∫ τ
0

1
3Y

1
3
s ds+

∫ τ
0
X

2
3
s dBs = Y0 +

∫ t
0

1
3Y

1
3
s ds+∫ t

0
Y

2
3
s dBs. So Y is also a strong solution of (7.5.8).
If we write (7.5.8) in the form of dXt = b(Xt)dt + σ(Xt)dBt, then b(x) = 1

3x
1
3 and σ(x) = x

2
3 . Neither

of them satisfies the Lipschiz condition (5.2.2). So this does not conflict with Theorem 5.2.1.

7.18. a)

Proof. The line of reasoning is exactly what we have done for 7.9 b). Just replace xγ with a general function
f(x) satisfying certain conditions.

b)

Proof. The characteristic operator A = 1
2
d2

dx2 and f(x) = x are such that Af(x) = 0. By formula (7.5.10),
we are done.

c)

Proof. A = µ d
dx + σ2

2
d2

dx2 . So we can choose f(x) = e−
2µ
σ2 x. Therefore

p =
e−

2µx
σ2 − e−

2µa
σ2

e−
2µb
σ2 − e−

2µa
σ2

7.19. a)

Proof. Following the hint, and by Doob’s optional sampling thoerem, Ex[e−
√

2λBt∧τ−λt∧τ ] = Ex[Mt∧τ ] =
Ex[M0] = e−

√
2λx. Let t ↑ ∞ and apply bounded convergence theorem, we get Ex[e−λτ ] = e−

√
2λx.

b)

Proof.
∫∞

0
e−λt x√

2πt3
e−

x3
2t dt.

8.1. a)

Proof. g(t, x) = Ex[φ(Bt)], where B is a Brownian motion.

b)

Proof. Note the equation to be solved has the form (α−A)u = ψ with A = 1
2∆, so we should apply Theorem

8.1.5. More precisely, since ψ ∈ Cb(Rn), by Theorem 8.1.5. b), we know (α− 1
2∆)Rαψ = ψ, where Rα is the

α-resolvent corresponding to Brownian motion. So Rαψ(x) = Ex[
∫∞

0
e−αtψ(Bt)dt] is a bounded solution of

the equation (α− 1
2∆)u = ψ in Rn. To see the uniqueness, it suffices to show (α− 1

2∆)u = 0 has only zero
solution. Indeed, if u 6≡ 0, we can find un ∈ C2

0 (Rn) such that un = u in B(0, n). Then (α − 1
2∆)un = 0

in B(0, n). Applying Theorem 8.1.5.a), un = Rα(α − 1
2∆)un = 0. So u ≡ 0 in B(0, n). Let n ↑ ∞, we are

done.

18



8.2.

Proof. By Kolmogorov’s backward equation (Theorem 8.1.1), it suffices to solve the SDE dXt = αXtdt +

βXtdBt. This is the geometric Brownian motion Xt = X0e
(α− β

2

2 )t+βBt . Then

u(t, x) = Ex[f(Xt)] =
∫ ∞
−∞

f(xe(α− β
2

2 )t+βy)
e−

y2

2t

√
2πt

dy.

8.3.

Proof. By (8.6.34) and Dynkin’s formula, we have

Ex[f(Xt)] =
∫

Rn
f(y)pt(x, y)dy

= f(x) + Ex[
∫ t

0

Af(Xs)ds]

= f(x) +
∫ t

0

PsAf(x)ds

= f(x) +
∫ t

0

∫
Rn
ps(x, y)Ayf(y)dyds.

Differentiate w.r.t. t, we have∫
Rn
f(y)

∂pt(x, y)
∂t

dy =
∫

Rn
pt(x, y)Ayf(y)dy =

∫
Rn
A∗ypt(x, y)f(y)dy,

where the second equality comes from integration by parts. Since f is arbitrary, we must have ∂pt(x,y)
∂t =

A∗ypt(x, y).

8.4.

Proof. The expected total length of time that B· stays in F is

T = E[
∫ ∞

0

1F (Bt)dt] =
∫ ∞

0

∫
F

1√
2πt

e−
x2
2t dxdt.

(Sufficiency) If m(F ) = 0, then
∫
F

1√
2πt

e−
x2
2t dx = 0 for every t > 0, hence T = 0.

(Necessity) If T = 0, then for a.s. t,
∫
F

1√
2πt

e−
x2
2t dx = 0. For such a t > 0, since e−

x2
2t > 0 everywhere in

Rn, we must have m(F ) = 0.

8.5.

Proof. Apply the Feynman-Kac formula, we have

u(t, x) = Ex[e
∫ t
0 ρdsf(Bt)] = eρt(2πt)−

n
2

∫
Rn
e−

(x−y)2
2t f(y)dy.

8.6.

Proof. The major difficulty is to make legitimate using Feynman-Kac formula while (x − K)+ 6∈ C2
0 . For

the conditions under which we can indeed apply Feynman-Kac formula to (x−K)+ 6∈ C2
0 , c f. the book of

Karatzas & Shreve, page 366.
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8.7.

Proof. Let αt = inf{s > 0 : βs > t}, then Xαt is a Brownian motion. Since β· is continuous and limt→∞ βt =
∞ a.s., by the law of iterated logarithm for Brownian motion, we have

lim sup
t→∞

Xαβt√
2βt log log βt

= 1, a.s.

Assume αβt = t (this is true when, for example, beta· is strictly increasing), then we are done.

8.8.

Proof. Since dNt = (u(t) − E[u(t)|Gt])dt + dBt = dZt − E[u(t)|Gt]dt, Nt = σ(Ns : s ≤ t) ⊂ Gt. So
E[u(t)− E[u(t)|Gt]|Nt] = 0. By Corollary 8.4.5, N is a Brownian motion.

