
1 Problems in Oksendal’s book

3.2.

Proof. WLOG, we assume t = 1, then

B3
1 =

n∑
j=1

(B3
j/n −B3

(j−1)/n)

=
n∑
j=1

[(Bj/n −B(j−1)/n)3 + 3B(j−1)/nBj/n(Bj/n −B(j−1)/n)]

=
n∑
j=1

(Bj/n −B(j−1)/n)3 +
n∑
j=1

3B2
(j−1)/n(Bj/n −B(j−1)/n)

+
n∑
j=1

3B(j−1)/n(Bj/n −B(j−1)/n)2

:= I + II + III

By Problem EP1-1 and the continuity of Brownian motion.

I ≤ [
n∑
j=1

(Bj/n −B(j−1)/n)2] max
1≤j≤n

|Bj/n −B(j−1)/n| → 0 a.s.

To argue II → 3
∫ 1

0
B2
t dBt as n → ∞, it suffices to show E[

∫ 1

0
(Bt − B

(n)
t )2dt] → 0,

where B(n)
t =

∑n
j=1B

2
(j−1)/n1{(j−1)/n<t≤j/n}. Indeed,

E[
∫ 1

0

|Bt −B
(n)
t |2dt] =

n∑
j=1

∫ j/n

(j−1)/n

E(B2
(j−1)/n −B2

t )
2dt

We note (B2
t −B2

j−1
n

)2 is equal to

(Bt −B j−1
n

)4 + 4(Bt −B j−1
n

)3B j−1
n

+ 4(Bt −B j−1
n

)2B2
j−1

n

so E(B2
(j−1)/n −B2

t )
2 = 3(t− (j − 1)/n)2 + 4(t− (j − 1)/n)(j − 1)/n, and

∫ j
n

j−1
n

E(B2
j−1

n

−B2
t )

2dt =
2j + 1
n3

Hence E
∫ 1

0
(Bt −B

(n)
t )2dt =

∑n
j=1

2j−1
n3 → 0 as n→∞.

To argue III → 3
∫ 1

0
Btdt as n→∞, it suffices to prove

n∑
j=1

B(j−1)/n(Bj/n −B(j−1)/n)2 −
n∑
j=1

B(j−1)/n(
j

n
− j − 1

n
) → 0 a.s.

1



By looking at a subsequence, we only need to prove the L2-convergence. Indeed,

E

 n∑
j=1

B(j−1)/n[(Bj/n −B(j−1)/n)2 −
1
n

]

2

=
n∑
j=1

E

(
B2

(j−1)/n[(Bj/n −B(j−1)/n)2 −
1
n

]2
)

=
n∑
j=1

j − 1
n

E

[
(Bj/n −B(j−1)/n)4 −

2
n

(Bj/n −B(j−1)/n)2 +
1
n2

]

=
n∑
j=1

j − 1
n

(3
1
n2

− 2
1
n2

+
1
n2

)

=
n∑
j=1

2(j − 1)
n3

→ 0

as n→∞. This completes our proof.

3.18.

Proof. If t > s, then

E

[
Mt

Ms
|Fs

]
= E

[
eσ(Bt−Bs)− 1

2σ
2(t−s)|Fs

]
=
E[eσBt−s ]
e

1
2σ

2(t−s)
= 1

The second equality is due to the fact Bt −Bs is independent of Fs.

4.4.

Proof. For part a), set g(t, x) = ex and use Theorem 4.12. For part b), it comes from
the fundamental property of Ito integral, i.e. Ito integral preserves martingale property for
integrands in V.

Comments: The power of Ito formula is that it gives martingales, which vanish under
expectation.

4.5.

Proof.

Bkt =
∫ t

0

kBk−1
s dBs +

1
2
k(k − 1)

∫ t

0

Bk−2
s ds

Therefore,

βk(t) =
k(k − 1)

2

∫ t

0

βk−2(s)ds

This gives E[B4
t ] and E[B6

t ]. For part b), prove by induction.
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4.6. (b)

Proof. Apply Theorem 4.12 with g(t, x) = ex and Xt = ct+
∑n
j=1 αjBj . Note

∑n
j=1 αjBj

is a BM, up to a constant coefficient.

5.1. (ii)

Proof. Set f(t, x) = x/(1 + t), then by Ito’s formula, we have

dXt = df(t, Bt) = − Bt
(1 + t)2

dt+
dBt
1 + t

= − Xt

1 + t
dt+

dBt
1 + t

(iv)

Proof. dX1
t = dt is obvvious. Set f(t, x) = etx, then

dX2
t = df(t, Bt) = etBtdt+ etdBt = X2

t dt+ etdBt

5.9.

Proof. Let b(t, x) = log(1 + x2) and σ(t, x) = 1{x>0}x, then

|b(t, x)|+ |σ(t, x)| ≤ log(1 + x2) + |x|

Note log(1 + x2)/|x| is continuous on R − {0}, has limit 0 as x → 0 and x → ∞. So it’s
bounded on R. Therefore, there exists a constant C, such that

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|)

Also,

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ 2|ξ|
1 + ξ2

|x− y|+ |1{x>0}x− 1{y>0}y|

for some ξ between x and y. So

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ |x− y|+ |x− y|

Conditions in Theorem 5.2.1 are satisfied and we have existence and uniqueness of a strong
solution.

5.11.
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Proof. First, we check by integration-by-parts formula,

dYt =
(
−a+ b−

∫ t

0

dBs
1− s

)
dt+ (1− t)

dBt
1− t

=
b− Yt
1− t

dt+ dBt

Set Xt = (1− t)
∫ t
0
dBs

1−s , then Xt is centered Gaussian, with variance

E[X2
t ] = (1− t)2

∫ t

0

ds

(1− s)2
= (1− t)− (1− t)2

So Xt converges in L2 to 0 as t→ 1. Since Xt is continuous a.s. for t ∈ [0, 1), we conclude
0 is the unique a.s. limit of Xt as t→ 1.

