Stochastic Differential Equations, Sixth Edition

Solution of Exercise Problems

Yan Zeng
July 16, 2006

This is a solution manual for the SDE book by @ksendal, Stochastic Differential Equations, Sizth Edition.
It is complementary to the books own solution, and can be downloaded at www.math.fsu.edu/zeng. If you
have any comments or find any typos/errors, please email me at yz44@cornell.edu.

This version omits the problems from the chapters on applications, namely, Chapter 6, 10, 11 and 12. I
hope I will find time at some point to work out these problems.
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2.11.
Proof. Prove that the increments are independent and stationary, with Gaussian distribution. Note for
Gaussian random variables, uncorrelatedness=independence. O
2.15.
Proof. Since By — By L Fs :=0(By,:u<s), U(B; — Bs) L Fs. Note U(B; — By) 4 N(0,t — s). O
3.2.



Proof. WLOG, we assume t = 1, then
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By Problem EP1-1 and the continuity of Brownian motion.

I< [Z(Bj/n - B(j_1)/n)2] 112]a<xn |Bj/n — Bj—1)/nl = 0 a.s.
j=1 <is<

To argue II — 3[01 B2dB; as n — oo, it suffices to show E[fol(Bt2 - Bt(”))zdt] — 0, where Bt(n) _
=1 B?jfl)/nl{(j—l)/ndéj/n}' Indeed,
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Hence E| fo (B, — B{™)2a4] = > 221 — 0 as n— oo.
To argue III — 3 fo B.dt as n — oo, it suffices to prove
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By looking at a subsequence, we only need to prove the L2-convergence. Indeed,
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as n — o0o. This completes our proof.

3.9.

Proof. We first note that
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The first term converges in L?(P) to fOT B.dB,. For the second term, we note
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3.10.

Proof. According to the result of Exercise 3.9., it suffices to show

th w)AB; =Y f(t},w)AB;|| — 0.
j

Indeed, note

E[|>f(tj,w)AB; =Y f(t;,w)AB;

J J
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3.11.
Proof. Assume W is continuous, then by bounded convergence theorem, limg_.; E[(Wt(N) - WS(N))Q] = 0.

Since Wy and W; are independent and identically distributed, so are WS(N) and Wt(N). Hence
(W™ = Wi = BN = 2B W W] + BIOVEY)?) = 2B((W)) = 2B WP

Since the RHS:2Var(Wt(N)) is independent of s, we must have RHS=0, i.e. Wt(N) = E[Wt(N)] a.s. Let
N — oo and apply dominated convergence theorem to E [Wt(N)], we get Wy = 0. Therefore W. = 0. O
3.18.

Proof. If t > s, then

M; _ o(Bi—Bs)— Lo (t—s) _ Ele?P]
E|:M5]:S:|_E|:e 2 ‘-7:8 —W—l
The second equality is due to the fact By — By is independent of F. O

4.4.

Proof. For part a), set g(t,x) = e and use Theorem 4.12. For part b), it comes from the fundamental
property of It6 integral, i.e. It6 integral preserves martingale property for integrands in V.

Comments: The power of It6 formula is that it gives martingales, which vanish under expectation. [J

4.5.



Proof.

t t

1

BF = / kB*1laB, + 5k:(k: - 1)/ Bf2ds
0 0

i) = [ a(oias

This gives E[B}] and E[BY]. For part b), prove by induction.

Therefore,

O
4.6. (b)
Proof. Apply Theorem 4.12 with g(¢,x) = €* and X; = ct + 2?21 a;Bj. Note 2?21 a;Bj is a BM, up to a
constant coefficient. O
4.7. (a)
Proof. v=1,xn. O

(b)

Proof. Use integration by parts formula (Exercise 4.3.), we have
t t t t
X2 =X+ 2/ XodX + [ |vs|?ds = X3 + 2/ X,wsdBs + | |vs|?ds.
0 0 0 0

So M; = X2 + 2f(;5 XsvsdBs. Let C be a bound for |v|, then

t t t
EU |sts|2ds} < C’FE [/ XS|2ds} :02/ E
0 0 0
t s 442
— 02/ E[/ |vu|2du}ds§0t .
0 0 2

So M; is a martingale. O

2
ds

/ v, dBy,
0

4.12.

Proof. Let Y; = fo s,w)ds. Then Y is a continuous {F; (m )} martingale with finite variation. On one hand,

= A%elknio tz<t Vi — Vi < h:go (total variation of Y on [0, ¢]) - max Yo — Yi, | = 0.
k>

On the other hand, integration by parts formula yields
t
Y72 = 2/ Y,dYs + (Y);.
0

So Y, is a local martingale. If (T},), is a localizing sequence of stopping times, by Fatou’s lemma,

E[Y?) < lim E[Y2q,] = E[Y7] = 0.

So Y. = 0. Take derivative, we conclude u = 0. O
4.16. (a)
Proof. Use Jensen’s inequality for conditional expectations. O]

(b)



Proof. (i) Y =2 [ BydB,. So My =T +2 [} B,dB,.

(ii) B3 = [ 3B2dB, + 3 [, Byds =3 [, B2dB, + 3(BrT — [, sdB). So My = 3 [ B2dB, + 3TB; —
3 [) sdBy = [} 3(B2 + (T — s,dB,.

(iii)M; = Elexp(cBr)|F;] = Elexp(cBr — 30°T)|F] exp(30°T) = Z, exp(30°T), where Z; = exp(c B, —
%azt). Since Z solves the SDE dZ; = Z;odB;, we have

! 1 1 K 1
M, =(1+ / Zs0dBy) exp(502T) = exp(iazT) + / oexp(oBs + ~*(T — 5))dBs.
0 0

2
O
5.1. (ii)
Proof. Set f(t,xz) = x/(1+t), then by It6’s formula, we have
=B =g ljtt)Zdt - 1dftt - _1)f:tdt * 1dftt
O

(iii)

Proof. By I1t&’s formula, dX; = cos BydB; — % sin Bdt. So X, = fot cos BydB, — %fg Xsds. Let 7 = inf{s >
0:B; ¢[-%,5]} Then

tAT 1 tAT
Xine = / cos BsdBy; — — Xds
0 2 Jo

t
= / cos Bsl{s<rydBs —7/ Xqds
tAT
/ \/1 — sin? B, ls<r)dBs — Xds
tA
/ \/1—X§st—f/ Xds.
0 2 Jo

Sofort <7, X, =[5 \/T— X2dB, — 1 [; X,ds. O

(iv)
Proof. dX} = dt is obvious. Set f(t,z) = ez, then

dX? = df (t, B,) = e'Bydt + e'dB, = X2dt + e'dB,

O
5.3.
Proof. Apply It6’s formula to e~"t X;. O
5.5. (a)
Proof. d(e ™™ X;) = —pue M Xy dt + e Md Xy = ce *dB;. So X; = eM Xg + fg el =) qB,. O
(b)



Proof. E[X;] = e"E[X,] and

t t
X7 = e X§ + e / e "dB,)? 4 20 X, / e "*dB,.
0 0

So
t
E[X?] = e*ME[X3]+ 0262“t/ e 23 (s
0
since f(f e "*dBy is a martingale vanishing at time 0
2ut 2 2 2ut e —1
= E[X,
e [X5]+o%e o
2pt 1
—  e2mtpIx2 2€ _
(& [ 0] + o 2M
So Var[X;] = E[X?] — (E[X))? = e*Var[Xo] + 025 =L, O
5.6.

