On countably perfectly meager sets

Piotr Zakrzewski

Institute of Mathematics University of Warsaw

The First Gdańsk Logic Conference May 5-7, 2023

based on joint papers with Roman Pol and Tomasz Weiss:

- R. Pol, P. Zakrzewski, Countably perfectly meager sets, J. Symbolic Logic (2021), 1-17.
- T. Weiss, P. Zakrzewski, Countably perfectly meager and countably perfectly null sets, arXiv:2304.07579 [math.LO].

Throughout this talk X is a Polish (i.e., separable, completely metrizable) space without isolated points.

Definition 1

A set $A \subseteq X$ is perfectly meager ($A \in \mathbf{PM}$), if for all perfect subsets P of X, the set $A \cap P$ is meager in P (equivalently, for every perfect subset P of X there exists an F_{σ} -set F in X such that $A \subseteq F$ and $F \cap P$ is meager in P).

Definition 2

We say that a set $A \subseteq X$ is countably perfectly meager in X ($A \in \mathbf{PM}_{\sigma}$), if for every sequence of perfect subsets ($P_n : n \in \mathbb{N}$) of X, there exists an F_{σ} -set F in X such that $A \subseteq F$ and $F \cap P_n$ is meager in P_n for each n.

A summary of basic facts about perfectly meager sets:

- 1. Many classical small (totally imperfect) sets are perfectly meager:
 - ▶ any λ' -set A in X (i.e., every countable set $D \subseteq X$ is relatively G_{δ} in $A \cup D$), in particular, any Hausdorff (ω_1, ω_1^*) -gap in $\mathcal{P}(\mathbb{N})$,
 - any totally imperfect set A in X with the Hurewicz property (i.e., every continuous image of A in N^N is bounded in the ordering ≤* of eventual domination), in particular, any subset of X of cardinality less than b, any Sierpiński set in 2^N, any γ-set in 2^N.
- (Lusin (1933)) If there is a Lusin set, then the class **PM** is not closed under continuous injective preimages (the image of any Lusin set under the Lusin function is perfectly meager).
- 3. (Recław (1991)) Assuming CH (or MA) there exist two perfectly meager sets whose product is not perfectly meager.

Definition 3

A set $A \subseteq X$ is universally meager ($A \in UM$), if A is meager with respect to any perfect Polish topology τ ($A \in \mathcal{M}(X, \tau)$) on X giving the original Borel structure of X.

Equivalently, $A \in UM$ if A does not contain any injective Borel image of a non-meager subset of any perfect Polish space.

Remark 1

Universally meager sets were earlier recognised and studied as two apparently different classes of absolutely of the first category (every Borel isomorphic image of A in X is meager) and AFC (A does not contain any Borel one-to-one image of a non-meager set) by Grzegorek. A summary of basic facts about universally meager sets:

- **1.** UM \subseteq PM.
- 2. All classical perfectly meager sets are universally meager; in particular, there are ZFC examples of uncountable universally meager sets.
- (Grzegorek (1981)) There is a universally meager set of cardinality non(M), the smallest cardinality of a non-meager subset of 2^N (or any Polish space without isolated points).
- Consistently (eg., under CH or MA): UM ⊊ PM (a witness: the image of any non(M)-Lusin set under the Lusin function).
- 5. (PZ (2001)) Any product of two universally meager sets is universally meager.
- 6. (Bartoszyński (2001)) Consistently (under Axiom P: For every non-meager set *A* in $\mathbb{N}^{\mathbb{N}}$ there exists a perfect compact subset *P* in $\mathbb{N}^{\mathbb{N}}$ such that $A \cap P$ is non-meager in *P*): **UM** = **PM**.
- 7. (PZ (2008)) The following are equivalent:
 - ► $A \in UM$.
 - For every continuous bijection *f* : N^N → *X* there are sets *F_n* in *X* such that *A* ⊆ ⋃_n *F_n* and *f⁻¹(F_n)* is closed and nowhere dense in N^N for each *n* ∈ N.