7.8

Proof.
{τ1 ∧ τ2 ≤ t} = {τ1 ≤ t} ∪ {τ2 ≤ t} ∈ Nt

And since {τi ≥ t} = {τi < t}c ∈ Nt,

{τ1 ∨ τ2 ≥ t} = {τ1 ≥ t} ∪ {τ2 ≥ t} ∈ Nt

7.9. a)

Proof. By Theorem 7.3.3, A restricted to C2
0 (R) is rx d

dx+α2x2

2
d2

dx2 . For f(x) = xγ , Af can be

calculated by definition. Indeed, Xt = xe(r−
α2
2 )t+αBt , and Ex[f(Xt)] = xγe(r−

α2
2 + α2γ

2 )γt.
So

lim
t↓0

Ex[f(Xt)]− f(x)
t

= (rγ +
α2

2
γ(γ − 1))xγ

So f ∈ DA and Af(x) = (rγ + α2

2 γ(γ − 1))xγ .

b)

Proof. We choose ρ such that 0 < ρ < x < R. We choose f0 ∈ C2
0 (R) such that f0 = f on

(ρ,R). Define τ(ρ,R) = inf{t > 0 : Xt 6∈ (ρ,R)}. Then by Dynkin’s formula, and the fact
Af0(x) = Af(x) = γ1x

γ1(r + α2

2 (γ1 − 1)) = 0 on (ρ,R), we get

Ex[f0(Xτ(ρ,R)∧k)] = f0(x)

The condition r < α2

2 implies Xt → 0 a.s. as t → 0. So τ(ρ,R) < ∞ a.s.. Let k ↑ ∞, by
bounded convergence theorem and the fact τ(ρ,R) <∞, we conclude

f0(ρ)(1− p(ρ)) + f0(R)p(ρ) = f0(x)

where p(ρ) = P x{Xt exits (ρ,R) by hitting R first}. Then

ρ(p) =
xγ1 − ργ1

Rγ1 − ργ1

Let ρ ↓ 0, we get the desired result.
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c)

Proof. We consider ρ > 0 such that ρ < x < R. τ(ρ,R) is the first exit time of X from (ρ,R).
Choose f0 ∈ C2

0 (R) such that f0 = f on (ρ,R). By Dynkin’s formula with f(x) = log x and
the fact Af0(x) = Af(x) = r − α2

2 for x ∈ (ρ,R), we get

Ex[f0(Xτ(ρ,R)∧k)] = f0(x) + (r − α2

2
)Ex[τ(ρ,R) ∧ k]

Since r > α2

2 , Xt →∞ a.s. as t→∞. So τ(ρ,R) <∞ a.s.. Let k ↑ ∞, we get

Ex[τ(ρ,R)] =
f0(R)p(ρ) + f0(ρ)(1− p(ρ))− f0(x)

r − α2

2

where p(ρ) = P x(Xt exits (ρ,R) by hitting R first). To get the desired formula, we only
need to show limρ→0 p(ρ) = 1 and limρ→0 log ρ(1− p(ρ)) = 0. This is trivial to see once we
note by our previous calculation in part b),

p(ρ) =
xγ1 − ργ1

Rγ1 − ργ1

7.18 a)

Proof. The line of reasoning is exactly what we have done for 7.9 b). Just replace xγ with
a general function f(x) satisfying certain conditions.

b)

Proof. The characteristic operator A = 1
2
d2

dx2 and f(x) = x are such that Af(x) = 0. By
formula (7.5.10), we are done.

c)

Proof. A = µ d
dx + σ2

2
d2

dx2 . So we can choose f(x) = e−
2µ

σ2 x. Therefore

p =
e−

2µx

σ2 − e−
2µa

σ2

e−
2µb

σ2 − e−
2µa

σ2

8.6

Proof. The major difficulty is to make legitimate using Feymann-Kac formula while (x −
K)+ 6∈ C2

0 . For the conditions under which we can indeed apply Feymann-Kac formula to
(x−K)+ 6∈ C2

0 , c f. the book of Karatzas & Shreve, page 366.
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8.16 a)

Proof. Let Lt = −
∫ t
0

∑n
i=1

∂h
∂xi

(Xs)dBis. Then L is a square-integrable martingale. Fur-

thermore, 〈L〉T =
∫ T
0
| 5 h(Xs)|2ds is bounded, since h ∈ C1

0 (Rn). By Novikov’s condition,
Mt = exp{Lt − 1

2 〈L〉t} is a martingale. We define P̄ on FT by dP̄ = MT dP . Then

dXt = 5h(Xt)dt+ dBt

defines a BM under P̄ .

Ex[f(Xt)]
= Ēx[M−1

t f(Xt)]

= Ēx[e
∫ t
0

∑n
i=1

∂h
∂xi

(Xs)dXi
s− 1

2

∫ t
0 |5h(Xs)|2ds

f(Xt)]

= Ex[e
∫ t
0

∑n
i=1

∂h
∂xi

(Bs)dBi
s− 1

2

∫ t
0 |5h(Bs)|2ds

f(Bt)]

Apply Ito’s formula to Zt = h(Bt), we get

h(Bt)− h(B0) =
∫ t

0

n∑
i=1

∂h

∂xi
(Bs)dBis +

1
2

∫ t

0

n∑
i=1

∂2h

∂x2
i

(Bs)ds

So
Ex[f(Xt)] = Ex[eh(Bt)−h(B0)e−

∫ t
0 V (Bs)dsf(Bt)]

b)

Proof. If Y is the process obtained by killing Bt at a certain rate V , then it has transition
operator

TYt (g, x) = Ex[e−
∫ t
0 V (Bs)dsg(Bt)]

So the equality in part a) can be written as

TXt (f, x) = e−h(x)TYt (feh, x)

9.11 a)

Proof. First assume F is closed. Let {φn}n≥1 be a sequence of bounded continuous functions
defined on ∂D such that φn → 1F boundedly. This is possible due to Tietze extension
theorem. Let hn(x) = Ex[φn(Bτ )]. Then by Theorem 9.2.14, hn ∈ C(D̄) and ∆hn(x) = 0
in D. So by Poisson formula, for z = reiθ ∈ D,

hn(z) =
1
2π

∫ 2π

0

Pr(t− θ)hn(eit)dt
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Let n → ∞, hn(z) → Ex[1F (Bτ )] = P x(Bτ ∈ F ) by bounded convergence theorem, and
RHS → 1

2π

∫ 2π

0
Pr(t− θ)1F (eit)dt by dominated convergence theorem. Hence

P z(Bτ ∈ F ) =
1
2π

∫ 2π

0

Pr(t− θ)1F (eit)dt

Then by π − λ theorem and the fact Borel σ-field is generated by closed sets, we conclude

P z(Bτ ∈ F ) =
1
2π

∫ 2π

0

Pr(t− θ)1F (eit)dt

for any Borel subset of ∂D.

b)

Proof. Let B be a BM starting at 0. By example 8.5.9, φ(Bt) is, after a change of time
scale α(t) and under the original probability measure P, a BM in the plane. ∀F ∈ B(R),