8.9.

Proof. By Theorem 8.5.7,
∫ αt

0
esdBs =

∫ t
0
eαs
√
α′sdB̃s, where B̃t is a Brownian motion. Note eαt =

√
1 + 2

3 t
3

and α′t = t2

1+ 2
3 t

3 , we have eαt
√
α′t = t.

8.10.

Proof. By Itô’s formula, dXt = 2BtdBt + dt. By Theorem 8.4.3, and 4B2
t = 4|Xt|, we are done.

8.11. a)

Proof. Let Zt = exp{−Bt − t2

2 }, then it’s easy to see Z is a martingale. Define QT by dQT = ZT dP , then
QT is a probability measure on FT and QT ∼ P . By Girsanov’s theorem (Theorem 8.6.6), (Yt)t≥0 is a
Brownian motion under QT . Since Z is a martingale, dQ|Ft = ZT dP |Ft = ZtdP = dQt for any t ≤ T . This
allows us to define a measure Q on F∞ by setting Q|FT = QT , for all T > 0.

b)

Proof. By the law of iterated logarithm, if B̂ is a Brownian motion, then

lim sup
t→∞

Bt√
2t log log t

= 1 a.s. and lim inf
t→∞

Bt
2t log log t

= −1, a.s.

So under P ,

lim sup
t→∞

Yt = lim sup
t→∞

(
Bt

2t log log t
+

t√
2t log log t

)√
2t log log t =∞, a.s.

Similarly, lim inft→∞ Yt = ∞ a.s. Hence P (limt→∞ Yt = ∞) = 1. Under Q, Y is a Brownian motion.
The law of iterated logarithm implies limt→∞ Yt does’nt exist. So Q(limt→∞ Yt = ∞) = 0. This is not a
contradiction, since Girsanov’s theorem only requires Q ∼ P on FT for any T > 0, but not necessarily on
F∞.

8.12.

Proof. dYt = βdt + θdBt where β =
(

0
1

)
and θ =

(
1 3
−1 −2

)
. We solve the equation θu = β and get

u =
(
−3
1

)
. Put Mt = exp{−

∫ t
0
udBs − 1

2

∫ t
0
u2ds} = exp{3B1(t) − B2(t) − 5t} and dQ = MT dP on FT ,

then by Theorem 8.6.6, dYt = θdB̃t with B̃t =
(
−3t
t

)
+B(t) a Brownian motion w.r.t. Q.

8.13. a)
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Proof. {Xx
t ≥ M} ∈ Ft, so it suffices to show Q(Xx

t ≥ M) > 0 for any probability measure Q which is
equivalent to P on Ft. By Girsanov’s theorem, we can find such a Q so that Xt is a Brownian motion w.r.t.
Q. So Q(Xx

t ≥M) > 0, which implies P (Xx
t ≥M) > 0.

b)

Proof. Use the law of iterated logarithm and the proof is similar to that of Exercise 8.11.b).

8.15. a)

Proof. We define a probability measure Q by dQ|Ft = MtdP |Ft , where

Mt = exp{
∫ t

0

α(Bs)dBs −
1
2

∫ t

0

α2(Bs)ds}.

Then by Girsanov’s theorem, B̂t
∆= Bt −

∫ t
0
α(Bs)ds is a Brownian motion. So Bt satisfies the SDE dBt =

α(Bt)dt+ dB̂t. By Theorem 8.1.4, the solution can be represented as

ExQ[f(Bt)] = Ex[exp(
∫ t

0

α(Bs)dBs −
1
2

∫ t

0

α2(Bs)ds)f(Bt)].

Remark: To see the advantage of this approach, we note the given PDE is like Kolmogorovs backward
equation. So directly applying Theorem 8.1.1, we get the solution Ex[f(Xt)] where X solves the SDE
dXt = α(Xt)dt+ dBt. However, the formula Ex[f(Xt)] is not sufficiently explicit if α is non-trivial and the
expression of X is hard to obtain. Resorting to Girsanovs theorem makes the formula more explicit.

b)

Proof.

e
∫ t
0 α(Bs)dBs− 1

2

∫ t
0 α

2(Bs)ds = e
∫ t
0 5γ(Bs)dBs− 1

2

∫ t
0 5γ

2(Bs)ds = eγ(Bt)−γ(B0)− 1
2

∫ t
0 ∆γ(Bs)ds− 1

2

∫ t
0 5γ

2(Bs)ds

So
u(t, x) = e−γ(x)Ex

[
eγ(Bt)f(Bt)e−

1
2

∫ t
0 (5γ2(Bs)+∆γ(Bs))ds

]
.

c)

Proof. By Feynman-Kac formula and part b),

v(t, x) = Ex
[
eγ(Bt)f(Bt)e−

1
2

∫ t
0 (5γ2+∆γ)(Bs)ds

]
= eγ(x)u(t, x).

