Differentially compact spaces Krzysztof Kowitz University of Gdańsk

Krzysztof.Kowitz@phdstud.ug.edu.pl

Introduction

Examples of F_{σ} ideals are:

 $\mathcal{W} = \{ A \subseteq \omega : A \text{ is not an AP-set} \}$

and

 $\mathcal{F} = \{ A \subseteq \omega : A \text{ is not an } \operatorname{IP}_{rich}\operatorname{-set} \}.$

An AP-set is the set of natural numbers, which contains arithmetic progressions of arbitrary length. An IP_{rich} -set A is the set of natural numbers such that

$$\underset{n \in \omega}{\forall} \underset{B \subseteq \omega}{\exists} (|B| = n \land FS(B) \subseteq A),$$

where $FS(B) = \{\sum \alpha : \alpha \subseteq B \text{ and } \alpha \neq \emptyset \text{ is finite} \}.$

A topological space X is called van der Waerden (Folkman) if for every sequence $(x_n)_{n \in \omega}$ in X there exists a converging subsequence $(x_{n_k})_{k \in \omega}$ so that $\{n_k : k \in \omega\}$ is an AP-set (IP_{rich}-set) [3]. A topological space X is called an \mathcal{I} -space [3] if for every sequence $(x_n)_{n \in \omega}$ in X there exists a converging subsequence $(x_n)_{n \in A}$ with $A \notin \mathcal{I}$. Note that \mathcal{I} -spaces were earlier defined and examined in [1], where the authors used the term " (X, \mathcal{I}) has FinBW property" instead of "X is an \mathcal{I} -space". In particular, van der Waerden (Folkman) spaces coincide with \mathcal{W} -spaces (\mathcal{F} -spaces). A set $A \subseteq \omega$ is an DP-set if there exists an infinite set $S \subseteq \omega$ so that the difference set $D(S) \subseteq A$, where $D(S) = \{m - n : m > n; m, n \in S\}$. The ideal \mathcal{D} is a family of sets A such that $\mathcal{D} = \{A \subseteq \omega : A \text{ is not a DP-set}\}.$ Suppose that $S \subseteq \omega$ is infinite. A DP-sequence $(x_n)_{n \in D(S)}$ in a topological space X DP-converges [9] to a point $x \in X$ if for every neighborhood U of x there exists $m \in \omega$ so that $\{x_n : n \in D(S \setminus m)\} \subseteq U$. A topological space X is differentially compact [9] if for every sequence $(x_n)_{n\in\omega}$ in X there exists an infinite set $S\subseteq\omega$ so that $(x_n)_{n\in D(S)}$ is DP-converges to some $x \in X$. Differentially compact spaces were independently introduced and examined in [2], where the author used the name "*R*-space" instead of "differentially compact space".

Lemma 1 (KK, [7]). Let \mathcal{I} be a P^+ -ideal, a set $A \in \mathcal{I}^+$ ($A \subseteq \omega$) and $f: \omega \to \omega$. There exists a set $C \subseteq A$ and $C \in \mathcal{I}^+$ such that either 1) f is constant on C, or 2) f is finite-to-one on C.

Lemma 2 (KK, [7]). Suppose CH. Let \mathcal{I} be a P^+ -ideal. There exists a maximal almost disjoint family $\mathcal{A} \subseteq [\omega]^{\omega}$ such that for each \mathcal{I}^+ -set $B \subseteq \omega$ and each finite-to-one function $f : B \to \omega$ there is an \mathcal{I}^+ -set $C \subseteq B$ and $A \in \mathcal{A}$ so that $f[C] \subseteq A$.

Lemma 3 (KK, [7]). Suppose $MA_{\sigma-centered}$ holds. Let \mathcal{I} be an F_{σ} ideal. There exists a maximal almost disjoint family $\mathcal{A} \subseteq [\omega]^{\omega}$ such that for each \mathcal{I}^+ -set $B \subseteq \omega$ and each finite-to-one function $f : B \to \omega$ there is an \mathcal{I}^+ -set $C \subseteq B$ and $A \in \mathcal{A}$ so that $f[C] \subseteq A$.