P (B exits D from ψ(F ))
= P (φ(B) exits upper half plane from F )
= P (φ(B)α(t) exits upper half plane from F )
= Probability of BM starting at i that exits from F

= µ(F )

So by part a), µ(F ) = 1
2π

∫ 2π

0
1ψ(F )(eit)dt = 1

2π

∫ 2π

0
1F (φ(eit))dt. This implies∫

R

f(ξ)dµ(ξ) =
1
2π

∫ 2π

0

f(φ(eit))dt =
1

2πi

∫
∂D

f(φ(z))
z

dz

c)

Proof. By change-of-variable formula,∫
R

f(ξ)dµ(ξ) =
1
π

∫
∂H

f(ω)
dω

|ω − i|2
=

1
π

∫ ∞

−∞
f(x)

dx

x2 + 1

d)

Proof. Let g(z) = u + vz, then g is a conformal mapping that maps i to u + vi and keeps
upper half plane invariant. Use the harmonic measure on x-axis of a BM starting from
i, and argue as above in part a)-c), we can get the harmonic measure on x-axis of a BM
starting from u+ iv.

12.1 a)
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Proof. Let θ be an arbitrage for the market {Xt}t∈[0,T ]. Then for the market {X̄t}t∈[0,T ]:
(1) θ is self-financing, i.e. dV̄ θt = θtdX̄t. This is (12.1.14).
(2) θ is admissible. This is clear by the fact V̄ θt = e−

∫ t
0 ρsdsV θt and ρ being bounded.

(3) θ is an arbitrage. This is clear by the fact V θt > 0 if and only if V̄ θt > 0.
So {X̄t}t∈[0,T ] has an arbitrage if {Xt}t∈[0,T ] has an arbitrage. Conversely, if we replace ρ

with −ρ, we can calculate X has an arbitrage from the assumption that X̄ has an aribitrage.

12.2

Proof. By Vt =
∑n
i=0 θiXi(t), we have dVt = θ · dXt. So θ is self-financing.

12.6 (e)

Proof. Arbitrage exists, and one hedging strategy could be θ = (0, B1 + B2, B1 − B2 +
1−3B1+B2

5 , 1−3B1+B2
5 ). The final value would then become B1(T )2 +B2(T )2.

12.10

Proof. Becasue we want to represent the contingent claim in terms of original BM B,
the measure Q is the same as P. Solving SDE dXt = αXtdt + βXtdBt gives us Xt =
X0e

(α− β2

2 )t+βBt . So

Ey[h(XT−t)]
= Ey[XT−t]

= ye(α−
β2

2 )(T−t)e
β2

2 (T−t)

= yeα(T−t)

Hence φ = eα(T−t)βXt = βX0e
αT− β2

2 t+βBt .

12.11 a)

Proof. According to (12.2.12), σ(t, ω) = σ, µ(t, ω) = m−X1(t). So u(t, ω) = 1
σ (m−X1(t)−

ρX1(t)). By (12.2.2), we should define Q by setting

dQ|Ft = e−
∫ t
0 usdBs− 1

2

∫ t
0 u

2
sdsdP

Under Q, B̃t = Bt + 1
σ

∫ t
0
(m−X1(s)− ρX1(s))ds is a BM. Then under Q,

dX1(t) = σdB̃t + ρX1(t)dt

So X1(T )e−ρT = X1(0) +
∫ T
0
σe−ρtdB̃t and EQ[ξ(T )F ] = EQ[e−ρTX1(T )] = x1.

b)

Proof. We use Theorem 12.3.5. From part a), φ(t, ω) = e−ρtσ. We therefore should choose
θ1(t) such that θ1(t)e−ρtσ = σe−ρt. So θ1 = 1 and θ0 can then be chosen as 0.
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2 Extra Problems

EP1-1.

Proof. According to Borel-Cantelli lemma, the problem is reduced to proving ∀ε,
∞∑
n=1

P (|Sn| > ε) <∞

where Sn :=
∑n
j=1(Bj/n −B(j−1)/n)2 − 1. Set

Xj = (Bj/n −B(j−1)/n)2 − 1/n

By the hint, if we consider the i.i.d. sequence {Xj}nj=1 normalized by its 4-th moment, we
have

P (|Sn| > ε) < ε−4E[S4
n] ≤ ε−4CE[X4

1 ]n2

By integration-by-parts formula, we can easily calculate the 2k-th moment of N(0, σ) is
of order σk. So the order of E[X4

1 ] is n−4. This suffices for the Borel-Cantelli lemma to
apply.

EP1-2.

Proof. We first see the second part of the problem is not hard, since
∫ t
0
YsdBs is a martingale

with mean 0. For the first part, we do the following construction. We define Yt = 1 for
t ∈ (0, 1/n], and for t ∈ (j/n, (j + 1)/n] (1 ≤ j ≤ n− 1)

Yt := Cj1{B(i+1)/n−Bi/n≤0, 0≤i≤j−1}

where each Cj is a constant to be determined.
Regarding this as a betting strategy, the intuition of Y is the following: We start with

one dollar, if B1/n − B0 > 0, we stop the game and gain (B1/n − B0) dollars. Otherwise,
we bet C1 dollars for the second run. If B2/n −B1/n > 0, we then stop the game and gain
C1(B2/n − B1/n) − (B1/n − B0) dollars (if the difference is negative, it means we actually
lose money, although we win the second bet). Otherwise, we bet C2 dollar for the third
run, etc. So in the end our total gain/loss of this betting is∫ t

0
YsdBs = (B1/n −B0) + 1{B1/n−B0≤0}C1(B2/n −B1/n) + · · ·

+1{B1/n−B0≤0,··· ,B(n−1)/n−B(n−2)/n≤0}Cn−1(B1 −B(n−1)/n)

We now look at the conditions unde which
∫ 1

0
YsdBs ≤ 0. There are several possibilities:

(1) (B1/n −B0) ≤ 0, (B2/n −B1/n) > 0, but C1(B2/n −B1/n) < |B1/n −B0|;
(2) (B1/n − B0) ≤ 0, (B2/n − B1/n) ≤ 0, (B3/n − B2/n) > 0, but C2(B3/n − B2/n) <
|B1/n −B0|+ C1|B2/n −B1/n|;
· · · · · · ;
(n) (B1/n −B0) ≤ 0, (B2/n −B1/n) ≤ 0, · · · , (B1 −B(n−1)/n) ≤ 0.
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The last event has the probability of (1/2)n. The first event has the probability of