8.16 a)

Proof. Let Lt = −
∫ t

0

∑n
i=1

∂h
∂xi

(Xs)dBis. Then L is a square-integrable martingale. Furthermore, 〈L〉T =∫ T
0
| 5 h(Xs)|2ds is bounded, since h ∈ C1

0 (Rn). By Novikov’s condition, Mt = exp{Lt − 1
2 〈L〉t} is a

martingale. We define P̄ on FT by dP̄ = MT dP . Then

dXt = 5h(Xt)dt+ dBt

defines a BM under P̄ .
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Ex[f(Xt)]
= Ēx[M−1

t f(Xt)]

= Ēx[e
∫ t
0

∑n
i=1

∂h
∂xi

(Xs)dX
i
s− 1

2

∫ t
0 |5h(Xs)|2dsf(Xt)]

= Ex[e
∫ t
0

∑n
i=1

∂h
∂xi

(Bs)dB
i
s− 1

2

∫ t
0 |5h(Bs)|2dsf(Bt)]

Apply Itô’s formula to Zt = h(Bt), we get

h(Bt)− h(B0) =
∫ t

0

n∑
i=1

∂h

∂xi
(Bs)dBis +

1
2

∫ t

0

n∑
i=1

∂2h

∂x2
i

(Bs)ds

So
Ex[f(Xt)] = Ex[eh(Bt)−h(B0)e−

∫ t
0 V (Bs)dsf(Bt)]

b)

Proof. If Y is the process obtained by killing Bt at a certain rate V , then it has transition operator

TYt (g, x) = Ex[e−
∫ t
0 V (Bs)dsg(Bt)]

So the equality in part a) can be written as

TXt (f, x) = e−h(x)TYt (feh, x)

8.17.

Proof.

dY (t) =
(
dY1(t)
dY2(t)

)
=
(
β1(t)
β2(t)

)
dt+

(
1 2 3
1 2 2

)dB1(t)
dB2(t)
dB3(t)

 .

So equation (8.6.17) has the form (
1 2 3
1 2 2

)u1

u2

u3

 =
(
β1(t)
β2(t)

)
.

The general solution is u1 = −2u2 + β1 − 3(β1 − β2) = −2u2 − 2β1 + 3β2 and u3 = β1 − β2. Define Q by
(8.6.19), then there are infinitely many equivalent martingale measure Q, as u2 varies.

9.2. (i)

Proof. The book’s solution is detailed enough. We only comment that for any bounded or positive g ∈
B(R+ × R),

Es,x[g(Xt)] = E[g(s+ t, Bxt )],

where the left hand side is expectation under the measure induced by Xs,x
t on R2, while the right hand side

is expectation under the original given probability measure P .
Remark: The adding-one-dimension trick in the solution is quite typical and useful. Often in applications,

the SDE of our interest may not be homogeneous and the coefficients are functions of both X and t. However,
to obtain (strong) Markov property, it is necessary that the SDE is homogeneous. If we augment the original
SDE with an additional equation dX ′t = dt or dX ′t = −dt, then the SDE system is an (n+1)-dimension SDE
driven by an m-dimensional BM. The solution Y s,xt = (X ′t, Xt) (X ′0 = s and X0 = x) can be identified with
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a probability measure P s,x on Rn+1, with P s,x = Y s,x(P ), where Y s,x(P ) means the distribution function
of Y s,x. With this perspective, we have Es,x[g(Xt)] = E[g(t+ s,Bxt )].

Abstractly speaking, the (strong) Markov property of SDE solution can be formulated precisely as follows.
Suppose we have a filtered probability space (Ω,F , (Ft)t≥0, P ), on which an m-dimensional continuous
semimartingale Z is defined. Then we can consider an n-dimensional SDE driven by Z, dXt = f(t,Xt)dZt.
If Xx is a solution with X0 = x, the distribution Xx(P ) of Xx, denoted by P x, induces a probability measure
on C(R+,Rn). The (strong) Markov property then means the coordinate process defined on C(R+,Rn) is a
(strong) Markov process under the family of measures (P x)x∈Rn . Usually, we need the SDE dXt = f(t,Xt)dZt
is homogenous, i.e. f(t, x) = f(x), and the driving process Z is itself a Markov process. When Z is a BM,
we emphasize that it is a standard BM (cf. [8] Chapter IX, Definition 1.2)

9.5. a)

Proof. If 1
2∆u = −λu in D, then by integration by parts formula, we have −λ〈u, u〉 = −λ

∫
D
u2(x)dx =

1
2

∫
D
u(x)∆u(x)dx = − 1

2

∫
D
5u(x) ·5u(x)dx ≤ 0. So λ ≥ 0. Because u is not identically zero, we must have

λ > 0.

b)

Proof. We follow the hint. Let u be a solution of (9.3.31) with λ = ρ. Applying Dynkin’s formula to the
process dYt = (dt, dBt) and the function f(t, x) = eρtu(x), we get

E(t,x)[f(Yτ∧n)] = f(t, x) + E(t,x)

[∫ τ∧n

0

Lf(Ys)ds
]
.

Since Lf(t, x) = ρeρtu(x) + 1
2e
ρt∆u(x) = 0, we have E(t,x)[eρτ∧nu(Bτ∧n)] = eρtu(x). Let t = 0 and n ↑ ∞,

we are done. Note ∀ξ ∈ bF∞, E(t,x)[ξ] = Ex[ξ] (cf. (7.1.7)).

c)

Proof. This is straightforward from b).

9.6.

Proof. Suppose f ∈ C2
0 (Rn) and let g(t, x) = e−αtf(x). If τ satisfies the condition Ex[τ ] < ∞, then by

Dynkin’s formula applied to Y and y, we have

E(t,x)[e−ατf(Xτ )] = e−αtf(x) + E(t,x)

[∫ τ

0

(
∂

∂s
+A)g(s,Xs)ds

]
.

That is,

Ex[e−ατf(Xτ )] = e−ατf(x) + Ex[
∫ τ

0

e−αs(−α+A)f(Xs)ds].

Let t = 0, we get

Ex[e−ατf(Xτ )] = f(x) + Ex[
∫ τ

0

e−αs(A− α)f(Xs)ds].

If α > 0, then for any stopping time τ , we have

Ex[e−ατ∧nf(Xτ∧n)] = f(x) + Ex[
∫ τ∧n

0

e−αs(A− α)f(Xs)ds].