Proof. We find the integrating factor F} by the follows. Suppose F; satisfies the SDE dF; = 0.dt + v:dBy.
Then

d(F;Y;) = FdY,+YidF, + dY,dF,
Ft (’f’dt + OL}/tdBt) + }/f(gtdt + ’)/tdBt) + OL")/thdt
(’I"Ft + GtY} + Oé’yt}/t)dt =+ (OéFth + ’ytY;g)dBt (1)

Solve the equation system

{ 0 +ay =0
aFy +v =0,
we get v, = —aF, and 0, = o®F,. So dF, = o?F,dt — aF,dB,. To find F,, set Z, = e_O‘ZtFt, then
dZ, = —aze_o‘thtdt + e_aztdFt = e_azt(—a)FtdBt = —aZ,dB;.
Hence Z; = Zyexp(—aB; — a?t/2). So
F, = e tFpe @Bi=307t — fe—oBitsa’t

Choose Fy = 1 and plug it back into equation (1), we have d(F;Y:) = rFidt. So

1.2

¢ t
Y, = Ft—l(FOYO _|_7=/ F,ds) = Yoeo‘B"_%o‘zt +7"/ e(Bi=By) =502 (t=s) go
0 0

5.7. (a)
Proof. d(e'X;) = e'(Xydt + dX;) = e'(mdt + odB;). So
t

Xi=e'Xog+m(l—e )+ ae*t/ e°dB;.
0



Proof. E[X;] =e¢ 'E[Xo] +m(l —et) and
E[X?] = Elle'Xo+m(l—e )]+ JQe_QtE[/t e ds)
0
= e ?E[X2] +2m(1 — e e ' E[Xo] + m2(1 —e ) + %O’Q(l —e 2,

Hence Var[X,] = E[X?] — (E[X4])? = e *'Var[Xo] + 02(1 — e72"). O
5.9.
Proof. Let b(t,z) =log(1 + 2?) and o(t,z) = 1z>032, then

[b(t, 2)| + |o(t, )| < log(1 + 2?) + ||

Note log(1 + x2)/|x| is continuous on R — {0}, has limit 0 as z — 0 and # — oco. So it’s bounded on R.
Therefore, there exists a constant C', such that

b(t, )| + |o(t, 2)| < C(1+ [x])

Also,

bt.2) = bt + ot ) — 0 (t0)| < o

|z =yl + (1017 — Liy>0} Yl
for some & between x and y. So
[b(t, ) = b(t, y)| + |o(t, 2) —o(t,y)| < |z —y[+ & —y|
Conditions in Theorem 5.2.1 are satisfied and we have existence and uniqueness of a strong solution. O
5.10.

Proof. Xy = Z + fg b(s, Xs)ds + fg o(s,Xs)dBs. Since Jensen’s inequality implies (a1 + <+ + ap)P <
nP Ll +---+aP) (p>1,a1, -+ ,a, >0), we have

t 2 t 2
E[1X* < 3 (E[|Z|2]+E / b(s,Xs)ds| | + F / o(s, X,)dB, )
0 0
t t
< 3 (BlZP + B o X Pas)+ B[ lo(s,X)Pas])
0 0
t t
< B(EZP + B[ (U 1XPds] + B[ (14 X))
0 0
t
— 3(BIZP)+2C2B [ (14 |X.])ds)
0
t
< 3(EIIZP)+4CEL [ (14 |X.)as)
0
t
< 3E[|Z|}] +12C*T + 1202/ E[|X,|?)ds
0
t
= K +K2/ EHXS‘Q]dSv
0
where K| = 3E[|Z|?] + 12C?T and K, = 12C2. By Gronwall’s inequality, E[|X;|?] < K;ef?t. O

5.11.



Proof. First, we check by integration-by-parts formula,

t 4B, B Y,
dyt:<_a+b_/ d )dt—i—(l—t)d e _bo Lt +dp,
0

1-— 1—t 1-—
Set Xy =(1—-t¢ ft dBS , then X; is centered Gaussian, with variance

BN = (1P [ i = -n-0-

So X; converges in L? to 0 as t — 1. Since X; is continuous a.s. for ¢ € [0,1), we conclude 0 is the unique

a.s. limit of X; as t — 1. I
5.14. (i)
Proof.

Az, = du(Bi(t), Ba(t)) + iv(Bi(t), Ba(t)))

— Gu- (dBy(t), dBa(t)) + %Audt +i v (dBi(t), dBa(t)) + %Avdt
= (VUi o) @By, dBD)
= SUB)ABA() — 57 (BB (1) +i( 57 (BB (1) + 9 (B()dBy(1)

ou ov ov . Ou
= QB+ BB + (2 i T B(1))aBs )

— F(B(1))dB(1).

(i)
Proof. By result of (i), we have de®B(®) = qe*BMdB(t). So Z; = e*B® 4 Z; solves the complex SDE
dZ; = aZ,dB(t). 0

5.15.

Proof. The determmlstlc analog of this SDE is a Bernoulh equation 7 dy’ = rKy; —ry?. The correct substitu-

tion is to multiply —vy, 2 on both sides and set z; = yt . Then we’ll have a linear equation dz; = —rKz; + 7.
Similarly, we multiply —X, 2 on both sides of the SDE and set Z; = X, ! Then

dXt TKdt dBt
= rdt — B—2
e X, + B
and
dX, dX,-dX 1
dZ, = *)T?t + % = —rKZ,dt + rdt — 8Z,dB, + ﬁﬂzdet =rdt — rKZ,dt + > Z,dt — 3Z,dB,.
t t t

Define Y; = e(TK_ﬁz)tZt, then
dY, = K= a7z, 4 (r K — B2 Zydt) = e "EB) (rdt — BZ,dBy) = re"KP)qt — BY,dB,.

Now we imitate the solution of Exercise 5.6. Consider an integrating factor V¢, such that d/Ny = 0,dt 4+ v, dB;
and

d(Y:N;) = N,dY; + Y,dNy + dNy - dY, = Nre"K =000t — BN, Y,dB, + Yi6,dt + Yi1dB; — By, Yedt.



Solve the equation

{ 0 = By
ve = BNy,
we get N, = B2N,dt + BN;dB;. So N, = NyePBi+36°t and
d(Y,N;) = Nyre"E=00tqt = NorerK=309408: gy,
Choose Ny = 1, we have N, Y, =Y, + fot re(TK—g)S‘WBS ds with Yy = Zy = Xo_l, So

e(rK=B2)t N\, e(rK—38)t+8B,

Xy = 77t = KAty 1 = :
t t Y, +f0t re(rK—3%8%)s+BBs qg -1 +f()t re(rK—%5%)s+6B. 4

5.15. (Another solution)

Proof. We can also use the method in Exercise 5.16. Then f(t,z) = rKz — rz? and c¢(t) = 3. So F; =
e BB+t and Y, satisfies
dY; = Fy(rKF7'Y, — rF72Y2)dt.

Divide —Y;? on both sides, we have

So dY, ' =~V 2dY; = (—rKY; ' +rF7Y)dt, and
ey, = M e KY, 4 Y ) = e R F .
Hence e K'Y, =Y, + rfot e KseBBs=38% 0 and

erKt e(rK—%ﬁZ)tJrﬁBt

Yol f) ePBaA K =365 g Ty 7 [y erK=30%)s+0Bs g

Xe=F 1Y, = s

5.16. (a) and (b)
Proof. Suppose F; is a process satisfying the SDE dF; = 0.dt + v;d B¢, then

d(FtXt) = Ft(f(t, Xt)dt + C(t)XtdBt) + thtdt + Xt’}/tdBt + C(t)’thtdt
= (Fuf(t, Xe) + c(t) e Xs + Xiebp)dt + (c(t) Fe Xy + 72 X )d By

Solve the equation

c(t)y+6:=0
c(t)Fy +v =0,

we have

v = —c(t)F}
{9t = Cg(t)F(t)

So dFy = c2(t)Fidt — c(t)FydB;. Hence Fy = Fyez Jo *(s)ds—[5 e(s)dBs  Choose Fy = 1, we get desired
integrating factor F} and d(F;X;) = Fi f(t, X;)dt. O

10



(c)
Proof. In this case, f(t,z) = % and c(t) = a. So F; satisfies F; = e~@Bi+30%t and Y, satisfies dY; =
F; - F,lly dt = F2Y,'dt. Since dY? = 2Y,dY; + dY, - dY, = 2F2dt = 2e 2B+t we have Y2 =
2 [1 e~2eBote®sqs 1 V2 where Yo = FyXo = Xo = 2. So

t
1,2
X; = P2 t\/$2 —1—2/ e—2aBstats g,
0

(d)
Proof. f(t,z) =" and c¢(t) = a. So F; = e~*B++30°t and Y, satisfies the SDE
dY; = F(F7YY,)dt = F} Y[ dt.

Note dY;'™7 = (1 — )Y, 7dY; = (1 —~)F} 7dt, we conclude Y;'™7 = Y, ™7 + (1 — 7) fot Fl77ds with
YE):F()XO:XO:LE. So

o?(1-v)

t
Y= e“B‘_%azt(xl_'y +(1- 'y)/ e~ (=1 Bst+ "5 Sds)ﬁ,
0

5.17.
Proof. Assume A # 0 and define w(t) = fot v(s)ds, then w'(t) < C + Aw(t) and

%(e‘Atw(t)) = e MW/ (1) — Aw(t)) < Ce™ At

So e tw(t) —w(0) < S(1—e 1), ie. w(t) < S(eA—1). Sov(t) =w'(t) < C+A - S(eM—1)=Cett. O
5.18. (a)
Proof. Let Y; = log Xy, then

dX, (dX;)?
dy, = —* -
TX, 2x?

o2 X2dt
2X7?

