The Katětov order in-between \mathcal{ED} and $Fin \otimes Fin$

Jacek Tryba University of Gdańsk

jacek.tryba@ug.edu.pl

Ideals generated by sequences of functions

Definition 1. [1] For a family $\mathcal{F} \subseteq \omega^{\omega}$ we define the ideal $\mathcal{I}(\mathcal{F})$ on $\omega \times \omega$ to be the ideal generated by the family

 $\{A \subseteq \omega \times \omega : \exists f \in \mathcal{F} \, \forall^{\infty} n \, (|\{k : (n,k) \in A\}| \leq f(n))\}.$

Examples

Some well known ideals are of the form $\mathcal{I}(\mathcal{F})$:

•
$$\mathcal{I}(\mathcal{F}) = \operatorname{Fin} \otimes \{\emptyset\} \text{ for } \mathcal{F} = \{(0, 0, \ldots)\},\$$

•
$$\mathcal{I}(\mathcal{F}) = \mathcal{ED} \text{ for } \mathcal{F} = \{ f \in \omega^{\omega} : f \text{ is constant} \}$$

•
$$\mathcal{I}(\mathcal{F}) = \operatorname{Fin} \otimes \operatorname{Fin} \operatorname{for} \mathcal{F} = \omega^{\omega}$$

Katětov order

Definition 2. For ideals \mathcal{I}, \mathcal{J} on X and Y respectively, we write

- $\mathcal{I} \leq_K \mathcal{J}$ if there is a function $f : Y \to X$ such that $f^{-1}[A] \in \mathcal{J}$ for every $A \in \mathcal{I}$ (\leq_K is called the *Katětov order*);
- $\mathcal{I} \leq_{KB} \mathcal{J}$ if there is a finite to one function $f : Y \to X$ such that $f^{-1}[A] \in \mathcal{J}$ for every $A \in \mathcal{I}$ (\leq_{KB} is called the *Katětov-Blass order*).

How many $\mathcal{I}(\mathcal{F})$ ideals are there?

Theorem 3. There is an order embedding of the family of all ideals, ordered by the Katětov-Blass order, into the family of ideals of the form $\mathcal{I}(\mathcal{F})$, ordered by the Katětov-Blass order.

Properties

Proposition 1. If there exists $f \in \mathcal{F}$ such that $f(n) \neq 0$ for all but finitely many $n \in \omega$, then $\mathcal{I}(\mathcal{F})$ is tall, i.e. for every infinite $A \subseteq \omega \times \omega$ there exists infinite $B \subseteq A$ such that $B \in \mathcal{I}(\mathcal{F})$.

Proposition 2. For every $\mathcal{F} \subseteq \omega^{\omega}$, $\mathcal{I}(\mathcal{F}) \subseteq \text{Fin} \otimes \text{Fin.}$ Moreover, if there exists $f \in \mathcal{F}$ such that $f(n) \neq 0$ for all but finitely many $n \in \omega$, then $\mathcal{ED} \subseteq \mathcal{I}(\mathcal{F})$.

Proposition 3. The ideal $\mathcal{I}(\mathcal{F})$ is not a P-ideal, i.e. there is a sequence $A_0, A_1, \ldots \in \mathcal{I}(\mathcal{F})$ such that for every $A \in \mathcal{I}(\mathcal{F})$ there is $n \in \omega$ such that $|A_n \setminus A| = \omega$.

Proposition 4. Ideals of the form $\mathcal{I}(\mathcal{F})$ have the following topological properties:

- Every ideal $\mathcal{I}(\mathcal{F})$ has the Baire property.
- If \mathcal{F} is σ -compact, then $\mathcal{I}(\mathcal{F})$ is a σ -compact (hence, F_{σ}) ideal.
- If \mathcal{F} is countable, then $\mathcal{I}(\mathcal{F})$ is an F_{σ} ideal.
- If $|\mathcal{F}| < \mathfrak{b}$, then $\mathcal{I}(\mathcal{F})$ is contained in an F_{σ} ideal.
- If \mathcal{F} is a Borel (or even analytic) set, then $\mathcal{I}(\mathcal{F})$ is an analytic ideal.
- There are Borel ideals of the form $\mathcal{I}(\mathcal{F})$ of arbitrarily high Borel complexity i.e. for every $\alpha < \omega_1$ there exists $\mathcal{F} \subseteq \omega^{\omega}$ such that the ideal $\mathcal{I}(\mathcal{F})$ is Borel but not in Σ_{α}^0 .
- There exists $\mathcal{F} \subseteq \omega^{\omega}$ such that the ideal $\mathcal{I}(\mathcal{F})$ is not Borel.

Cardinal characteristics

Hernández-Hernández and Hrušák introduced in [2] modified versions of classical cardinal characteristics that are more suitable for tall ideals on countable sets.

Theorem 4. There are $2^{\mathfrak{c}}$ pairwise \leq_K -incomparable ideals of the form $\mathcal{I}(\mathcal{F})$.