Let n ↑ ∞ and apply dominated convergence theorem, we are done.

9.7. a)
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Proof. Without loss of generality, assume y = 0. First, we consider the case x 6= 0. Following the hint and
note ln |x| is harmonic in R2\{0}, we have Ex[f(Bτ )] = f(x), since Ex[τ ] = 1

2E
x[|Bτ |2] < ∞. If we define

τρ = inf{t > 0 : |Bt| ≤ ρ} and τR = inf{t > 0 : |Bt| ≥ R}, then{
P x(τρ < τR) ln ρ+ P x(τρ > τR) lnR = ln |x|,
P x(τρ < τR) + P x(τρ > τR) = 1.

So P x(τρ < τR) = lnR−ln |x|
lnR−ln ρ . Hence P x(τ0 < ∞) = limR→∞ P x(τρ < τR) = limR→∞ limρ→0 P

x(τρ < τR) =

limR→∞ limρ→0
lnR−ln |x|
lnR−ln ρ = 0.

For the case x = 0, we have

P 0(∃ t > 0, Bt = 0)
= P 0(∃ ε > 0, τ0 ◦ θε <∞)
= P 0(∪ε>0, ε∈Q+{τ0 ◦ θε <∞})
= lim

ε→0
P 0(τ0 ◦ θε <∞)

= lim
ε→0

E0[PBε(τ0 <∞)]

= lim
ε→0

∫
e−

z2
2ε

√
2πε

P z(τ0 <∞)dz

= 0.

b)

Proof. B̃t =
(
−1 0
0 1

)
Bt and

(
−1 0
0 1

)
is orthogonal, so B̃ is also a Brownian motion.

c)

Proof. P 0(τD = 0) = limε→0 P
0(τD ≤ ε) ≥ limε→0 P

0(∃ t ∈ (0, ε], B(1)
t ≥ 0, B(2)

t = 0). Part a) implies

P 0(∃ t ∈ (0, ε], B(1)
t ≥ 0, B(2)

t = 0) + P 0(∃ t ∈ (0, ε], B(1)
t ≤ 0, B(2)

t = 0)

= P 0(∃ t ∈ (0, ε], B(2)
t = 0) + P 0(∃ t ∈ (0, ε], B(1)

t = 0, B(2)
t = 0)

= 1.

And part b) implies P 0(∃ t ∈ (0, ε], B(1)
t ≥ 0, B(2)

t = 0) = P 0(∃ t ∈ (0, ε], B(1)
t ≤ 0, B(2)

t = 0). So
P 0(∃ t ∈ (0, ε], B(1)

t ≥ 0, B(2)
t = 0) = 1

2 . Hence P 0(τD = 0) ≥ 1
2 . By Blumenthal’s 0-1 law, P 0(τD = 0) = 1,

i.e. 0 is a regular boundary point.

d)

Proof. P 0(τD = 0) ≤ P 0(∃ t > 0, Bt = 0) ≤ P 0(∃ t > 0, B(2)
t = B

(3)
t = 0) = 0. So 0 is an irregular

boundary point.

9.9. a)

Proof. Assume g has a local maximum at x ∈ G. Let U ⊂⊂ G be an open set that contains x, then
g(x) = Ex[g(XτU )] and g(x) ≥ g(XτU ) on {τU <∞}. When X is non-degenerate, P x(τU <∞) = 1. So we
must have g(x) = g(XτU ) a.s.. This implies g is locally a constant. Since G is connected, g is identically a
constant.

9.10.
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Proof. Consider the diffusion process Y that satisfies

dYt =
(
dt
dXt

)
=
(

dt
αXtdt+ βXtdBt

)
=
(

1
αXt

)
dt+

(
0
βXt

)
dBt.

Let τ = inf{t > 0 : Yt 6∈ (0, T )× (0,∞)}, then by Theorem 9.3.3,

f(t, x) = E(t,x)[e−ρτφ(Xτ )] + E(t,x)[
∫ τ

0

K(Xs)e−ρsds]

= E[e−ρ(T−t)φ(Xx
T−t)] + E[

∫ T−t

0

K(Xx
s )e−ρ(s+t)ds],

where Xx
t = xe(α− β

2

2 )t+βBt . Then it’s easy to calculate

f(t, x) = e−ρ(T−t)E[φ(Xx
T−t)] +

∫ T−t

0

e−ρ(s+t)E[K(Xx
s )]ds.

9.11. a)

Proof. First assume F is closed. Let {φn}n≥1 be a sequence of bounded continuous functions defined on ∂D
such that φn → 1F boundedly. This is possible due to Tietze extension theorem. Let hn(x) = Ex[φn(Bτ )].
Then by Theorem 9.2.14, hn ∈ C(D̄) and ∆hn(x) = 0 in D. So by Poisson formula, for z = reiθ ∈ D,

hn(z) =
1

2π

∫ 2π

0

Pr(t− θ)hn(eit)dt

Let n → ∞, hn(z) → Ex[1F (Bτ )] = P x(Bτ ∈ F ) by bounded convergence theorem, and RHS →
1

2π

∫ 2π

0
Pr(t− θ)1F (eit)dt by dominated convergence theorem. Hence

P z(Bτ ∈ F ) =
1

2π

∫ 2π

0

Pr(t− θ)1F (eit)dt

Then by π − λ theorem and the fact Borel σ-field is generated by closed sets, we conclude

P z(Bτ ∈ F ) =
1

2π

∫ 2π

0

Pr(t− θ)1F (eit)dt

for any Borel subset of ∂D.

b)