= k(a—Yy)dt + odB; —

1
= (ko — §a2)dt — kY dt + odB;.

So
1
d(e"™Y;) = kY;ettdt + e"'dY; = "' [(ka — 502)dt + odBy]

and e*tY; — Yy = (ko — %UQ)EM_l + afot e"*dB;. Therefore

KR

2

¢
X; = exp{e " logx + (o — ;T—)(l —e ") 4 067’”/ €™ dBs}.
r 0

(b)
Proof. E[X;] = exp{e *!log :er(af%)(lfe*m)}E[exp{oe*’“ fot e"$dBs}]. Note fot e"*dB, ~ N(0, £2=1),

7 2k
50 t 2kt 2 2t
_ 1 5 o e —1 o?(1 — e =)
Kt Nsng — -2 =2kt —_ )
Elexp{oe /0 e s}] = exp { 50°¢€ P exp i

11



5.19.

Proof. We follow the hint.

T
P / ‘b(SJ”S(K)) —b(s, YY) ds > 2’“]
0
T
< P / D’YS(K) —YS(K*U‘ds > 2K1]
0
T 2
< 92K+2p </ D‘YS(K) _YS(K—l)‘ds>
0
T 2
< 92K+2p D2/ YS(K) _YS(K—1)’ dsT
0
T 2
< 22K+2p27E / ‘YS(K) _YS(K—l)‘ ds
0
T
< D?T2*K+2 @ds
, K!
_ DPT2RRRAY ke
(K +1)!
t
P{ sup / (g(s,Y;K)) —o—(s,Y;K—l))) st‘ > 2-K—1}
o<t<T |Jo
[ ,t 2
< PK2p / (o5, Y,5) — (s, ¥ <0)) aB,
0
- )
< 205 | [ (066, v19) = o5, v50)) ]
LJo
r rt
S 22K+2E D2|Y9(K) o Yg(K1)2d5:|
LJo
< 92K+2p)2 TAé(tht
- o Kl
L PRRDaAR
(K +1)! ’
So 2K+2 K 2K+2 YK (A5T)+1
2 2 T
Pl sup [V ETY _yE) 5 9o-K) < p2p 2 pK+1 | )2 2 TK+1<377
[ogth‘ ¢ el I= (K+1)! (K +1)! - (K +1)!
where Ay = 4(As + 1)(D? 4+ 1)(T +1). O

7.2. Remark: When an Ito diffusion is explicitly given, it’s usually straightforward to find its infinitesimal
generator, by Theorem 7.3.3. The converse is not so trivial, as we're faced with double difficulties: first, the
desired n-dimensional It6 diffusion dX; = b(X;)dt + o(X;)dB; involves an m-dimensional BM B;, where m
is unknown a priori; second, even if m can be determined, we only know oo’ which is the product of an
n x m and an m x n matrix. In general, it’s hard to find ¢ according to oo’ This suggests maybe there’s
more than one diffusion that has the given generator. Indeed, when restricted to C3 (R, ), BM, BM killed
at 0 and reflected BM all have Laplacian operator as generator. What differentiate them is the domain of
generators: domain is part of the definition of a generator!

12



With the above theoretical background, it should be OK if we find more than one It6 diffusion process
with given generator. A basic way to find an It6 diffusion with given generator can be trial-and-error. To
tackle the first problem, we try m = 1, m = 2, - --. To tackle the second problem, note oo’ is symmetric, so
we can write oo’ as AM AT where M is the diagonalization of oo’ and then set 0 = AM'/2. In general, to
deal directly with o”'o instead of o, we should use the martingale problem approach of Stoock and Varadhan.
See the preface of their classical book for details.

a)

Proof. dX; = dt + \/2dB;. O
b)

Proof.

! @;Eg) - (cXi(t)) dt + (a Xz (t)> dB;.

c)

2
Proof. oo™ = (1 T x1> VIf
X 1

Xo(t 92X, (t u
X5 = og 2 2 d b ”
d< Eti) <1 <1+X2<t(>)+x2<t>>> ”()dB
a® ab

T .
then go* has the form ab b2

), which is impossible since 2% # (1 + %) - 1. So we try 2-dim. BM as the

driving process. Linear algebra yields oo’ = ((1) x;) <xl (1)) So we can choose
1

= (log(l + ?{?(Qt()tzr X%@))) e <(1) Xll(t)) (35;8) '

7.3.

Proof. Set FX = 0(Xs:s <t)and FP = o(B;s : s < t). Since o(X;) = o(B;), we have, for any bounded
Borel function f(z),

E[f(Xe4)|F] = E[f (wectF9TeBues)| 7B = BB [f(zetToTeB)] € 0(By) = 0(Xy).
So E[f(X14s)|FX] = E[f(Xp4s) | X4].

7.4. a)

Proof. Choose b € R, so that 0 < & < b. Define 79 = inf{¢t > 0: B, = 0}, 7, = inf{t > 0 : B; = b}
and 19, = 79 A Tp. Clearly, limy_, oo 7, = 00 a.s. by the continuity of Brownian motion. Consequently,
{r0 <7} T {70 < o0} as b T co. Note (B? — t);>0 is a martingale, by Doob’s optional stopping theorem, we
have E*[B3,, .1 = E*[t A 7o5]. Apply bounded convergence theorem to the LHS and monotone convergence
theorem to the RHS, we get E*[r;] = E¥[B2 ] < oo. In particular, 7o, < oo a.s. Moreover, by considering
the martingale (B;);>o and similar argument, we have E*[B,,] = E”[By] = x. This leads to the equation

PPt <m) 04+ P*(1p>7p) b=z
Py < 1) + P*(10 > 1) = 1.

Solving it gives P*(1g < 1,) = 1 — £. So P*(19 < 00) = limp oo P*(19 < 1) = 1.
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b)

Proof. E®[1] = limp_,c0 E*[10p] = limp_,00 E* [BEOb] = limy_ oo b2 - £ = oo. O

Remark: (1) Another easy proof is based on the following result, which can be proved independently
and via elementary method: let W = (W,);>0 be a Wiener process, and T be a stopping time such that
E[T] < co. Then E[Wyr] =0 and E[W2] = E[T] ([6]).

(2) The solution in the book is not quite right, since Dynkin’s formula assumes E*[Tx] < oo, which needs
proof in this problem.

7.5.

Proof. The hint is detailed enough. But if we want to be really rigorous, note Theorem 7.4.1. (Dynkin’s
formula) studies Itd diffusions, not Itd processes, to which standard form semi-group theory (in particular,
the notion of generator) doesn’t apply. So we start from scratch, and re-deduce Dynkin’s formula for It
processes.

First of all, we note b(t,x), o(t,z) are bounded in a bounded domain of z, uniformly in ¢. This suffices
to give us martingales, not just local martingales. Indeed, It6’s formula says

X ()

= |X(0)) + /sz )dX;( /ZdX
|2+22/X (s, X (s ds+QZ/X $)ai(s, X (s))dB;( +Z/ o5i(s, Xs)d

Let 7 =t A 7g where 7g = inf{t > 0: |X;| > R}. Then by previous remark on the boundedness of ¢ and b,
fOtMR Xi(s)oi;(s,X(s))dB;(s) is a martingale. Take expectation, we get

BlX ()]
—i—ZZE/X (s, X (s ds—i—Z/E“sX ))]ds

BIXO))+ 20 S [ 1K1+ XD+ [ GBI+ ()

IN

Let R — oo and use Fatou’s Lemma, we have
BIX(t)]]
BXO)F]+20 3 B X @)1+ 1X()ds] + € [ B+ X ()P

< E(X(O)P)+ K ; (1+ E[IX(s)[*])ds,

IN

for some K dependent on C only. To apply Gronwall’s inequality, note for v(t) = 1 + E[| X (t)|?], we have
v(t) <v(0) + Kfot v(s)ds. So v(t) < v(0)eX?, which is the desired inequality.