P (X ≤ 0, Y > 0, 0 < Y < X/C1) ≤ P (0 < Y < X/C1)

where X and Y are i.i.d. N(0, 1/n) random variables. We can choose C1 large enough so
that this probability is smaller than 1/2n. The second event has the probability smaller
than P (0 < X < Y/C2), where X and Y are independent Gaussian random variables with
0 mean and variances 1/n and (C2

1 + 1)/n, respectively, we can choose C2 large enough, so
that this probability is smaller than 1/2n. We continue this process untill we get all the
Cj ’s. Then the probability of

∫ 1

0
YtdBt ≤ 0 is at most n/2n. For n large enough, we can

have P (
∫ 1

0
YtdBt > 0) > 1− ε for given ε. The process Y is obviously bounded.

Comments: Different from flipping a coin, where the gain/loss is one dollar, we have
now random gain/loss (Bj/n−B(j−1)/n). So there is no sense checking our loss and making
new strategy constantly. Put it into real-world experience, when times are tough and the
outcome of life is uncertain, don’t regret your loss and estimate how much more you should
invest to recover that loss. Just keep trying as hard as you can. When the opportunity
comes, you may just get back everything you deserve.

EP2-1.

Proof. This is another application of the fact hinted in Problem EP1-1. E[Yn] = 0 is
obvious. And

E[(B1
j/n −B1

(j−1)/n)
4(B2

j/n −B2
(j−1)/n)

4]

= (3E[(B1
j/n −B1

(j−1)/n)
2]2)2

=
9
n4

:= an

We set Xj = [B1
j/n −B1

(j−1)/n][B
2
j/n −B2

(j−1)/n]/a
1
4
n , and apply the hint in EP1-1,

E[Y 4
n ] = anE(X1 + · · ·+Xn)4 ≤

9
n4
cn2 =

9c
n2

for some constant c. This implies Yn → 0 with probability one, by Borel-Cantelli lemma.

Comments: This following simple proposition is often useful in calculation. If X is a
centered Gaussian random variable, then E[X4] = 3E[X2]2. Furthermore, we can show
E[X2k] = CkE[X2k−2]2 for some constant Ck. These results can be easily proved by
integration-by-part formula. As a consequence, E[B2k

t ] = Ctk for some constant C.

EP3-1.

Proof. A short proof: For part (a), it suffices to set

Yn+1 = E[Rn+1 −Rn|X1, · · · , Xn+1 = 1]
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(What does this really mean, rigorously?). For part (b), the answer is NO, and Rn =∑n
j=1X

3
j gives the counter example.

A long proof:
We show the analysis behind the above proof and point out if {Xn}n is i.i.d. and

symmetrically distributed, then Bernoulli type random variables are the only ones that
have martingale representation property.

By adaptedness, Rn+1 − Rn can be represented as fn+1(X1, · · · , Xn+1) for some Borel
function fn+1 ∈ B(Rn+1). Martingale property and {Xn}n being i.i.d. Bernoulli random
variables imply

fn+1(X1, · · · , Xn,−1) = −fn+1(X1, · · · , Xn, 1)

This inspires us set Yn+1 as

fn+1(X1, · · · , Xn, 1) = E[Rn+1 −Rn|X1, · · · , Xn+1 = 1].

For part b), we just assume {Xn}n is i.i.d. and symmetrically distributed. If (Rn)n has
martingale representation property, then

fn+1(X1, · · · , Xn+1)/Xn+1

must be a function of X1, · · · , Xn. In particular, for n = 0 and f1(x) = x3, we have
X2

1 =constant. So Bernoulli type random variables are the only ones that have martingale
representation theorem.

EP5-1.

Proof. A = r
x
d
dx + 1

2
d2

dx2 , so we can choose f(x) = x1−2r for r 6= 1
2 and f(x) = log x for

r = 1
2 .

EP6-1. (a)

Proof. Assume the claim is false, then there exists t0 > 0, ε > 0 and a sequence {tk}k≥1

such that tk ↑ t0, and ∣∣∣∣f(tk)− f(t0)
tk − t0

− f ′+(t0)
∣∣∣∣ > ε

WLOG, we assume f ′+(t0) = 0, otherwise we consider f(t)− tf ′+(t0). Because f ′+ is contin-
uous, there exists δ > 0, such that ∀t ∈ (t0 − δ, t0 + δ),

|f ′+(t)− f ′+(t0)| = |f ′+(t)| < ε

2

Meanwhile, there exists infinitely many tk’s such that

f(tk)− f(t0)
tk − t0

> ε or
f(tk)− f(t0)

tk − t0
< −ε

By considering f or −f and taking a subsequence, we can WLOG assume for all the tk’s,
tk ∈ (t− δ, t+ δ), and

f(tk)− f(t0)
tk − t0

− f ′+(t0) > ε

11



Consider h(t) = ε(t − t0) − [f(t) − f(t0)] = (t − t0)
[
ε− f(t)−f(t0)

t−t0

]
. Then h(t0) = 0,

h′+(t) = ε− f ′+(t) > ε/2 for t ∈ (t0 − δ, t0 + δ), and h(tk) > 0. On one hand,∫ t0

tk

h′+(t)dt >
ε

2
(t0 − tk) > 0

On the other hand, if h is monotone increasing, then∫ t0

tk

h′+(t)dt ≤ h(t0)− h(tk) = 0− h(tk) < 0

Contradiction.
So it suffices to show h is monotone increasing on (t0 − δ, t0 + δ). This is easily proved

by showing h cannot obtain local maximum in the interior of (t0 − δ, t0 + δ).

(b)

Proof. f(t) = |t− 1|.

(c)

Proof. f(t) = 1{t≥0}.

EP6-2. (a)

Proof. Since A is bounded, τ <∞ a.s..

Ex[Mn+1 −Mn|Fn] = Ex[f(Sn+1)− f(Sn)|Fn]1{τ≥n+1}

= (ESn [f(S1)]− f(Sn))1{τ≥n+1}

= ∆f(Sn)1{τ≥n+1}

Because Sn ∈ A on {τ ≥ n+ 1} and f is harmonic on Ā, ∆f(Sn)1{τ≥n+1} = 0. So M is a
martingale.