Proof. Let B be a BM starting at 0. By example 8.5.9, φ(Bt) is, after a change of time scale α(t) and under
the original probability measure P, a BM in the plane. ∀F ∈ B(R),

P (B exits D from ψ(F ))
= P (φ(B) exits upper half plane from F )
= P (φ(B)α(t) exits upper half plane from F )
= Probability of BM starting at i that exits from F

= µ(F )

So by part a), µ(F ) = 1
2π

∫ 2π

0
1ψ(F )(eit)dt = 1

2π

∫ 2π

0
1F (φ(eit))dt. This implies∫

R

f(ξ)dµ(ξ) =
1

2π

∫ 2π

0

f(φ(eit))dt =
1

2πi

∫
∂D

f(φ(z))
z

dz
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c)

Proof. By change-of-variable formula,∫
R

f(ξ)dµ(ξ) =
1
π

∫
∂H

f(ω)
dω

|ω − i|2
=

1
π

∫ ∞
−∞

f(x)
dx

x2 + 1

d)

Proof. Let g(z) = u+ vz, then g is a conformal mapping that maps i to u+ vi and keeps upper half plane
invariant. Use the harmonic measure on x-axis of a BM starting from i, and argue as above in part a)-c),
we can get the harmonic measure on x-axis of a BM starting from u+ iv.

9.12.

Proof. We consider the diffusion dYt =
(

dXt

q(Xt)dt

)
, then the generator of Y is Aφ(y1, y2) = Ly1φ(y) +

q(y1) ∂
∂y2

φ(y), for any φ ∈ C2
0 (Rn × R). Choose a sequence (Un)n≥1 of open sets so that Un ⊂⊂ D and

Un ↑ D. Define τn = inf{t > 0 : Yt 6∈ Un × (−n, n)}. Then for a bounded solution h, Dynkin’s formula
applied to h(y1)e−y2 (more precisely, to a C2

0 -function which coincides with h(y1)e−y2 on Un×(−n, n)) yields

Ey[h(Y (1)
τn∧n)e−Y

(2)
τn∧n ] = h(y1)e−y2 − Ey

[∫ τn∧n

0

g(Y (1)
s )e−Y

(2)
s ds

]
,

since A(h(y1)e−y2) = −g(y1)e−y2 . Let y2 = 0, we have

h(y1) = E(y1,0)[h(Y (1)
τn∧n)e−Y

(2)
τn∧n ] + E(y1,0)

[∫ τn∧n

0

g(Y (1)
s )e−Y

(2)
s ds

]
.

Note Y (2)
t = y2 +

∫ t
0
q(Xs)ds ≥ y2, let n→∞, by dominated convergence theorem, we have

h(y1) = E(y1,0)[h(Y (1)
τD )e−Y

(2)
τD ] + E(y1,0)

[∫ τD

0

g(Y (1)
s )e−Y

(2)
s ds

]
= E[e−

∫ τD
0 q(Xs)dsφ(Xy1

τD )] + E

[∫ τD

0

g(Xy1
s )e−

∫ s
0 q(X

y1
u )duds

]
.

Hence

h(x) = Ex[e−
∫ τD
0 q(Xs)dsφ(XτD )] + Ex

[∫ τD

0

g(Xs)e−
∫ s
0 q(Xu)duds

]
.

Remark: An important application of this result is when g = 0, φ = 1 and q is a constant, the Laplace
transform of first exit time Ex[e−qτD ] is the solution of{

Ah(x)− qh(x) = 0 on D

limx→y h(x) = 1 y ∈ ∂D.

In the one-dimensional case, the ODE can be solved by separation of variables and gives explicit formula for
Ex[e−qτD ]. For details, see Exercise 9.15 and Durrett [3], page 170.

9.13. a)
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Proof. w(x) solves the ODE {
µw′(x) + σ2

2 w
′′(x) = −g(x), a < x < b;

w(x) = φ(x), x = a or b.

The first equation gives w′′(x) + 2µ
σ2w

′(x) = − 2g(x)
σ2 . Multiply e

2µ
σ2 x on both sides, we get

(e
2µ
σ2 xw′(x))′ = −e

2µ
σ2 x

2g(x)
σ2

.

So w′(x) = C1e
− 2µ
σ2 x − e−

2µ
σ2 x

∫ x
a
e

2µ
σ2 ξ 2g(ξ)

σ2 dξ. Hence

w(x) = C2 −
σ2

2µ
C1e

− 2µ
σ2 x −

∫ x

a

e−
2µ
σ2 y

∫ y

a

e
2µ
σ2 ξ

2g(ξ)
σ2

dξdy.

By boundary condition, {
φ(a) = C2 − σ2

2µC1e
− 2µ
σ2 a

φ(b) = C2 − σ2

2µC1e
− 2µ
σ2 b −

∫ b
a
e−

2µ
σ2 y
∫ y
a
e

2µ
σ2 ξ 2g(ξ)

σ2 dξdy.
(2)

Let 2µ
σ2 = θ and solve the above equation, we have

C1 =
θ[φ(b)− φ(a)] + θ2

µ

∫ b
a

∫ y
a
eθ(ξ−y)g(ξ)dξdy

e−θa − e−θb
,

C2 = φ(a) +
C1

θ
e−θa.

b)

Proof.
∫ b
a
g(y)G(x, dy) = Ex[

∫ τD
0

g(Xt)dt] = w(x) in part a), when φ ≡ 0. In this case, we have

C1 =
θ2

µ(e−θa − e−θb)

∫ b

a

∫ y

a

eθ(ξ−y)g(ξ)dξdy

=
θ2

µ(e−θa − e−θb)

∫ b

a

eθξg(ξ)
∫ b

ξ

e−θydydξ

=
θ2

µ(e−θa − e−θb)