Remark: Compared with Exercise 5.10, the power of this problem’s method comes from application of
1t6 formula, or more precisely, martingale theory, while Exercise 5.10 only resorts to Holder inequality. [

7.7. a)

Proof. Let U be an orthogonal matrix, then B’ = U - B is again a Brownian motion. For any G € 9D,
p5(G) = P*(By, € G) = P*(U-B;, € U-G) = P*(B.,, € U-G) = p}(U-G). So uj is rotation

invariant. O
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b)

Proof.
u(z) = E"[¢(Br,)] = E*[E*[¢(Br, )| Brpll = E*[E¥[¢(Bry, 007y, )|Brp]]
= EIE R 6(Bn )| = BlulBry)) = [ ulwblds) = [ oty
oD oD
O

c)
Proof. See, for example, Evans: Partial Differential Equations, page 26. O
7.8. a)
Proof. {m Am <t} ={m <t}U{m <t} €N;. Andsince {r; >t} ={n <t} eN,{nVvnr>t}={n >
thu{m >t} e M. O

b)
Proof. {T <t} =Uy,{m <t} €N O

c)
Proof. By b) and the hint, it suffices to show for any open set G, 7¢ = inf{t > 0: X; ¢ G} is an M;-stopping
time. This is Example 7.2.2. O
7.9. a)
Proof. By Theorem 7.3.3, A restricted to C3(R) is rz-£ + azi,mz %. For f(z) =27, Af can be calculated by
definition. Indeed, X; = zer=5)+aB and B [f(X)] = 2= TN, G0

il 6.0 R G N SR

So f € Dy and Af(z) :(r’y+%2’y(’yfl))x7. O

b)

Proof. We choose p such that 0 < p < x < R. We choose fy € C2(R) such that fo = f on (p, R).
Define 7, py = inf{t > 0 : X; € (p,R)}. Then by Dynkin’s formula, and the fact Afy(z) = Af(z) =

Mz (r + 0‘72(71 —1))=0on (p,R), we get
E*[fo(Xr, pynk)] = fol)

The condition r < %2 implies X; — 0 a.s. ast — 0. So 7(, g) < o© a.s.. Let k | oo, by bounded convergence
theorem and the fact 7, r)y < oo, we conclude

fo(p)(1 = p(p)) + fo(R)p(p) = fo(x)
where p(p) = P*{X; exits (p, R) by hitting R first}. Then

7 — p%

PP) =

Let p | 0, we get the desired result. O

)
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Proof. We consider p > 0 such that p < x < R. 7(, ) is the first exit time of X from (p, R). Choose
fo € C2(R) such that fo = f on (p,R). By Dynkin’s formula with f(z) = logz and the fact Afo(x) =
Af(z)=r— %2 for x € (p, R), we get

2

B [fo(Xr mynt)] = fo@) + (r = ) B [r(, 5 A K

Since r > %2, Xi — o0 as. ast — 00. S0 7, p) < 0 a.s.. Let kT oo, we get

fo(R)p(p) + folp)(1 — p(p)) — fo(x)

a2
T

E*[1(,,r)] =

where p(p) = P*(X; exits (p, R) by hitting R first). To get the desired formula, we only need to show
lim, o p(p) = 1 and lim,_, log p(1—p(p)) = 0. This is trivial to see once we note by our previous calculation

in part b), . 5
€T 1 _p 1

p(p) - R — p’Yl

7.10. a)

Proof. E®[X7|F]) = EX¢[Xr_,]. By Exercise 5.10. or 7.5., fot XsdB; is a martingale. So E*[X;] = x +
rfot E®[X;]|ds. Set E*[X;] = v(t), we get v(t) = = + rfotv(s)ds or equivalently, the initial value problem

U/(t) = T’U(t) _ ort i _ r(T—t)
{ o(0) =2 So v(t) = ze™. Hence E*[Xr|F:] = Xie . O
b)
Proof. Since M; is a martingale, E*[X7|F;| = ze" E*[Mp|F;| = ze"" My = Xer(T=1), O
7.11.

Proof. By change-of-variable formula, we have [~ f(X;)dt = [° f(Xrq)dt = [° f(X; 0 6;)dt. So by
Fubini’s Theorem and strong Markov property,

o / F(X0)dt) = B*[E| / F(X0) 0 0,dt| F,) = E¥[EX| / F(X0)dt] = B=[g(X.).

7.12. a)

Proof. Forany t,s with0 < s <t < T and 7, we have E[Zipry | Fs] = Zsprse- Let K — oo, then Zspr. — Zs
a.s. and Ziar, — Zy a.s. Since (Z;),<r is uniformly integrable, Zsanr, — Zs and Zipr, — Z¢ in L' as well.

So E[Z|Fs) = limg oo E[Ziprc|Fs) = img oo Zsare = Zs. Hence (Z;),<r is a martingale. O
b)
Proof. The given condition implies (Z;),<r is uniformly integrable. O

c)

Proof. Without loss of generality, we assume Z > 0. Then by Fatou’s lemma, for t > s > 0,

E|Z|F,) < lim E[Zipn|F) = lim Zop, = Zs.
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d)

Proof. Define 1, = inf{t > 0: fot $?(s,w)ds >k}, then

tATE t
Zioi = [ 9s.)dB. = [ 0(5.0)1 sz B,
0 0

is a martingale, since E[fOT ¢*(s,w)1{s<r1ds] = E[fOTAT"' ¢ (s,w)ds] < k. O

7.13. a)
Proof. Take f € C3(R%) so that f(z) =In|z| on {z : € < |z| < R}. Then

Bilt 1 B3(t) — B}(t) . 1B}(t)— B3
#BH) = 3 ()dBi(t)+2(|;(t)|4()dt+2Wdt

Since %l{gf} € V(0,T), we conclude f(B(t A7)) = In|B(t A 7)| is a martingale. To show In|B(¢)| is
a local martingale, it suffices to show 7 — oo as € | 0 and R | co. Indeed, by optional stopping theorem,
In|z| = E*[In|B(t AT)|] = P*(1e < Tr)Ine + P*(7e > 7r)In R, where 7. = inf{¢t > 0 : |B(¢)| < €} and
Tr = inf{t > 0 : |B(t)] > R}. So P*(1. < 7g) = InR-lnja| By continuity of B, limg .o, 7r = oco. If

InR—Ine
we define 79 = inf{¢t > 0 : |B(¢t)| = 0}, then 79 = lim¢jo7e. So P?(1p < 00) = limpjeo P¥(10 < TR) =
limpgeo limej g P¥(7e < 7r) = 0. This shows lim. o 7e = 79 = 00 a.s. O
b)
Proof. Similar to part a). O

Remark: Note neither example is a martingale, as they don’t have finite expectation.

7.14. a)

Proof. According to Theorem 7.3.3, for any f € C3,

1 oh(x)of(x) 1 2v h-vf+hAf  A(Rf)
= 7A = =
Af(z) 21: h(z) Oz; Ox; + 2 @) 2h 2h "’
where the last equation is due to the harmonicity of h. O

7.15.

Proof. If we assume formula (7.5.5), then (7.5.6) is straightforward from Markov property. As another
solution, we derive (7.5.6) directly.

We define M; = E*[F|F;] (t <T), then My = E[F]| + fot ¢(s)dBs. Set f(z,u) = E*|(B, — K)*], then
M, = E*[(Br — K)*F)] = EB[(Br_, — K)*] = f(B,, T — 1). By It&’s formula,
dM; = fL(By, T — t)dBy + f, (B, T — t)(—dt) + %f;’z(Bt, T —t)dt.

So ¢(t,w) = fL(By, T —t). Note by elementary calculus,

e e~ /2u K —2z K-z
fe) = [ Gra— K de = VAN () = (K )+ (K~ 9N,
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where N () is the distribution function of standard normal random variable. So it’s easy to see fl(z,u) =
z—By)?

p— — B e
17N(If/a ). Hence ¢(t,w) =1 fN({{/%) = \/27r:(LT—t) [ € 2T da.
O
7.17.