Structure of Borel ideals of the form $\mathcal{I}(\mathcal{F})$

By using ideals of the form $\mathcal{I}(\mathcal{F})$, one can show that the structure of ideals in-between the ideals \mathcal{ED} and $\operatorname{Fin} \otimes \operatorname{Fin}$ in the Katětov order is quite complicated.

Theorem 5. There is an order embedding of $\mathcal{P}(\omega)/\text{Fin}$, ordered by \subseteq^* , into the family of Borel (in fact Σ_4^0) ideals of the form $\mathcal{I}(\mathcal{F})$ which are in-between the ideals \mathcal{ED} and $\text{Fin} \otimes \text{Fin}$, ordered by the Katětov (or equivalently Katětov-Blass) order. In particular,

- there is a \leq_K -antichain of cardinality \mathfrak{c} of Borel ideals of the form $\mathcal{I}(\mathcal{F})$ (in particular, there are \mathfrak{c} pairwise nonisomorphic Borel ideals of the form $\mathcal{I}(\mathcal{F})$);
- there are increasing and decreasing \leq_{KB} -chains of length \mathfrak{b} of Borel ideals of the form $\mathcal{I}(\mathcal{F})$.

Theorem 6. There are \mathfrak{c} pairwise nonisomorphic F_{σ} ideals of the form $\mathcal{I}(\mathcal{F})$.

Open problems

Problem 1. Is there an order embedding of $\mathcal{P}(\omega)/\text{Fin}$, ordered by \subseteq^* , into the family of F_{σ} ideals of the form $\mathcal{I}(\mathcal{F})$, ordered by the Katětov order?

Problem 2. Are there uncountable increasing (decreasing, resp.) \leq_K -

 $\operatorname{add}^{*}(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land \neg \exists B \in \mathcal{I} \forall A \in \mathcal{A} (A \subset^{*} B)\},\\\operatorname{cov}^{*}(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land \neg \exists B \in \mathcal{P}(\omega) \setminus \operatorname{Fin}^{*} \forall A \in \mathcal{A} (A \subset^{*} B)\},\\\operatorname{non}^{*}(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{P}(\omega) \setminus \operatorname{Fin}^{*} \land \forall B \in \mathcal{I} \exists A \in \mathcal{A} (B \subset^{*} A)\},\\\operatorname{cof}^{*}(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land \forall B \in \mathcal{I} \exists A \in \mathcal{A} (B \subset^{*} A)\}.$

Meza-Alcántara have calculated these characteristics for \mathcal{ED} and Fin \otimes Fin in [3]. These results can be generalized in the following way. **Proposition 5.** $\operatorname{add}^*(\mathcal{I}(\mathcal{F})) = \aleph_0$ and $\operatorname{non}^*(\mathcal{I}(\mathcal{F})) = \aleph_0$ for all tall ideals $\mathcal{I}(\mathcal{F})$.

Proposition 6. $\mathfrak{b} \leq \operatorname{cov}^*(\mathcal{I}(\mathcal{F})) \leq \operatorname{non}(\mathcal{M})$ for each tall ideal $\mathcal{I}(\mathcal{F})$. **Theorem 1.** Let $\mathcal{I}(\mathcal{F})$ be a tall ideal. If $|\mathcal{F}| < \mathfrak{b}$, then $\operatorname{cov}^*(\mathcal{I}(\mathcal{F})) = \operatorname{non}(\mathcal{M})$.

Proposition 7. $\operatorname{cof}^*(\mathcal{I}(\mathcal{F})) \geq \mathfrak{d}$ if and only if $\mathcal{I}(\mathcal{F}) \neq \operatorname{Fin} \otimes \{\emptyset\}$. **Theorem 2.** $\operatorname{cof}^*(\mathcal{I}(\{k \cdot f : k \in \omega\})) = \mathfrak{c}$ for each $f \in \omega^{\omega}$ such that $f \neq^* 0$. chains of F_{σ} ideals of the form $\mathcal{I}(\mathcal{F})$?

Problem 3. Are there uncountable \leq_K -antichains of F_{σ} ideals of the form $\mathcal{I}(\mathcal{F})$?

Problem 4. Does $\operatorname{cof}^*(\mathcal{I}(\mathcal{F})) = \mathfrak{c}$ for each countable family \mathcal{F} such that $\mathcal{I}(\mathcal{F}) \neq \operatorname{Fin} \otimes \{\emptyset\}$?

References

- [1] P. Das, R. Filipów, Sz. Głąb, J. Tryba, On the structure of Borel ideals in-between the ideals \mathcal{ED} and Fin \otimes Fin in the Katětov order, *Ann. Pure Appl. Logic*, 172 (2021), no. 8, 102976
- [2] F. Hernández-Hernández, M. Hrušák, Cardinal invariants of analytic P-ideals, *Canad. J. Math.* 59 (2007), no. 3, 575-595.
- [3] D. Meza-Alcántara, Ideals and filters on countable set, Ph.D. thesis, Universidad Nacional Autónoma de México, 2009.