∫ b

a

eθξg(ξ)
e−θξ − e−θb

θ
dξ

=
∫ b

a

g(ξ)
θ

µ(e−θa − e−θb)
(1− eθ(ξ−b))dξ,

and

C2 =
∫ b

a

g(ξ)
e−θa

µ(e−θa − e−θb)
(1− eθ(ξ−b))dξ.
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So ∫ b

a

g(y)G(x, dy)

= C2 −
1
θ
C1e

−θx −
∫ x

a

∫ y

a

eθ(ξ−y) θ

µ
g(ξ)dξdy

=
1
θ
C1(e−θa − e−θx)−

∫ b

a

∫ b

a

1{a<y≤x}1{a<ξ≤y}eθ(ξ−y) θ

µ
g(ξ)dydξ

=
∫ b

a

g(ξ)
e−θa − e−θx

µ(e−θa − e−θb)
(1− eθ(ξ−b))dξ − θ

µ

∫ b

a

g(ξ)eθξ1{a<ξ≤x}

∫ b

a

1{ξ<y≤x}e−θydydξ

=
∫ b

a

g(ξ)
e−θa − e−θx

µ(e−θa − e−θb)
(1− eθ(ξ−b))dξ − θ

µ

∫ x

a

g(ξ)eθξ
e−θξ − e−θx

θ
dξ

=
∫ b

a

g(ξ)
[
e−θa − e−θx

µ(e−θa − e−θb)
(1− eθ(ξ−b))− 1− eθ(ξ−x)

µ
1{a<y≤x}

]
dξ.

Therefore

G(x, dy) =
(

e−θa − e−θx

µ(e−θa − e−θb)
(1− eθ(y−b))− 1− eθ(y−x)

µ
1{a<y≤x}

)
dy.

9.14.

Proof. By Corollary 9.1.2, w(x) = Ex[φ(XτD )] + Ex[
∫ τD

0
g(Xt)dt] solves the ODE{

rxw′(x) + 1
2α

2x2w′′(x) = −g(x)
w(a) = φ(a), w(b) = φ(b).

Choose g ≡ 0 and φ(a) = 0, φ(b) = 1, we have w(x) = P x(XτD = b). So it’s enough if we can solve the ODE
for general g and φ. Assume w(x) = h(lnx), then the ODE becomes (t = lnx){

1
2α

2h′′(t) + (r − 1
2α

2)h′(t) = −g(et)
w(a) = h(ln a) = φ(a), w(b) = h(ln b) = φ(b).

Let θ = 2r−α2

α2 , then the equation becomes h′′(t) + θh′(t) = − 2g(et)
α2 . So

h(t) = C2 −
C1e

−θt

θ
− 2
α2

∫ t

a

e−θy
∫ y

a

eθsg(es)dsdy,

φ(a) = h(ln a) = C2 −
C1a

−θ

θ
− 2
α2

∫ ln a

a

∫ y

a

eθ(s−y)g(es)dsdy,

and φ(b) = h(ln b) = C2 − C1b
−θ

θ − 2
α2

∫ ln b

a

∫ y
a
eθ(s−y)g(es)dsdy. So

φ(b)− φ(a) =
C1

θ
(a−θ − b−θ)− 2

α2

∫ ln b

ln a

∫ y

a

eθ(s−y)g(es)dsdy,

C1 =
θ

a−θ − b−θ

[
φ(b)− φ(a) +

2
α2

∫ ln b

ln a

∫ y

a

eθ(s−y)g(es)dsdy

]
,

and

C2 = φ(b) +
2
α2

∫ ln b

a

∫ y

a

eθ(s−y)g(es)dsdy +
b−θ

a−θ − b−θ

[
φ(b)− φ(a) +

2
α2

∫ ln b

ln a

∫ y

a

eθ(s−y)g(es)dsdy

]
.

In particular, P x(XτD = b) = h(lnx) = C2− C1
θ x
−θ = 1 + b−θ

a−θ−b−θ −
x−θθ

θ(a−θ−b−θ)
= a−θ−a−θ

a−θ−b−θ . (Compare with
Exercise 7.9.b).)
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9.16. a)

Proof. Consider the diffusion dYt =
(
dt
dXt

)
=
(

dt
rXtdt+ σXtdBt

)
=
(

1
rXt

)
dt+

(
0
σXt

)
dBt. Then Y has

generator Lf(t, x) = ∂
∂tf(t, x) + rx∂f∂x (t, x) + 1

2σ
2x2 ∂

2f
∂x2 (t, x) and the original Black-Scholes PDE becomes{

Lw − rw = 0 in D
w(T, x) = (x−K)+.

By the Feynman-Kac formula for boundary value problem (Exercise 9.12), we have

w(s, x) = E(s,x)[e−
∫ τD
0 rds(XτD −K)+] = Ex[e−r(T−s)(XT−s −K)+].