(b)

Proof. For existence, set f(x) = Ex[F (Sτ )] (x ∈ Ā), where τ = inf{n ≥ 0 : Sn 6∈ A}.
Clearly f(x) = F (x) for x ∈ ∂A. For x ∈ A, τ ≥ 1 under P x, and we have

∆f(x) = Ex[f(S1)]− f(x)
= Ex[ES1 [F (Sτ )]]− f(x)
= Ex[Ex[F (Sτ ) ◦ θ1|S1]]− f(x)
= Ex[F (Sτ ) ◦ θ1]− f(x)
= Ex[F (Sτ )]− f(x)
= 0

For the 5th equality, we used the fact under P x, τ ≥ 1 and hence Sτ ◦ θ1 = Sτ .

12



For uniqueness, by part a), f(Sn∧τ ) is a martingale, so use optimal stopping time, we
have

f(x) = Ex[f(S0)] = Ex[f(Sn∧τ )]

Becasue f is bounded, we can use bounded convergence theorem and let n ↑ ∞,

f(x) = Ex[f(Sτ )] = Ex[F (Sτ )]

(c)

Proof. Since d ≤ 2, the random walk is recurrent. So τ < ∞ a.s. even if A is bounded.
The existence argument is exactly the same as part b). For uniqueness, we still have
f(x) = Ex[f(Sn∧τ )]. Since f is bounded, we can let n ↑ ∞, and get f(x) = Ex[F (Sτ )].

(d)

Proof. Let d = 1 and A = {1, 2, 3, ...}. Then ∂A = {0}. If F (0) = 0, then both f(x) = 0
and f(x) = x are solutions of the discrete Dirichlet problem. We don’t have uniqueness.

(e)

Proof. A = Z3 − {0}, ∂A = {0}, and F (0) = 0. T0 = inf{n ≥ 0 : Sn ≥ 0}. Let c ∈ R
and f(x) = cP x(T0 = ∞). Then f(0) = 0 since T0 = 0 under P 0. f is clearly bounded.
To see f is harmonic, the key is to show P x(T0 = ∞|S1 = y) = P y(T0 = ∞). This is due
to Markov property: note T0 = 1 + T0 ◦ θ1. Since c is arbitrary, we have more than one
bounded solution.

EP6-3.

Proof.

Ex[Kn −Kn−1|Fn−1] = Ex[f(Sn)− f(Sn−1)|Fn−1]−∆f(Sn−1)
= ESn−1 [f(S1)]− f(Sn−1)−∆f(Sn−1)
= ∆f(Sn−1)−∆f(Sn−1)
= 0

Applying Dynkin’s formula is straightforward.

EP6-4. (a)

Proof. By induction, it suffices to show if |y − x| = 1, then Ey[TA] < ∞. We note TA =
1 + TA ◦ θ1 for any sample path starting in A. So

Ex[TA1{S1}] = Ex[TA|S1 = y]P x(S1 = y) = Ey[TA − 1]P x(S1 = y)

Since Ex[TA1{S1}] ≤ Ex[TA] <∞ and P x(S1 = y) > 0, Ey[TA] <∞.

13



(b)

Proof. If y ∈ ∂A, then under P y, TA = 0. So f(y) = 0. If y ∈ A,

∆f(y) = Ey[f(S1)]− f(y)
= Ey[Ey[TA ◦ θ1|S1]]− f(y)
= Ey[Ey[TA − 1|S1]]− f(y)
= Ey[TA]− 1− f(y)
= −1

To see uniqueness, use the martingale in EP6-3 for any solution f , we get

Ex[f(STA∧K)] = f(x) + Ex[
TA−1∑
j=0

∆f(Sj)] = f(x)− Ex[TA]

Let K ↑ ∞, we get 0 = f(x)− Ex[TA].

EP7-1. a)

Proof. Since D is bounded, there exists R > 0, such that D ⊂⊂ B(0, R). Let τR := inf{t >
0 : |Bt −B0| ≥ R}, then τ ≤ τR. If q ≥ −ε

e(x) = Ex[eετ ] ≤ Ex[eετR ] = Ex[
∫ τR

0

εeεtdt+ 1] = 1 +
∫ ∞

0

P x(τR > t)εeεtdt

For any n ∈ N, P x(τR > n) ≤ P x(∩ni=1{|Bk−Bk−1| < 2R}) = an, where a = P x(|B1−B0| <
2R) < 1. So e(x) ≤ 1+εeε

∑∞
n=1(ae

ε)n−1. For ε small enough, aeε < 1, and hence e(x) <∞.
Obviously, ε is only dependent on D.

c)

Proof. Since q is continuous and D̄ is compact, q attains its minimum M . If M ≥ 0, then
we have nothing to prove. So WLOG, we assume M < 0. Then similar to part a),

ẽ(x) ≤ Ex[e−M(τ∧σε)] ≤ Ex[e−Mσε ] = 1 +
∫ ∞

0

P x(σε > t)(−M)e−Mtdt

Note P x(σε > t) = P x(sups≤t |Bs − B0| < ε) = P 0(sups≤t |εBs/ε2 | < ε) = P x(σ1 > t/ε2).
So ẽ(x) = 1 +

∫∞
0
P x(σ1 > u)(−Mε2)e−Mε2udu = Ex[e−Mε2σ1 ]. For ε small enough, −Mε2

will be so small that, by what we showed in the proof of part a), Ex[e−Mε2σ1 ] will be finite.
Obviously, ε is dependent on M and D only, hence q and D only.

d)

Proof. Cf. Rick Durrett’s book, Stochastic Calculus: A Practical Introduction, page 158-
160.
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b)

Proof. From part d), it suffices to show for a give x, there is a K = K(D,x) <∞, such that
if q = −K, then e(x) = ∞. Since D is open, there exists r > 0, such that B(x, r) ⊂⊂ D.

Now we assume q = −K < 0, where K is to be determined. We have

e(x) = Ex[eKτ ] ≥ Ex[eKτr ].