Theorem 2 (KK, [7]). Suppose $MA_{\sigma-centered}$ (CH, resp.) holds. If \mathcal{I} is an F_{σ} ideal (P⁺-ideal, resp.), then there exists a Mrówka space which is

Motivation

In 2002, Kojman and Shelah [6] showed (assuming the continuum hypothesis) that there is a van der Waerden space that is not a Hindman space. A year later, Lingsheng Shi [9] in his doctorate constructed a van der Waerden space that is not a differentially compact space. In the following year Jones [4] replaced the continuum hypothesis with the Martin's axiom in the construction of Kojman and Shelah. Assuming Martin's axiom, we will generalize the Shi result to F_{σ} ideals. Assuming the continuum hypothesis, we extend this result to P^+ -ideals. an *I*-space, but not a differentially compact space.

Differentially compact spaces that are \mathcal{I} -spaces

Definition 1 ([5]). For ideals \mathcal{I}, \mathcal{J} we say that \mathcal{I} is below \mathcal{J} in the *Katětov* order if there is a function $f : \omega \to \omega$ such that $f^{-1}[A] \in \mathcal{J}$ for every $A \in \mathcal{I}$. We denote it by $\mathcal{I} \leq_K \mathcal{J}$. When \mathcal{I} is not below \mathcal{J} in Katětov order, we denote it by $\mathcal{I} \not\leq_K \mathcal{J}$.

Theorem 3 (KK, [7]). If $\mathcal{I} \leq_K \mathcal{D}$ and \mathcal{I} is a P^+ -ideal, then every differentially compact space is an \mathcal{I} -space. In particularly, if \mathcal{I} is an F_{σ} ideal and $\mathcal{I} \leq_K \mathcal{D}$ then every differentially compact space is an \mathcal{I} -space.

Open problems

Question 1. Is it consistent that there is a differentially compact space that is not a Folkman space (\mathcal{F} -space)?

Question 2. Is it consistent that there is a differentially compact space that is not a van der Waerden space (W-space)?

References

- [1] R. Filipów, N. Mrożek, I. Recław, P. Szuca, *Ideal convergence of bounded sequences*, J. Symbolic Logic **72** (2007), no. 2, 501-512.
- [2] R. Filipów, On Hindman spaces and the Bolzano-Weierstrass property, Topology Appl. 160, no. 15, 2003-2011 (2013).
 [3] J. Flašková, Ideals and sequentially compact spaces, Topology Proc. 33 (2009), 107-121. MR 2471564.

Mrówka spaces are not differentially compact spaces

Let \mathcal{A} be a pairwise almost disjoint family of infinite subsets of ω . Define a topological space $\Psi(\mathcal{A})$ as follows: the underlying set of $\Psi(\mathcal{A})$ is $\omega \cup \mathcal{A}$, the points of ω are isolated and a basic neighborhood of $A \in \mathcal{A}$ has the form $\{A\} \cup (A \setminus F)$ with F finite. (The space $\Psi(\mathcal{A})$ was introduced in [8].) Let $\Phi(\mathcal{A}) = \Psi(\mathcal{A}) \cup \{\infty\}$ be the one-point compactification of $\Psi(\mathcal{A})$. (Recall that open neighborhoods of ∞ are of the form $\Phi(\mathcal{A}) \setminus K$ for compact sets $K \subseteq \Psi(\mathcal{A})$.)

If \mathcal{A} is a *mad family on* ω (i.e. infinite maximal pairwise almost disjoint family of infinite subsets of ω), then the space $\Psi(\mathcal{A})$ is called a *Mrówka* space defined by \mathcal{A} .

Theorem 1 (KK, [7]). *No Mrówka space is a differentially compact space.*

 $\mathcal I\text{-spaces}$ which are not differentially compact spaces

- [4] Albin L. Jones, *A brief remark on van der Waerden spaces*, Proc. Amer. Math. Soc. **132** (2004), no.8, 2457-2460. MR 2052425.
- [5] Miroslav Katětov, Products of filters, Comment. Math. Univ. Carolinae 9 (1968), 173–189. MR 250257.
- [6] M. Kojman, S. Shelah, van der Waerden spaces and Hindman spaces are not the same, Proc. Amer. Math. Soc. 131 (2003), no.5, 1619-1622. MR 1950294.
- [7] Krzysztof Kowitz, *Differentially compact spaces*, Topology Appl. 307 (2022), Paper No. 107948, 9.
- [8] S. Mrówka, On completely regular spaces, Fund. Math. 41 (1954), no.3, 105-106. MR 63650.

[9] Lingsheng Shi, *Numbers and Topologies: Two Aspects of Ramsey Theory, Ph.D. thesis*, Humboldt-Universität zu Berlin, 2003.