Another solution:

Proof. Set u(t, x) = w(T − t, x), then u satisfies the equation{
∂
∂tu(t, x) = rx ∂

∂xu(t, x) + 1
2σ

2x2 ∂2

∂x2u(t, x)− ru(t, x), (t, x)inD
u(0, x) = (x−K)+; x ≥ 0

This is reduced to Exercise 8.6, where we can apply Feynman-Kc formula.

b)

Proof.

w(0, x) = Ex[e−rT (XT −K)+] = e−rTE[(xe(r−σ2
2 )T+σBT −K)+]

= e−rT
∫ ∞
−∞

(xe(r−σ2
2 )T+σz −K)+ e−

z2
2T

√
2πT

dz

= e−rT
∫ ∞

lnK−ln x−(r−σ2
2 )T

σ

(xe(r−σ2
2 )T+σz −K)

e−
z2
2T

√
2πT

dz

=
∫ ∞

lnK−ln x−(r−σ2
2 )T

σ

xe−
1
2σ

2T+σze−
z2
2T

√
2πT

dz −Ke−rT
∫ ∞

lnK−ln x−(r−σ2
2 )T

σ

e−
z2
2T

√
2πT

dz

=
∫ ∞

lnK−ln x−(r−σ2
2 )T

σ

xe−
(z−σT )2

2T

√
2πT

dz −Ke−rT
∫ ∞

lnK−ln x−(r−σ2
2 )T

σ
√
T

e−
z2
2

√
2π

dz

=
∫ ∞

ln K
x
−rT
σ + 1

2σT

xe−
(z−σT )2

2T

√
2πT

dz −Ke−rTΦ(
rT + ln x

K

σ
√
T

− 1
2
σ
√
T )

=
∫ ∞

ln K
x
−rT

σ
√
T
− 1

2σ
√
T

xe−
z2
2

√
2π

dz −Ke−rTΦ(η − 1
2
σ
√
T )

= xΦ(η +
1
2
σ
√
T )−Ke−rTΦ(η − 1

2
σ
√
T ).

12.1 a)

29



Proof. Let θ be an arbitrage for the market {Xt}t∈[0,T ]. Then for the market {X̄t}t∈[0,T ]:
(1) θ is self-financing, i.e. dV̄ θt = θtdX̄t. This is (12.1.14).
(2) θ is admissible. This is clear by the fact V̄ θt = e−

∫ t
0 ρsdsV θt and ρ being bounded.

(3) θ is an arbitrage. This is clear by the fact V θt > 0 if and only if V̄ θt > 0.
So {X̄t}t∈[0,T ] has an arbitrage if {Xt}t∈[0,T ] has an arbitrage. Conversely, if we replace ρ with −ρ, we

can calculate X has an arbitrage from the assumption that X̄ has an aribitrage.

12.2

Proof. By Vt =
∑n
i=0 θiXi(t), we have dVt = θ · dXt. So θ is self-financing.

12.6 (e)

Proof. Arbitrage exists, and one hedging strategy could be θ = (0, B1 +B2, B1−B2 + 1−3B1+B2
5 , 1−3B1+B2

5 ).
The final value would then become B1(T )2 +B2(T )2.

12.10

Proof. Becasue we want to represent the contingent claim in terms of original BM B, the measure Q is the
same as P. Solving SDE dXt = αXtdt+ βXtdBt gives us Xt = X0e

(α− β
2

2 )t+βBt . So

Ey[h(XT−t)]
= Ey[XT−t]

= ye(α− β
2

2 )(T−t)e
β2

2 (T−t)

= yeα(T−t)

Hence φ = eα(T−t)βXt = βX0e
αT− β

2

2 t+βBt .

12.11 a)

Proof. According to (12.2.12), σ(t, ω) = σ, µ(t, ω) = m −X1(t). So u(t, ω) = 1
σ (m −X1(t) − ρX1(t)). By

(12.2.2), we should define Q by setting

dQ|Ft = e−
∫ t
0 usdBs−

1
2

∫ t
0 u

2
sdsdP

Under Q, B̃t = Bt + 1
σ

∫ t
0
(m−X1(s)− ρX1(s))ds is a BM. Then under Q,

dX1(t) = σdB̃t + ρX1(t)dt

So X1(T )e−ρT = X1(0) +
∫ T

0
σe−ρtdB̃t and EQ[ξ(T )F ] = EQ[e−ρTX1(T )] = x1.

b)

Proof. We use Theorem 12.3.5. From part a), φ(t, ω) = e−ρtσ. We therefore should choose θ1(t) such that
θ1(t)e−ρtσ = σe−ρt. So θ1 = 1 and θ0 can then be chosen as 0.
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A Probabilistic solutions of PDEs (based on [7])

1. Resolvent equation. Suppose X is a diffusion with generator A, and for α > 0, the resolvent operator Rα
is defined by

Rαg(x) = Ex[
∫ ∞

0

e−αtg(Xt)dt], g ∈ Cb(Rn).

Then we have
Rα(α−A)|C2

c (Rn) = id, (α−A)Rα|Cb(Rn) = id.

Note the former equation is a special case of resolvent equation (see, for example, [4] for the semigroup
theory involving resolvent equation), since C2

c (Rn) ⊂ D(A). But the latter is not necessarily a special case,
since we don’t necessarily have Cb(Rn) ⊂ B0(Rn).

2. Parabolic equation: heat equation via Kolmogorov’s backward equation (dPtf/dt = PtAf = APtf). If X
is a diffusion with generator A, then for f ∈ C2

c (Rn), Ex[f(Xt)] := E[f(Xx
t )] solves the initial value problem

of parabolic PDE {
∂u
∂t = Au, t > 0, x ∈ Rn

u(0, x) = f(x); x ∈ Rn.

Remark:
(i) If X satisfies dXt = µ(Xt)dt + σdBt, one way to explicitly calculate Ex[f(Xt)] without solving the

SDE is via Girsanov’s theorem (cf. [7], Exercise 8.15).

(ii) If we let v(t, x) = u(T − t, x), then on (0, T ), v satisfies the equation{
∂v
∂t +Av = 0, 0 < t < T, x ∈ Rn

v(T, x) = f(x); x ∈ Rn.