Here τr := inf{t > 0 : |Bt −B0| ≥ r}. Similar to part a), we have

Ex[eKτr ] ≥ 1 +
∞∑
n=1

P x(τr ≥ n)ekn(1− e−k)

So it suffices to show there exists δ > 0, such that P x(τr ≥ n) ≥ δn.
Note

P x(τr > n) = P x(max
t≤n

|Bt −B0| < r) ≥ P x(max
t≤n

|Bit −Bi0| < C(d)r, i ≤ d),

where Bi is the i-th coordinate of B and C(d) is a constant dependent on d. Set a = C(d)r,
then by independence

P x(τr > n) ≥ P 0(max
t≤n

|Wt| < a)d

Here W is a standard one-dimensional BM. Let

δ = inf
− a

2<x<
a
2

P x(max
t≤1

|Wt| < a, |W0| < a/2, |W1| < a/2)(> 0)

then we have

P 0(max
t≤n

|Wt| < a)

≥ P 0(∩nk=1{ max
k−1≤t≤k

|Wt| < a, |Wk−1| <
a

2
, |Wk| <

a

2
})

= P 0({ max
n−1≤t≤n

|Wt| < a, |Wn−1| <
a

2
, |Wn| <

a

2
}| ∩n−1

k=1

{ max
k−1≤t≤k

|Wt| < a, |Wk−1| <
a

2
, |Wk| <

a

2
})

×P 0(∩n−1
k=1{ max

k−1≤t≤k
|Wt| < a, |Wk−1| <

a

2
, |Wk| <

a

2
})

≥ δP 0(∩n−1
k=1{ max

k−1≤t≤k
|Wt| < a, |Wk−1| <

a

2
, |Wk| <

a

2
})

The last line is due to Markov property. By induction we have

P 0(max
t≤n

|Wt| < a) > δn,

and we are done.

EP7-2.
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Proof. Consider the case of dimension 1. D = {x : x > 0}. Then for any x > 0, P x(τ <
∞) = 1. But by P x(τ ∈ dt) = x

2πt3 e
− x2

2t dt, we can calculate that Ex[τ ] = ∞. So for every
ε > 0, Ex[eετ ] ≥ eεE[τ ] = ∞.

EP8-1. a)

Proof.

E[eaX1 ] =
∫ ∞

−∞

1√
2π
e−

x2
2 +axdx = e

a2
2

So E[X1e
aX1 ] = ae

a2
2 .

b)

Proof. We note Zn ∈ Fn and Xn+1 is independent of Fn, so we have

E[
Mn+1

Mn
|Fn]

= E[e−f(Zn)Xn+1− 1
2 f

2(Zn)|Fn]
= E[e−f(z)Xn+1− 1

2 f
2(z)]|z=Zn

= e
1
2 f

2(Zn)− 1
2 f

2(Zn) = 1

So (Mn)n≥0 is a martingale with respect to (Fn)n≥0.

c)

Proof.

E[Mn+1Zn+1 −MnZn|Fn

= MnE[
Mn+1

Mn
Zn+1 − Zn|Fn]

= MnE[
Mn+1

Mn
(Zn + f(Zn) +Xn+1)− Zn|Fn]

= MnE[Zn + f(Zn)− Zn + E[
Mn+1

Mn
Xn+1|Fn]]

= Mn[f(Zn) + E[Xn+1e
−f(Zn)Xn+1− 1

2 f
2(Zn)|Fn]]

= Mn[f(Zn)− f(Zn)]
= 0

So (MnZn)n≥0 is a martingale w.r.t. (Fn)n≥0.

d)

Proof. ∀A ∈ Fn, EQ[Zn+1;A] = EP [Mn+1Zn+1;A] = EP [MnZn;A] = EQ[Zn;A]. So
EQ[Zn+1|Fn] = Zn, that is, Zn is a Q-martingale.

EP8-2. a)
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Proof. Let Zt = exp{
∫ t∧Tε

0
α(α−1)

2B2
s
ds}. Note Bαt∧Tε

= (
∫ t
0

1{s≤Tε}dBs)
α, we have

dBαt∧Tε
= αBα−1

t∧Tε
1{t≤Tε}dBt +

α(α− 1)
2

Bα−2
t∧Tε

1{t≤Tε}dt

So Mt = Bαt∧Tε
Zt satisfies

dMt = Bαt∧Tε
dZt + ZtαB

α−1
t 1{t≤Tε}dBt + Zt

α(α− 1)
2

Bα−2
t 1{t≤Tε}dt

Meanwhile, dZt = α(α−1)
2B2

t
1{t≤Tε}e

∫ t
0

α(1−α)
2B2

s
ds
dt. So

Bαt∧Tε
dZt +

α(α− 1)
2

1{t≤Tε}B
α−2
t Ztdt = 0

Hence dMt = ZtαB
α−1
t 1{t≤Tε}dBt. To check M is a martingale, we note we actually have

E[
∫ T

0

Z2
t α

2B2α−2
t ]1{t≤Tε}dt <∞.

Indeed, Z2
t 1{t≤Tε} ≤ e

α|1−α|
2ε2

T . If α ≤ t, B2α−2
t 1{t≤Tε} ≤ ε2α−2; if α > 1, E[B2α−2

t 1{t≤Tε}] ≤
tα−1. Hence M is martingale.

b)

Proof. Under Q, Yt = Bt −
∫ t
0

1
Ms
d〈M,B〉s is a BM. We take At = − α

Bt
1{t≤Tε}. The SDE

for B in terms of Yt is
dBt = dYt +

α

Bt
1{t≤Tε}dt

c)

Proof. Under Q, B satisfies the Bessel diffusion process before it hits 1
2 . That is, up to the

time T 1
2
, B satisfies the equation

dBt = dYt +
α

Bt
dt

This line may sound fishy as we haven’t defined what it means by an SDE defined up to
a random time. Actually, a rigorous theory can be built for this notion. But we shall avoid
this theoretical issue at this moment.

We choose b > 1, and define τb = inf{t > 0 : Bt 6∈ ( 1
2 , b)}. Then Q1(T 1

2
= ∞) =

limb→∞Q1(Bτb
= b). By the results in EP5-1 and Problem 7.18 in Oksendal’s book, we

have
(i) If α > 1/2, limb→∞Q1(Bτb

= b) = limb→∞
1−( 1

2 )1−2α

b1−2α−( 1
2 )1−2α = 1 − ( 1

2 )2α−1 > 0. So in

this case, Q1(T 1
2

= ∞) > 0.

(ii) If α < 1/2, limb→∞Q1(Bτb
= b) = limb→∞

1−( 1
2 )1−2α

b1−2α−( 1
2 )1−2α = 0. So in this case,

Q1(T 1
2

= ∞) = 0.
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(iii) If α = 1/2, limb→∞Q1(Bτb
= b) = limb→∞

0−log 1
2

log b−log 1
2

= 0. So in this case, Q1(T 1
2

=
∞) = 0.

EP9-1. a)

Proof. Fix z ∈ D, consider A = {ω ∈ D : ρD(z, ω) < ∞}. Then A is clearly open. We
show A is also closed. Indeed, if ωk ∈ A and ωk → ω∗ ∈ D, then for k sufficiently large,
|ωk − ω∗| < 1

2dist(ω∗, ∂D). So ωk and ω∗ are adjacent. By definition, ρD(ω∗, z) < ∞, i.e.
ω∗ ∈ A.