Proof. If t < 7, then Y clearly satisfies the integral equation corresponding to (7.5.8), since
t1 .1 to2 t1.1 t o2
Y =X, = Xo +/ 7X§'ds+/ X3dBs =Y +/ 7Y53ds+/ Y:*dBs.
0 3 0 0 3 0
It > 7, then ¥, = 0= X, = [T LX3ds+ [] XZdBy+ Xo = Yo+ [7 1Y ds+ [] X3dB, = Yo+ [ 1VSds+

fot Ys% dBs. So Y is also a strong solution of (7.5.8).
If we write (7.5.8) in the form of dX; = b(X};)dt + o(X;)dBy, then b(z) = %x% and o(z) = z3. Neither

of them satisfies the Lipschiz condition (5.2.2). So this does not conflict with Theorem 5.2.1. O

7.18. a)

Proof. The line of reasoning is exactly what we have done for 7.9 b). Just replace 27 with a general function

f(z) satisfying certain conditions. O
b)

Proof. The characteristic operator A = %j—; and f(z) = x are such that Af(z) = 0. By formula (7.5.10),
we are done. O

)

2 42 _2p
Proof. A= p-t 4+ 24 So we can choose f(z) = e~ +2". Therefore

2uz 2pa
e o2 —e o2
P="3n ~2ua
e o2 —e o?
O
7.19. a)
Proof. Following the hint, and by Doob’s optional sampling thoerem, E* [e‘mBMT—AMT] = E*[Minr] =
E*[My] = e~V2\T_ Tet t 1 oo and apply bounded convergence theorem, we get E7 [e=?7] = eV, O
b)
0o _ z _z
Proof. [, e )‘tme 5% dt. O
8.1. a)
Proof. g(t,z) = E*[¢(By)], where B is a Brownian motion. O
b)

Proof. Note the equation to be solved has the form (a—A)u = ¢ with A = %A7 so we should apply Theorem
8.1.5. More precisely, since ) € Cy(R™), by Theorem 8.1.5. b), we know (o — 1A)R,v) = 1, where R, is the
a-resolvent corresponding to Brownian motion. So Rot)(x) = E*[ [~ e™*")(B;)dt] is a bounded solution of
the equation (o — £A)u = ¢ in R™. To see the uniqueness, it suffices to show (o — $A)u = 0 has only zero
solution. Indeed, if u # 0, we can find u, € CZ(R") such that u, = u in B(0,n). Then (o — 1A)u, =0
in B(0,n). Applying Theorem 8.1.5.a), u,, = Ro(ov — $A)u, = 0. So w =0 in B(0,n). Let n | oo, we are
done. O
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8.2.

Proof. By Kolmogorov’s backward equation (Theorem 8.1.1), it suffices to solve the SDE dX; = aX;dt +
2
BX:dB;. This is the geometric Brownian motion X; = Xoe(a_%)t"‘ﬁB‘. Then

_y2
e 2t

dy.
V2mt Y

u(t,x) = E*[f(Xy)] = /_OO f(xe(a—g)t-s-ﬁy)

8.3.
Proof. By (8.6.34) and Dynkin’s formula, we have

B = [ ey
= f(o)+ B /0 Af(X.)ds]
— )+ / PoAf()ds
= J@+ [ [ e, s
Differentiate w.r.t. t, we have

1) 2Pty = [ i) As @y = [ Al f0)a,

R ot .-

where the second equality comes from integration by parts. Since f is arbitrary, we must have % =

Api(z,y).
8.4.

Proof. The expected total length of time that B. stays in F is

o0 o 1 P
T:E/ 1 Bdt:/ / e 7 dadt.
e AN

(Sufficiency) If m(F) = 0, then [, ﬁe*%dx = 0 for every t > 0, hence T' = 0.

w2 mZ
(Necessity) If T' = 0, then for a.s. t, fF ﬁe_ﬂdx = 0. For such at > 0, since e~ 2 > ( everywhere in
R™, we must have m(F') = 0. O

8.5.
Proof. Apply the Feynman-Kac formula, we have

_(z—y)?

u(t.o) = E7[eli o4 (B)) = e 2m) ¢ [ ST )y,

8.6.

Proof. The major difficulty is to make legitimate using Feynman-Kac formula while (z — K)* ¢ C2. For
the conditions under which we can indeed apply Feynman-Kac formula to (x — K)* ¢ C3, c f. the book of
Karatzas & Shreve, page 366. O
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8.7.

Proof. Let oy = inf{s > 0: 85 > t}, then X, is a Brownian motion. Since 3. is continuous and lim;_, . 8; =
o0 a.s., by the law of iterated logarithm for Brownian motion, we have

By

limsup —————— =1, a.s.
t—oo V20 loglog B
Assume ag, = ¢ (this is true when, for example, beta. is strictly increasing), then we are done. O
8.8.
Proof. Since dN; = (u(t) — E[u(t)|G:]))dt + dBy = dZy — Eu(t)|Gi]dt, Ny = o(Ns : s < t) C G So
Elu(t) — E[u(t)|G:]|NV:] = 0. By Corollary 8.4.5, N is a Brownian motion. O
8.9.

Proof. By Theorem 8.5.7, foat e’dB, = fg e%s /a’Sst, where B, is a Brownian motion. Note e®t = /1 + %tS

and o} = %, we have e®t /o) = t. O
8.10.

Proof. By Ito’s formula, dX; = 2B;dB; + dt. By Theorem 8.4.3, and 4B? = 4|X,|, we are done. O
8.11. a)

Proof. Let Zy = exp{—B; — %}, then it’s easy to see Z is a martingale. Define Q1 by dQr = Z7dP, then
Qr is a probability measure on Fr and Qr ~ P. By Girsanov’s theorem (Theorem 8.6.6), (Y;):>0 is a
Brownian motion under Q. Since Z is a martingale, dQ|z, = ZpdP|z, = Z:dP = dQ; for any t < T. This
allows us to define a measure @ on F, by setting Q|x, = Qr, for all T > 0. O

b)
Proof. By the law of iterated logarithm, if B is a Brownian motion, then

B B
lim sup i =1a.s. and liminf

t p—
t—oo /2tloglogt t—oo 2tloglogt

—1, a.s.

So under P,

By t

limsupY; = limsu + v/ 2tloglogt = oo, a.s.
t_)oop k t_)oop <2t loglogt /2t loglogt> 608

Similarly, liminf; ., Y; = oo a.s. Hence P(lim; . Y; = c0) = 1. Under @, Y is a Brownian motion.

The law of iterated logarithm implies lim; o, Y; does’nt exist. So Q(lim;— ¥z = 0c0) = 0. This is not a

contradiction, since Girsanov’s theorem only requires @ ~ P on Fr for any T > 0, but not necessarily on

Foo- O

8.12.

1 3

Proof. dY; = [dt + 0dB; where § = <(1)) and 6 = (_1 _9

). We solve the equation fu = 3 and get

u = <_13> Put M; = exp{— fg udBg — %fg u?ds} = exp{3Bi(t) — Ba2(t) — 5t} and dQ = MrdP on Fr,

-3t

then by Theorem 8.6.6, dY; = #dB, with B, = ( .

) + B(t) a Brownian motion w.r.t. Q. O

8.13. a)
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Proof. {X} > M} € F, so it suffices to show Q(X}? > M) > 0 for any probability measure () which is
equivalent to P on F;. By Girsanov’s theorem, we can find such a @ so that X; is a Brownian motion w.r.t.

Q. So Q(X7¥ > M) > 0, which implies P(X} > M) > 0. O
b)

Proof. Use the law of iterated logarithm and the proof is similar to that of Exercise 8.11.b). O

8.15. a)

Proof. We define a probability measure @ by dQ|z, = MdP)|z,, where

M, —exp{/ JdB, — ;/Ot 02(By)ds).

Then by Girsanov’s theorem, Bt = fo s)ds is a Brownian motion. So B; satisfies the SDE dB; =
a(By)dt + dB;. By Theorem 8.1.4, the solution can be represented as

Pal(B)) = Blesp | a(B)dB, 5 [ *(Bds)1(By)

O

Remark: To see the advantage of this approach, we note the given PDE is like Kolmogorovs backward
equation. So directly applying Theorem 8.1.1, we get the solution E?[f(Xt)] where X solves the SDE
dX; = a(Xt)dt + dBt. However, the formula E*[f(Xt)] is not sufficiently explicit if « is non-trivial and the
expression of X is hard to obtain. Resorting to Girsanovs theorem makes the formula more explicit.

b)

Proof.
elo @(Ba)dBs—3 [§ o®(Ba)ds _ [q v(Ba)dBa—35 [ v (Ba)ds _ v(Bi)=v(Bo)=3 [q Av(Ba)ds—3 [§ v~*(Bs)ds
So
u(t,z) = e V@D BT [ewBt)f(Bt)e—% JE(Y2(Bo)+Ay(B,))ds]
O
c)
Proof. By Feynman-Kac formula and part b),
(t,z) = E° [ev(Bt)f(Bt)e—%fJ(vw2+Av)(Bs)ds = Y @y(t, z).

O

8.16 a)

Proof. Let Ly = — fo S M (Xs)dB:. Then L is a square-integrable martingale. Furthermore, (L)7 =

fo | v h(X,)|?ds is bounded, since h € C§(R™). By Novikov’s condition, M; = exp{L; — $(L);} is a
martlngale We define P on Fr by dP = MpdP. Then

defines a BM under P.
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= M (X))

[
[
_ E‘w[e"’ =1 5a; (Xs YAXi—1 [JIvh(X))? de(Xt)]
= E% PN aof (Bs)dBL—1% [ \Vh(Bs)\zde(Bt)]

Apply Itd’s formula to Z; = h(B;), we get

h(Bt)—h(Bo):/ Zgi ,)dB! + /t . BZh ds

N BY[[(Xy)] = Bo[eh(BO-M B0 [ VB ()
O
b)
Proof. If Y is the process obtained by killing B; at a certain rate V, then it has transition operator
T} (g.x) = E*[e” [0 V(Bty(By)]
So the equality in part a) can be written as
TtX(f7$) = e_h(z)TtY(fehax)
O
8.17.
Proof.