31



3. Parabolic equation: Schrödinger equation via Feynman-Kac formula. Suppose X is a diffusion with
generator A. If f ∈ C2

c (Rn), q ∈ C(Rn) and q is lower bounded, then

v(t, x) = Ex
[
e−

∫ t
0 q(Xs)dsf(Xt)

]
solves the initial value problem of parabolic PDE{

∂v
∂t = Av − qv, t > 0, x ∈ Rn

v(0, x) = f(x); x ∈ Rn.

Remark: (i) The Feynman-Kac formula can be seen as a special case of the heat equation. If we kill X
according to a terminal time τ such that supx | 1tP

x(τ ≤ t) − q(x)| → 0 as t ↓ 0, then the killed process
X̃t = Xt1{t<τ} + ∂1{t≥τ} has infinitesimal generator A− q and transition semigroup Stf(x) = Ex[f(X̃t)] =
Ex[e−

∫ t
0 q(Xs)dsf(Xt)] = E[e−

∫ t
0 q(X

x
s )dsf(Xx

t )].
(ii) The Feyman-Kac formula also helps to solve Black-Scholes PDE after we replace t by T − t and

transform the PDE into the form ∂u
∂t = Au− ρt.

4. Elliptic equation: the combined Dirichlet-Poisson problem via Dynkin’s formula. Suppose X is a diffusion
with generator A. Set τD = inf{t > 0 : Xt 6∈ D}, then Ex[φ(XτD )1{τD<∞}] +Ex[

∫ τD
0

g(Xt)dt] is a candidate
for the solution of the equation {

Aω = −g in D
limx→y

x∈D
ω(x) = φ(y) for all y ∈ ∂D.

Remark:
(i) Connection with parabolic equations. The parabolic operator ∂

∂t + A (or − ∂
∂t + A) is the generator

of the diffusion Yt = (t,Xt) (or Yt = (−t,Xt)), where X has generator A. So, if we let D = (0, T ) × Rn
and regard f as a function defined on ∂D = {T}×Rn, then Et,x[f(YτD )] = E[f(Xx

T−t)] solves the parabolic
equation {

∂v
∂t +Av = 0, 0 < t < T, x ∈ Rn

v(T, x) = f(x); x ∈ Rn.

By setting u(t, x) = v(T − t, x) = E[f(Xx
t )], u solves the heat equation on (0, T )×Rn. Since T is arbitrary,

u is a solution on (0,∞)×Rn. This reproduces the result for heat equation via the Kolmogorov’s backward
equation. More generally, this method can solve the generalized heat equation{

∂u
∂t +Au = −g, 0 < t < T, x ∈ Rn

u(T, x) = f(x); x ∈ Rn.
or equivalently,

{
−∂u∂t +Au = −g, t > 0, x ∈ Rn

u(0, x) = f(x); x ∈ Rn.

Also important is that we can use either (t,Xt) or (T − t,Xt). The effect of the latter is the combined effects
of the first and the transformation v(t, x)→ u(t, x) = v(T − t, x).

(ii) A Feynman-Kac formula for boundary value problem is

Ex
[∫ τD

0

e−
∫ t
0 q(Xs)dsg(Xt)dt+ e−

∫ τD
0 q(Xs)dsφ(XτD )

]
.

For details, see [7], Exercise 9.12.

(iii) Basic steps of solution.
(a) Formulation of stochastic Dirichlet/Poisson problem: A is replaced by the characteristic operator

A and the boundary condition is replaced by a pathwise one.
(b) Formulation of generalized Dirichlet/Poisson problem: boundary condition only holds for regular

points.
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(c) Relating stochastic problems to original problems.

(iiii) Summary of results.
(a) If φ is just bounded measurable, then Ex[φ(XτD )] solves the stochastic Dirichlet problem. If in

addition, L is uniformly elliptic and φ is bounded continuous, Ex[φ(XτD )] solves the generalized Dirichlet
problem.

(b) If g is continuous with Ex[
∫ τD

0
|g(Xs)|ds] < ∞ for all x ∈ D, Ex[

∫ τD
0

g(Xs)ds] solves the
stochastic Poisson problem. If in addition, τD < ∞ a.s. Qx for all x, then Ex[

∫ τD
0

g(Xs)ds] solves the
original Poisson problem.

(c) Put together, conditions for the existence of the original problem are: φ ∈ Cb(∂D), g ∈ C(D) with
Ex[
∫ τD

0
|g(Xs)|ds] < ∞ for all x ∈ D, and τD < ∞ a.s. Qx for all x. Then Ex[φ(XτD )] + Ex[

∫ τD
0

g(Xs)ds]
solves the original problem.

(v) If g ∈ C(D) with Ex[
∫ τD

0
|g(Xs)|ds] < ∞ for all x ∈ D, then (A − α)Rαg = −g for α ≥ 0. Here

Rαg(x) = Ex[
∫ τD

0
e−αsg(Xs)ds].

If Ex[τK ] <∞ (τK := inf{t > 0 : Xt 6∈ K}) for all compacts K ⊂ D and all x ∈ D, then −Rα (α ≥ 0) is
the inverse of characteristic operator A on C2

c (D):

(A− α)(Rαf) = Rα(A− α)f = −f, ∀f ∈ C2
c (D).

Note when D = Rn, we get back to the resolvent equation in 1.

B Application of diffusions to obtaining formulas

The following is a table of computation tricks used to obtain formulas:
BM w/o drift general diffusion, esp. BM with drift

Distribution of first passage time reflection principle Girsanovs theorme
Exit probability P (τa < τb), P (τb < τa) BM as a martingale Dynkins formula / boundary value problems

Expectation of exit time W 2
t − t is a martingale Dynkins formula / boundary value problems

Laplace transform of first passage time exponential martingale Girsanovs theorem
Laplace transform of first exit time exponential martingale FK formula for boundary value problems
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