Since D is connected, and A is both closed and open, we conclude A = D. By the
arbitrariness of z, ρD(z, ω) <∞ for any z, ω ∈ D.

To see ρD is a metric on D, note ρD(z, z) = 0 by definition and ρ(z, ω) ≥ 1 for z 6= ω. So
ρD(z, ω) = 0 iff z = ω. If {xk} is a finite adjacent sequence connecting z1 and z2, and {yl}
is a finite adjacent sequence connecting z2 and z3, then {xk, z2, yl}k,l is a finite adjacent
sequence connecting z1 and z3. So ρD(z1, z3) ≤ ρD(z1, z2) + ρD(z2, z3). Meanwhile, it’s
clear that ρD(z, ω) ≥ and ρD(z, ω) = ρD(ω, z). So ρD is a metric.

b)

Proof. ∀z ∈ Uk, then ρD(z0, z) ≤ k. Assume z0 = x0, x1, · · · , xk = z is a finite adjacent
sequence. Then |z − xk−1| < 1

2 max{dist(z, ∂D),dist(xk−1, ∂D)}. For ω close to z,

|ω − xk−1| ≤ |z − ω|+ |z − xk−1| <
1
2

max{dist(ω, ∂D),dist(xk−1, ∂D)}.

Indeed, if dist(xk−1, D) > dist(z, ∂D), then for ω close to z, dist(ω, ∂D) is also close to
dist(z, ∂D), and hence < dist(xk−1, ∂D). Choose ω such that |z − ω| < 1

2dist(xk−1, ∂D)−
|z − xk−1|, we then have

|ω − xk−1|
≤ |z − ω|+ |z − xk−1|

<
1
2
dist(xk−1, ∂D)

=
1
2

max(dist(xk−1, ∂D),dist(ω, ∂D))

If dist(xk−1, ∂D) ≤ dist(z, ∂D), then for ω close to z, 1
2 max{dist(ω, ∂D),dist(xk−1, ∂D)}

is very close to 1
2 max{dist(z, ∂D),dist(xk−1, ∂D)} = 1

2dist(z, ∂D). Hence, for ω close to z,

|ω − xk−1| ≤ |z − ω|+ |z − xk−1| <
1
2

max(dist(xk−1, ∂D),dist(ω, ∂D))

Therefore ω and xk−1 are adjacent. This shows ρD(z0, ω) ≤ k, i.e. ω ∈ Uk.

c)
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Proof. By induction, it suffices to show there exists a constant c > 0, such that for adjacent
z, ω ∈ D, h(z) ≤ ch(ω). Indeed, let r = 1

4 min{dist(z, ∂D),dist(ω, ∂D)}, then by mean-
value property, ∀y ∈ B(ω, r), we have B(y, r) ⊂ B(ω, 2r), so

h(ω) =

∫
B(ω,2r)

h(x)dx

V (B(ω, 2r))
≥

∫
B(y,r)

h(x)dx

V (B(ω, 2r))
=

V (B(y, r))
V (B(ω, 2r))

h(y) =
h(y)
2d

By using a sequence of small balls connecting ω and z, we are done.

d)

Proof. Since K is compact and {U1(x)}x∈U is an open covering of K, we can find a finite
sub-covering {Uni

(x)}Ni=1 of K. This implies ∀z, ω ∈ K, ρD(z, ω) ≤ N . By the result in part
c), we’re done.

EP9-2. a)

Proof. We first have the following observation. Consider circles centered at 0, with radius
r and 2r, respectively. Let B be a BM on the plane and σ2r = inf{t > 0 : |Bt| = 2r}.

∀x ∈ ∂B(0, r), P x([B0, Bσ2r ] doesn’t loop around 0) is invariant for different x’s on
∂B(0, r), by the rotational invariance of BM. ∀θ > 0, we define B̄t = Bθt, and σ̄2r =
inf{t > 0 : |B̄t| = 2r}. Since B̄ and B have the same trajectories,

P x([B0, Bσ2r
] doesn’t loop around 0)

= P ([B0, Bσ2r
] + x doesn’t loop around 0)

= P ([B̄0, B̄σ̄2r
] + x doesn’t loop around 0)

= P ( 1√
θ
[B̄0, B̄σ̄2r ] + x√

θ
doesn’t loop around 0)

Define Wt = B̄t√
θ

= Bθt√
θ
, then W is a BM under P. If we set τ = inf{t > 0 : |Wt| = 2r√

θ
},

then τ = σ̄2r. So

P ( 1√
θ
[B̄0, B̄σ̄2r

] + x√
θ

doesn’t loop around 0)

= P ([W0,Wτ ] + x√
θ

doesn’t loop around 0)

= P
x√
θ ([W0,Wτ ] doesn’t loop around 0)

Note x√
θ
∈ ∂B(0, r√

θ
), we conclude for different r’s, the probability that BM starting from

∂B(0, r) exits B(0, 2r) without looping around 0 is the same.
Now we assume 2−n−1 ≤ |x| < 2−n and σn = inf{t > 0 : |Bt| = 2−n}. Then for

Ej = {[Bσj
, Bσj−1 ] doesn’t loop around 0}, E ⊂ ∩nj=1Ej . From what we observe above,

PBσj ([B0, Bσj−1 ] doesn’t loop around 0) is a constant, say β. Use strong Markov property
and induction, we have

P x(∩nj=1Ej) = P x(∩nj=2Ej ;P
x(E1|Fσ1)) = βP x(∩nj=2Ej) = βn = 2n log β
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Set − log β = α, we have P x(E) ≤ 2−αn = 2α(2−n−1)α ≤ 2α|x|α. Clearly β ∈ (0, 1). So
α ∈ (0,∞).

The above discussion relies on the assumtion |x| < 1/2. However, when 1/2 ≤ |x| < 1,
the desired inequality is trivial. Indeed, in this case 2α|x|α ≥ 1.

b)

Proof. ∀x ∈ ∂D, WLOG, we assume x = 0. ∀ε > 0, let B̄t = εBt/ε2 , σ = inf{t > 0 : |Bt| =
1} and σ̄ := σ̄ε = inf{t > 0 : |B̄t| = ε}, then σ̄ = ε2σ. Hence P 0{[B̄0, B̄σ̄] loops around 0} =
P 0{[B0, Bσ] loops around 0}. By part a), P{[B0, Bσ] loops around 0} = 1. So,

P 0(B̄ loops around 0 before exiting B(0, ε)) = 1.