A reminder:

We say that a set $A \subseteq X$ is countably perfectly meager in X ($A \in \mathbf{PM}_{\sigma}$), if for every sequence of perfect subsets ($P_n : n \in \mathbb{N}$) of X, there exists an F_{σ} -set F in X such that $A \subseteq F$ and $F \cap P_n$ is meager in P_n for each n.

Remark 2

The class \mathbf{PM}_{σ} first appeared (without any specific name) in a paper by Bartoszyński where it was claimed that this property characterizes universally meager sets in the Cantor space $2^{\mathbb{N}}$. Unfortunately, there was a flaw in the part of the argument showing the inclusion $\mathbf{UM} \subseteq \mathbf{PM}_{\sigma}$.

A summary of basic facts about countably perfectly meager sets:

- 1. (Bartoszyński (2003)) $\mathbf{PM}_{\sigma} \subseteq \mathbf{UM}$.
- 2. Many classical perfectly meager sets are countably perfectly meager in *X* including:
 - λ' -sets in X, in particular, any Hausdorff (ω_1, ω_1^*) -gap in $\mathcal{P}(\mathbb{N})$,
 - ► totally imperfect sets in X with the Hurewicz property in particular, subsets of X of cardinality less than b, Sierpiński sets and γ-sets in 2^N,
 - subsets of 2^N perfectly meager in the transitive sense, i.e., such A ⊆ 2^N that for every perfect subset P of 2^N, there exists an F_σ-set F in X such that A ⊆ F and F ∩ (P + t) is meager in P + t for each t ∈ 2^N, in particular meager-additive and strongly meager sets.
- 3. Consistently (eg., under CH or MA): $\mathbf{PM}_{\sigma} \subsetneq \mathbf{PM}$ (the image of any non(\mathfrak{M})-Lusin set under the Lusin function is not even in **UM**).
- (PZ, R. Pol (2021)) Any product of two countably perfectly meager sets is countably perfectly meager: if *A* and *B* are **PM**_σ-sets in perfect Polish spaces *X* and *Y*, respectively, then *A* × *B* is a **PM**_σ-set in *X* × *Y*.

A summary of basic facts about countably perfectly meager sets:

- 5. (Bartoszyński) For $A \subseteq 2^{\mathbb{N}}$ the following are equivalent:
 - $A \in \mathbf{PM}_{\sigma}$,
 - for every perfect subset P of 2^N, there exists an F_σ-set F in 2^N such that A ⊆ F and F ∩ (P + q) is meager in P + q for every q ∈ Q, where Q consists of all eventually zero binary sequences.
- (PZ, R. Pol (2021)) Consistently, there is a countably perfectly meager (even a λ') set A in 2^N which is not perfectly meager in the transitive sense (i.e., it is not the case that for every perfect subset P of 2^N, there exists an F_σ-set F in X such that A ⊆ F and F ∩ (P + t) is meager in P + t for every t ∈ 2^N).

A summary of basic facts about countably perfectly meager sets:

7. (PZ, R. Pol (2021)) The following are equivalent:

- $A \in \mathbf{PM}_{\sigma}$.
- For any perfect Polish topology *τ* on *X* giving the original Borel structure of *X* there are closed in the original topology, *τ*-meager sets *F_n* ⊆ *X* with *A* ⊆ ⋃_n*F_n*.
- ▶ For every continuous bijection $f : \mathbb{N}^{\mathbb{N}} \to X$ there are closed sets F_n in X such that $A \subseteq \bigcup_n F_n$ and $f^{-1}(F_n)$ is nowhere dense in $\mathbb{N}^{\mathbb{N}}$ for each $n \in \mathbb{N}$.

To be compared with:

- 7'. (PZ (2001)) The following are equivalent:
 - $A \in UM$, i.e., for any perfect Polish topology τ on X giving the original Borel structure of X there are τ -closed, τ -meager sets $F_n \subseteq X$ with $A \subseteq \bigcup_n F_n$.
 - For every continuous bijection *f* : N^N → *X* there are sets *F_n* in *X* such that *A* ⊆ ⋃_n *F_n* and *f⁻¹(F_n)* is closed and nowhere dense in N^N for each *n* ∈ N.