(G)ors (3 3) (s

(3D (=)- ()

The general solution is u; = —2us + 1 — 3(f1 — P2) = —2us — 201 + 302 and ug = B1 — (2. Define Q by
(8.6.19), then there are infinitely many equivalent martingale measure @, as ug varies. O

oo (356)

So equation (8.6.17) has the form

9.2. (i)

Proof. The book’s solution is detailed enough. We only comment that for any bounded or positive g €
B(R-‘r X R)7
E>*[g(Xy)] = Elg(s +t, BY)],

where the left hand side is expectation under the measure induced by X;'* on R?, while the right hand side
is expectation under the original given probability measure P.

Remark: The adding-one-dimension trick in the solution is quite typical and useful. Often in applications,
the SDE of our interest may not be homogeneous and the coefficients are functions of both X and t. However,
to obtain (strong) Markov property, it is necessary that the SDE is homogeneous. If we augment the original
SDE with an additional equation dX; = dt or dX| = —dt, then the SDE system is an (n+ 1)-dimension SDE
driven by an m-dimensional BM. The solution Y;”* = (X/, X;) (X{, = s and Xy = z) can be identified with
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a probability measure P** on R"*! with P*% = Y*%(P), where Y *%(P) means the distribution function
of Y%, With this perspective, we have E*?[g(X;)] = E[g(t + s, BY)].

Abstractly speaking, the (strong) Markov property of SDE solution can be formulated precisely as follows.
Suppose we have a filtered probability space (2, F, (Ft)i>0,P), on which an m-dimensional continuous
semimartingale Z is defined. Then we can consider an n-dimensional SDE driven by Z, dX; = f(t, X;)dZ;.
If X7 is a solution with Xy = z, the distribution X*(P) of X*, denoted by P*, induces a probability measure
on C(R4,R™). The (strong) Markov property then means the coordinate process defined on C(R4,R") is a
(strong) Markov process under the family of measures (P?),cr». Usually, we need the SDE dX; = f (¢, X:)dZ;
is homogenous, i.e. f(¢t,z) = f(z), and the driving process Z is itself a Markov process. When Z is a BM,
we emphasize that it is a standard BM (cf. [8] Chapter IX, Definition 1.2)

O
9.5. a)
Proof. If %Au = —JAu in D, then by integration by parts formula, we have —A(u,u) = —A fD u?(x)dr =
1 [pu(@)Au(z)de = -1 [, vu(z) vu(z)de < 0. So A > 0. Because u is not identically zero, we must have
A> 0. O
b)

Proof. We follow the hint. Let u be a solution of (9.3.31) with A = p. Applying Dynkin’s formula to the
process dY; = (dt,dB;) and the function f(t,z) = e’*u(z), we get

B (Vo] = St + 500 [ [ L]

Since Lf(t,z) = peftu(z) + SeP!Au(z) = 0, we have E®®)[eP™ (B, p,)] = ePtu(z). Let t = 0 and n 1 oo,

we are done. Note V& € bF,, EG?)[¢] = E*[€] (cf. (7.1.7)). O
c)

Proof. This is straightforward from b). O

9.6.

Proof. Suppose f € C2(R™) and let g(t,z) = e~ f(x). If 7 satisfies the condition E*[r] < oo, then by
Dynkin’s formula applied to Y and y, we have

BD[e=07 f(X,)] = e~ f(z) + B2 [/ (g + Aol X
0

That is, .
Bl FOE)] = e )+ B (A (X

Let t =0, we get
Bl FO0)] = fa)+ B[ e (A= a)f (X
If @ > 0, then for any stopping time 7, we have

Bl (o)) = )+ B[ (A= ) F(X.)ds)

Let n T co and apply dominated convergence theorem, we are done. O

9.7. a)
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Proof. Without loss of generality, assume y = 0. First, we consider the case z # 0. Following the hint and
note In|z| is harmonic in R?\{0}, we have E*[f(B;)] = f(z), since E*[r] = $E*[|B;|*] < oo. If we define
=inf{t > 0:|B,| < p} and 7 = inf{t > 0: |B;| > R}, then

P*(1, <1g)Inp+ P*(1, > 7p)In R = In|z|,
P*(r, < Tp) + P*(1, >7R) = L.
So P*(1, < Tg) = %l?n‘zl,

In R—In|z| __
mp— oo lim,—o Tz, = 0.

For the case x = 0, we have

Hence P*(1y < 00) = limp_,00 P7(7, < Tr) = limp_.o0 lim,_,o P*(7, < Tg) =

P°3t>0, B, =0)
= P°3e>0, 9of. < 0)
= P°Uco, ceq+ {70 0 0 < 00})
= gg% P19 06, < )

= lim EO[PBe (10 < 0)]

= ll—I}(l) \/7 7'0 < OO)d
= 0.
O
b)
~ -1 0 -1 0). ~ . .
Proof. By = 0 1 B; and 0 1 is orthogonal, so B is also a Brownian motion. O
c)
Proof. P°(tp = 0) = lim._o P°(7p <€) > lim._o P°(3 ¢ € (0, ¢, Bt(l) >0, BZEQ) = 0). Part a) implies
P°Ate(0,¢, B >0, B® =0)+ P°3te (0,6, B <0, B =0)
P’(3te(0,¢, B® =0)+P°3te(0,¢, B =0, B? =0)
= 1.
And part b) implies P°(3 ¢ € (0,¢], BY) >0, B® =0) = P'3 ¢t e (0,¢], BY <0, B? =0). So

0
P°(3te (0,d, B >0, B¥) =0) = 1. Hence P°(rp = 0) >

> 1. By Blumenthal’ 0-1 law, P%(7p = 0) =1,
i.e. 0 is a regular boundary point.

O
d)
Proof. P°(tp = 0) < P°(3t >0, B, =0) < P'3t >0, Bt(Q) = B§3) =0) = 0. So 0 is an irregular
boundary point. O
9.9. a)

Proof. Assume g has a local maximum at x € G. Let U CC G be an open set that contains x, then
g(z) = E*[g(X,,)] and g(z) > g(X,,) on {7y < co}. When X is non-degenerate, P*(1y < 00) = 1. So we
must have g(x) = g(X,,,) a.s.. This implies g is locally a constant. Since G is connected, g is identically a
constant. 0

9.10.
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Proof. Consider the diffusion process Y that satisfies

dt dt 1 0
a¥y = <dXt) = (aXtdt—k ﬂXtdBt) = (aX) dt+ (ﬂx) aB:.

Let 7 =inf{t > 0:Y; & (0,T) x (0,00)}, then by Theorem 9.3.3,

ftz) = E“%*%(XT)]+E<”>[/ CK(XJ)eds
0

T—t
Ele T 9(X5_)] + E K(XP)e " ds),
0

2
where X7 = ze@=F)+BB: Then it's easy to calculate

T—t
f(t.0) =P TOBGOGE )+ [ e B (X ds.
0

9.11. a)

Proof. First assume F' is closed. Let {¢,,},>1 be a sequence of bounded continuous functions defined on 9D
such that ¢, — 1p boundedly. This is possible due to Tietze extension theorem. Let h,(z) = E*[¢,(B-)].
Then by Theorem 9.2.14, h,, € C(D) and Ah,(z) =0 in D. So by Poisson formula, for z = re?® € D,

1 ,
= — P.(t — it
hn (%) o7 J, - (t — 0)hy(e)dt
Let n — o0, hy(z) — E*[1p(B;)] = P*(B, € F) by bounded convergence theorem, and RHS —

= 02 " P.(t — 0)1x(e)dt by dominated convergence theorem. Hence

™

1 2 )
P*(B, € F) = 27/ Polt — 0)1 ()t
0

Then by m — X\ theorem and the fact Borel o-field is generated by closed sets, we conclude

1 27 i
P*(B, € F)= —/ P.(t —0)1p(e™)dt
2T 0
for any Borel subset of 0D. O
b)

Proof. Let B be a BM starting at 0. By example 8.5.9, ¢(B;) is, after a change of time scale «(t) and under
the original probability measure P, a BM in the plane. VF € B(R),

P(B exits D from ¢ (F))
P(¢(B) exits upper half plane from F')
= P(¢(B)a) exits upper half plane from F)
= Probability of BM starting at i that exits from F'

= p(F)

So by part a), u(F) = 5 fogﬂ Ly (e™)dt = 5= 02” 1r(¢(e))dt. This implies
1

2w
[ 5@ty =5 [ sotetnar= o [ 10,

27 27 Jap z
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c)

Proof. By change-of-variable formula,

[ r@ae =1 [ rocn -1t

d)

Proof. Let g(z) = u+ vz, then g is a conformal mapping that maps i to u + vi and keeps upper half plane
invariant. Use the harmonic measure on x-axis of a BM starting from ¢, and argue as above in part a)-c),
we can get the harmonic measure on x-axis of a BM starting from v + iv. O

9.12.