This means P (τD < σ̄ε) = 1, ∀ε > 0. This is equivalent to x being regular.

EP9-3. a)

Proof. We first establish a derivative estimate for harmonic functions. Let h be harmonic in
D. Then ∂h

∂zi
is also harmonic. By mean-value property and integration-by-parts formula,

∀z0 ∈ D and ∀r > 0 such that B(z0, r) ⊂ U , we have∣∣∣∣ ∂h∂zi (z0)
∣∣∣∣ =

∣∣∣∣∣
∫
B(z0,r/2)

∂h
∂zi
dz

V (B(z0, r/2))

∣∣∣∣∣ =

∣∣∣∣∣
∫
∂B(z0,r/2)

hvidz

V (B(z0, r/2))

∣∣∣∣∣ ≤ 2d
r
||h||L∞(∂B(z0,r/2))

Now fix K. There exists η > 0, such that when K is enlarged by a distance of η, the
enlarged set is contained in the interior of a compact subset K ′ of U . Furthermore, if
η is small enough, ∀z, ω ∈ K with |z − ω| < η, we have ∪ξ∈[z,ω]B(ξ, η) ⊂ K ′. Denote
supn supz∈K′ |hn(z)| by C, then by the above derivative estimate, for z, ω ∈ K with |z−ω| <
η,

|hn(z)− hn(ω)| ≤ 2d
η
C|z − ω|

This clearly shows the desired δ exists.

b)

Proof. Let K be a compact subset of D, then by part a) and Arzela-Ascoli theorem, {hn}n
is relatively compact in C(K). So there is a subsequence {hnj

} such that hnj
→ h uniformly

on K. Furthermore, by mean-value property, h must be also harmonic in the interior of K.
By choosing a sequence of compact subsets {Kn} increasing to D, and choosing diagonally
subsequences, we can find a subsequence of {hn} such that it converges uniformly on any
compact subset of D. This will consistently define a function h in D. Since harmonicity is
a local property, h is harmonic in D.

EP10-1. a)
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Proof. First, we note that

P x(B1 ≥ 1;Bt > 0,∀t ∈ [0, 1]) = P x(B1 ≥ 1)− P x( inf
0≤s≤1

Bs ≤ 0, B1 ≥ 1)

Let τ0 be the first passage time of BM hitting 0, then by strong Markov property

P x(inf
s≤1

Bs ≤ 0, B1 ≥ 1)

= P x(τ0 ≤ 1, P x(B1 ≥ 1|Fτ0))
= P x(τ0 ≤ 1, PBτ0 (Bu ≥ 1)|u=1−τ0)
= P x(τ0 ≤ 1, P 0(Bu ≥ 1)|u=1−τ0)
= P x(τ0 ≤ 1, P 0(Bu ≤ −1)|u=1−τ0)
= P x(τ0 ≤ 1, B1 ≤ −1)
= P x(B1 ≤ −1)

So

P x(B1 ≥ 1;Bt > 0,∀t ∈ [0, 1])
= P x(B1 ≥ 1)− P x(B1 ≤ −1)

=
∫ 1+x

1−x

e−y
2/2

√
2π

dy

≥ 2x
e−2

√
2π

where the last inequality is due to x < 1.

EP10-2.

Proof. Let F (n) = P (E2n) and let DLA be the shorthand for “doesn’t loop around” then

F (n+m) = P (E2n+m)
= P ([B0, BT2n+m ] DLA 0)
≤ P ([B0, BT2n ] DLA 0;P ([BT2n , BT2n+m ] DLA 0|FT 2n ))

= P ([B0, BT2n ] DLA 0;PBT2n ([B0, BT2n+m ] DLA 0))

By rotational invariance of BM P x([B0, BT2n+m ] DLA 0) is a constant for any x ∈ ∂B(0, 2n).
By scaling, we have

P x([B0, BT2n+m ] DLA 0) = P
x
2n ([B0, BT2m ] DLA 0) = P (E2m) = F (m)

So F (n+m) ≤ F (n)F (m). By the properties of submultiplicative functions, limn→∞
logF (n)

n
exists. We set this limit by −α. ∀m ∈ N, for m large enough, we can find n, such that
2n ≤ m < 2n+1, then P (E2n) ≥ P (Em) ≥ P (E2n+1). So

logP (E2n)
log 2n

log 2n

logm
≥ logP (Em)

logm
≥ logP (E2n+1)

log 2n+1

log 2n+1

logm
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Let m → ∞, then log 2n/ logm → 1 as seen by log 2n ≤ logm < log 2 + log 2n. So
limm

logP (Em)
logm exists and equals to −α. To see α ∈ (0, 1], note F (1) < 1 and F (n) ≤ F (1)n.

So α > 0. Furthermore, we note

P x([B0, BTn ] DLA 0)
≥ P x(B1 exits (0, n) by hitting n)

=
1
n

So logP (En)/ log n ≥ −1. Hence α ≤ 1.

EP10-3. a)

Proof. We assume f0(k) = 1, ∀k and j, k = 1, · · · , N . We let P be the N × N matrix
with Pjk = pj,k. Then if we regard fn as a row vector, we have fn = fn−1P . Define
Mn = maxk≤N fn(k), then

fn+m = f0P
n+m = f0P

mPn = fmP
n ≤Mmf0P

n = Mmfn ≤MmMnf0

So Mn+m ≤ MnMm. By properties of submultiplicative functions, limn
logMn

n exists and
equals infn logMn

n . Meanwhile, δ := minj,k≤N pj,k > 0. So

Mn ≥ fn(k) ≥ δ
N∑
j=1

fn−1(j) ≥ δMn−1

By induction, Mn ≥ δn. Hence infn logMn

n ≥ log δ > −∞. Let β = infn logMn

n , then
Mn ≥ eβn. We set α = eβ . Then Mn ≥ αn. Meanwhile, there exists constant C ∈ (0,∞),
such that for mn = mink≤N fn(k), Mn ≤ Cmn. Indeed, for n = 1, M1 = m1, and for n > 1,
fn(k) =

∑
j pj,kfn−1(j) ≤ K

∑
j fn−1(j) and fn(k) ≥ δ

∑
j fn−1(j). So Mn ≤ K

δ mn. Let
C = K

δ ∨ 1, then

fn(k) ≥ mn ≥
Mn

C
≥ αn

C

Similarly, we can show mn is supermultiplicative and similar argument gives us the upper
bound.
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