Proof. We consider the diffusion dY; = (q(i()f)tdt

(yl)ay2 B(y), for any ¢ € CZ(R™ x R). Choose a sequence (U,),>1 of open sets so that U, CC D and
U, 1 D. Define 7, = inf{t > 0:Y; & U, x (—n,n)}. Then for a bounded solution h, Dynkin’s formula
applied to h(y1)e~¥2 (more precisely, to a C3-function which coincides with h(y;)e~¥2 on U,, x (—n,n)) yields

), then the generator of Y is A@(y1,y2) = Ly, é(y) +

Tn/AT
BV (Y ha)e ] = hgn)e v — EY [ / g(Y;”)eYs(”ds} ,
0
since A(h(y1)e ¥2) = —g(y1)e ¥2. Let y2 = 0, we have

(2) Tn /AT
h(y) = B@O [V, )e™Ymmn] + E@0) [/ g(}/;(l)>e—ys<2>ds] _
0

Tn

Note Y( ) = Yo + f q(Xs)ds > ya, let n — oo, by dominated convergence theorem, we have
h(y)) = EWOmyD)e” D]+ Ew0 [ / (Ys(l))e_ys(z)ds}
0
— Bl P Xty (x )| 4 B U " gy yem IS axen d“ds} |
0
Hence .
h(z) = E*[e~Jo” dX)ds g x V] 4 B [/0 9(Xs)e” f(fq(X”d“ds} :

O

Remark: An important application of this result is when ¢ = 0, ¢ = 1 and ¢ is a constant, the Laplace
transform of first exit time E*[e~?7P] is the solution of

Ah(xz) —qh(x) =0 on D
lim,_,, h(z) =1 y € 0D.

In the one-dimensional case, the ODE can be solved by separation of variables and gives explicit formula for
E®le~97P]. For details, see Exercise 9.15 and Durrett [3], page 170.

9.13. a)
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Proof. w(x) solves the ODE

pw' (x) + %zw"(x) =—g(x), a<xz<b;
w(z) = ¢(x), x=aorb.
The first equation gives w” (x) + i—‘;w’(m) = —2%—(5). Multiply 727 on both sides, we get
2y v 24029()
(e-2"w'(x)) = —e0? =

2 2 2
So w'(z) = Cre o7 — ¢ o2® [r eﬁg%(f)df. Hence

2 z v .9
w(f)zcz—;*uc’uf%z—/ e*%‘y/ e%5§dfdy.

By boundary condition,

2p
¢(a) = Cg — %Cle_ﬁa
Oy PO b (b (v e 20(0) 2)
o(b) = Cy — ﬂCle = ffa e o fa e~ =Ll dedy.
Let % = @ and solve the above equation, we have
2 b _
0[p(b) — ¢la)] + % [ [, "~V g(€)dedy
G = o—ba _ o—6b ’
C
Cy = ola)+ ?167%
O

b)

Proof. f;g(y)G(ac,dy) = E*[[;” 9(X;)dt] = w(x) in part a), when ¢ = 0. In this case, we have

02 " Y by

_ —y
=t [ [

2 b b

_ ¢ %3 —0

a M(e*ga—e*%)/a ‘ g(S)/E ¢ dyde
02 b —6¢ _ _—0b

= m/ "g(§) ——5——d¢

b
= / g(f)m(l—ea(g_b))d&

and

b —0a
Cy = LQ(&)M(lee(gb))df.
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So

- B g b )
g(& )m(l—eg(§ P))d¢ — ;/ 9(5)6651{«59}/ Liecy<are v qya¢

b 6a _ _—6Ox 0 T —0¢ _ -0z
= / 9(& )69,1—6_9(,)(1*66(571)))(15* ;/ (€ e

u(e 0
- [ [M(l — ) “ezwlwg}] 3
Therefore y—ba _ gtz T
G(x,dy) = (M(l — Pb)) — ul{a<y<m}) dy.
O
9.14.

Proof. By Corollary 9.1.2, w(z) = E*[¢(X-,)] + E*[[,” g(X¢)dt] solves the ODE

{rxw (z) + o220 (z) = —g(z)
w(a) = ¢(a), w(b) = H(b).

Choose g = 0 and ¢(a) =0, ¢(b) = 1, we have w(xz) = P*(X,, =b). So it’s enough if we can solve the ODE
for general g and ¢. Assume w(z) = h(lnx), then the ODE becomes (t=1Inx)

{;a2h"<t>+<r—1 a?)I(t) = —g(e")
w(a) = h(lna) = ¢(a), w(b) = h(inb) = ¢(b).

Let 6 = 27 o’ then the equation becomes h” (¢ ) + 00 (t) = 29(8 ). So

h(t) = Cy — Cle 2 / / e g(e*)dsdy,

— Ina
$(a) = h(lna) = Cy — Cl; _ 2 / P65 g(e)dsdy,
and ¢(b) = h(lnbd) = Cz — %76 - %f;nbf: eg(s_y)g(e‘ )dsdy. So
Cl > Inb 0(5 )
$(b) — ¢la) = —~(a™" — ) g(e)dsdy,
0 Inb o( )
= il s—y
Ch 00 _p0 B(b) — ¢(a) + /1 / e’)dsdy| ,
and
9 rlnd ry 6(s—y) p—o Inb o )
Cy = ¢(b) + ﬁ/a /a e g(e”)dsdy + P - [¢(b /1 / 5Ty dsdy}
In particular, P*(X,, =b) = h(lnz) = Cy — %x*Q =1+ a_fj (Z 7 — 9(@_6 b 7y = Z_f,_‘; § (Compare with
Exercise 7.9.b).) O
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9.16. a)

Proof. Consider the diffusion dY; = ( dt ) = ( dt ) = ( 1 ) dt + <UO ) dB;. Then Y has

dXt TXtdt + O'XtdBt TXt Xt

generator Lf(t,x) = & f(t, ) + rm%(t, x) + %O‘Ql‘g%(t, x) and the original Black-Scholes PDE becomes

Lw—rw=0 inD
w(T,z) = (x — K)*.

By the Feynman-Kac formula for boundary value problem (Exercise 9.12), we have

w(s,z) = B[ [o”rds (X — )T = E%[e T (Xp_, — K)T].

Another solution:

Proof. Set u(t,z) = w(T — t,x), then u satisfies the equation

Du(t,x) = reZu(t,z) + Lo2> Zou(t, z) — ru(t,x), (t,z)inD
uw(0,2) = (. — K)™; z>0

This is reduced to Exercise 8.6, where we can apply Feynman-Kc formula.

b)
Proof.
02
w(0,2) = E*e "Xy — K)T] = e "TE[(ze" =) THoBr _ K]
22
—rT (r—ﬁ)T—Fo‘z + € 27
= e xe 2 K dz
/;:x:( ) V 27TT
22
_ —rT * (T*Lz)TJrUZ _ e 2T
= ¢ fnklnmaw”;w (ze 2 K) \/27T7sz
0 —16%T+o0z 22 00 —z2
- €Te 2 e 2T _ —rT e 2T
- /nxlnza(rf’;)T T dz — Ke /nxlnza(rf’;)T 27TTdZ
om2 2
o ge= ST o0 e~ 5
= ——dz — Ke_T'T/ ——dz
/nKlnzo-(rg;)T \/27_‘_771 an—lnz\—/’(I—!—%)T \/ﬂ
e xe_% o T+ng 1
= / K_,p ——dz— Ke™" @(7—7(7@)
n ?07T —‘r%O’T 27TT U\/T 2
2
& ze~ T 1
= dz— Ke " ®(n — ZoV/T)
n&_»
/:ﬁT_ég\/T V2 2
1 1
= zP(n+ §Uﬁ) —~Ke "To(n - §Uﬁ).
12.1 a)
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Proof. Let 6 be an arbitrage for the market {X;},c[0,77. Then for the market {X;},¢(0.7:
(1) 6 is self-financing, i.e. dV,? = 0;dX;. This is (12.1.14).
(2) 6 is admissible. This is clear by the fact V,/ = e~ Is rsds179 and p being bounded.
(3) 6 is an arbitrage. This is clear by the fact V,/ > 0 if and only if V,f > 0.
So {X¢}iefo,r) has an arbitrage if {X}¢cjo,7 has an arbitrage. Conversely, if we replace p with —p, we

can calculate X has an arbitrage from the assumption that X has an aribitrage. O
12.2

Proof. By V, =" 6, X;(t), we have dV; = 6 - dX;. So 0 is self-financing. O
12.6 (e)

Proof. Arbitrage exists, and one hedging strategy could be 8 = (0, By + B, By — Ba + 1*3351+Bz, 1*3351“32 ).

The final value would then become Bi(T)? + By(T)?. O
12.10

Proof. Becasue we want to represent the contingent claim in terms of orlglnal BM B, the measure Q is the
same as P. Solving SDE dX,; = aXdt + $X,dB; gives us X; = Xoel® 2)t+6B: Go

EY[h(X1)]
= EY[Xr_{
(a=Z)(T~t) , & (T—1)
a(T—t)

= ye
ye

2
Hence ¢ = e*T-Y5X, = ﬂxoean%HﬁBt_ 0

12.11 a)

Proof. According to (12.2.12), o(t,w) = o, p(t,w) = m — X1 (t). So u(t,w) = L(m — X;(t) — pXi1(t)). By
(12.2.2), we should define @ by setting

dQ| 5, = ¢~ Jo vedBe=3 Jo uidsgp
Under Q, B, = B, + fo m — X1(s) — pX1(s))ds is a BM. Then under Q,
dX\(t) = 0dB; 4+ pX,(t)dt
So X1 (T)e T = X1(0) + f oe P'dB; and Eglé(T)F] = Egle T X1(T)] = z;. O

b)

Proof. We use Theorem 12.3.5. From part a), ¢(t,w) = e **o. We therefore should choose 61 (t) such that
01(t)e Ptoc = oe *t. So 6; =1 and 6 can then be chosen as 0. O
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A Probabilistic solutions of PDEs (based on [7])
1. Resolvent equation. Suppose X is a diffusion with generator A, and for a > 0, the resolvent operator R,
is defined by
R.g(z) = E‘T[/ e~ g(Xy)dt], g € Cp(R™).
0
Then we have
Ra(a - A)|C§(Rn) = id, (a - A)Ra|0b(R“) = 1d.

Note the former equation is a special case of resolvent equation (see, for example, [4] for the semigroup
theory involving resolvent equation), since C2(R"™) C D(.A). But the latter is not necessarily a special case,
since we don’t necessarily have C,(R") C By(R"™).

2. Parabolic equation: heat equation via Kolmogorov’s backward equation (dP;f/dt = PLAf = AP f). If X
is a diffusion with generator A, then for f € C%(R"), E[f(X;)] := E[f(X{)] solves the initial value problem
of parabolic PDE

%“jzAu, t>0, zeR"”
u(0,z) = f(z); = eR™

Remark:
(i) If X satisfies dX; = u(X;)dt + 0dBy, one way to explicitly calculate E*[f(X;)] without solving the
SDE is via Girsanov’s theorem (cf. 7], Exercise 8.15).

(ii) If we let v(t,x) = u(T —t,x), then on (0,T), v satisfies the equation

9L Av=0, 0<t<T,zeR"
o(T,z) = f(x); x€R™
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3. Parabolic equation: Schrédinger equation via Feynman-Kac formula. Suppose X is a diffusion with
generator A. If f € C2(R"), ¢ € C(R"™) and q is lower bounded, then

’U(t, .T) = Ez e Jot q(XS)de(Xt)]
solves the initial value problem of parabolic PDE

%:Av—qv, t>0, zeR"”
v(0,2) = f(x); = e€R™

Remark: (i) The Feynman-Kac formula can be seen as a special case of the heat equation. If we kill X
according to a terminal time 7 such that sup, |%PI(T <t)—q(z)] — 0 as t | 0, then the killed process
X, = Xilgi<ry + O0lyy>) has infinitesimal generator A — ¢ and transition semigroup Sy f(z) = E¥ [f()N(t)} =
Eele Jo aX)de £(X,)) = Blem [o 13D (X)),

(ii) The Feyman-Kac formula also helps to solve Black-Scholes PDE after we replace t by T — ¢ and

transform the PDE into the form %—7; = Au — pt.

4. Elliptic equation: the combined Dirichlet-Poisson problem via Dynkin’s formula. Suppose X is a diffusion
with generator A. Set 7p = inf{t > 0: X; & D}, then E*[¢(X+,)1(rp<o0t] + E*[ [y 9(X:)dt] is a candidate
for the solution of the equation

Av=—-g inD
limma% w(x) = ¢(y) for all y € dD.

Remark:

(i) Connection with parabolic equations. The parabolic operator % + A (or 78% + A) is the generator
of the diffusion Y; = (¢, X;) (or Yy = (—t, X;)), where X has generator A. So, if we let D = (0,7) x R
and regard f as a function defined on 9D = {T'} x R", then E**[f(Y;,)] = E[f(X%_,)] solves the parabolic
equation

9L Av=0, 0<t<T, zeR"
o(T,z) = f(x); = e€R™

By setting u(t,z) = v(T —t,z) = E[f(X})], u solves the heat equation on (0,7) x R™. Since T is arbitrary,
u is a solution on (0, 00) x R™. This reproduces the result for heat equation via the Kolmogorov’s backward
equation. More generally, this method can solve the generalized heat equation

f%JrAu:—g, t>0, zeR”

%+Au:fg, 0<t<T, xR
u(0,z) = f(z); x € R".

ivalently,
w(T,x) = f(z); zeR™ or equivalently {

Also important is that we can use either (¢, X;) or (T'—t, X;). The effect of the latter is the combined effects
of the first and the transformation v(¢,z) — u(t,z) = v(T —t, ).

ii) A Feynman-Kac formula for boundary value problem is
y y
TD t .

For details, see [7], Exercise 9.12.

(iii) Basic steps of solution.
(a) Formulation of stochastic Dirichlet /Poisson problem: A4 is replaced by the characteristic operator
A and the boundary condition is replaced by a pathwise one.
(b) Formulation of generalized Dirichlet /Poisson problem: boundary condition only holds for regular
points.
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(c) Relating stochastic problems to original problems.

(iiii) Summary of results.

(a) If ¢ is just bounded measurable, then E*[¢(X,)] solves the stochastic Dirichlet problem. If in
addition, L is uniformly elliptic and ¢ is bounded continuous, E*[¢(X,,)] solves the generalized Dirichlet
problem.

(b) If g is continuous with E”[[;” [g(X,)|ds] < oo for all z € D, E*[[;” g(X,)ds] solves the
stochastic Poisson problem. If in addition, 7p < oo a.s. Q® for all @, then E*[[]” g(X,)ds] solves the
original Poisson problem.

(c) Put together, conditions for the existence of the original problem are: ¢ € Cy(0D), g € C(D) with
E*[ [ |9(Xs)|ds] < oo for all # € D, and 7p < oo a.s. Q" for all z. Then E*[¢p(X,,)] + E*[[," g(X,)ds]
solves the original problem.

(v) If g € C(D) with E*[[]" |g(X,)|ds] < oo for all € D, then (A — a)Rag = —g for v > 0. Here
Rag(x) = E*[ ;7 e=*g(X,)ds].

If E%[rk] < 00 (7k :=inf{t > 0: X; € K}) for all compacts K C D and all x € D, then —R,, (a > 0) is
the inverse of characteristic operator A on C2(D):

(A_a)(Raf) :Ra(A_a)f: _fv Vf € Ccz(D)

Note when D = R", we get back to the resolvent equation in 1.

B Application of diffusions to obtaining formulas

The following is a table of computation tricks used to obtain formulas:

BM w/o drift general diffusion, esp. BM with drift
Distribution of first passage time reflection principle Girsanovs theorme
Exit probability P(7, < 73), P(7p < Ta) BM as a martingale Dynkins formula / boundary value problems
Expectation of exit time W2 —t is a martingale | Dynkins formula / boundary value problems
Laplace transform of first passage time | exponential martingale Girsanovs theorem
Laplace transform of first exit time exponential martingale FK formula for boundary value problems
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