Main results

Theorem 1 (PZ, R. Pol (2021))

Consistently: $\mathbf{UM} \neq \mathbf{PM}_{\sigma}$: there is a universally meager set in $2^{\mathbb{N}}$ which is not countably perfectly meager in $2^{\mathbb{N}}$. More precisely, if there exists a universally meager set in $2^{\mathbb{N}}$ of cardinality of the continuum, then there is also one which is not countably perfectly meager (in particular, this holds if $\operatorname{non}(\mathcal{M}) = 2^{\aleph_0}$, so it is true under CH or MA).

Theorem 2 (T. Weiss, PZ (202?))

If $2^{\aleph_0} \leq \aleph_2$, then there is a universally meager set in $2^{\mathbb{N}}$ which is not countably perfectly meager in $2^{\mathbb{N}}$.

Sketch of a proof of Theorem 1.

It suffices to prove the following

Theorem 3

Let T be a subset of $2^{\mathbb{N}}$ of cardinality $2^{\mathbb{N}_0}$. There exist a set $H \subseteq T \times 2^{\mathbb{N}}$ intersecting each vertical section $\{t\} \times 2^{\mathbb{N}}$, $t \in T$, in a singleton and a homeomorphic copy E of H in $2^{\mathbb{N}}$ which is not a **PM**_{σ}-set in $2^{\mathbb{N}}$. In particular, T is a continuous injective image of E.

Indeed, if T is universally meager, then so is E. But $E \notin \mathbf{PM}_{\sigma}$.

Let C_0, C_1, \ldots be pairwise disjoint meager Cantor sets in $2^{\mathbb{N}}$ such that: (1) each non-empty open set in $2^{\mathbb{N}}$ contains some C_n .

Let $P = 2^{\mathbb{N}} \setminus \bigcup_n C_n$.

Claim 1. There exists a set $H \subseteq T \times P$ intersecting each vertical section $\{t\} \times P, t \in T$, in a singleton, such that each F_{σ} -set in $2^{\mathbb{N}} \times 2^{\mathbb{N}}$ containing H contains also $\{t\} \times V$ for some $t \in T$ and a non-empty open set V in $2^{\mathbb{N}}$.

This is proved by the following diagonalization argument.

Let $\{F_t : t \in T\}$ be a parametrization on *T* of all F_{σ} -sets in $2^{\mathbb{N}} \times 2^{\mathbb{N}}$.

For each $t \in T$, we pick $(t, \varphi(t)) \in (\{t\} \times P) \setminus F_t$, whenever this is possible, and we let $\varphi(t)$ be an arbitrary fixed element of P, otherwise.

Then the graph $H = \{(t, \varphi(t)) : t \in T\}$ has the required property.

For any $s \in 2^{<\mathbb{N}}$ let $N_s = \{x \in 2^{\mathbb{N}} : s \subseteq x\}$ be the standard basic open set in $2^{\mathbb{N}}$ determined by *s*.

Let \sim be the equivalence relation on $2^{\mathbb{N}}\times 2^{\mathbb{N}},$ whose equivalence classes are given by:

$$[(x,y)]_{\sim} = \left\{ egin{array}{ll} N_{x\mid n} imes \{y\}, & ext{if } y \in C_n, \ \{(x,y)\}, & ext{if } y \in P \end{array}
ight.$$

Let $\pi(x, y) = [(x, y)]_{\sim}$ be the quotient map onto the quotient space

 $K = (2^{\mathbb{N}} \times 2^{\mathbb{N}}) / \sim$

(whose topology consists of sets $U \subseteq K$ such that $\pi^{-1}(U)$ is open in $2^{\mathbb{N}} \times 2^{\mathbb{N}}$).

Claim 2. The space *K* is homeomorphic to $2^{\mathbb{N}}$.

Indeed, K is compact, Hausdorff, second countable, zero-dimensional topological space without isolated points.

Finally, let

$$E = \pi(H)$$

(cf. Claim 1).

Clearly, *E* is a homeomorphic copy of *H* in *K* and *T* is the injective image of *E* under the continuous function $\text{proj}_1 \circ \pi^{-1} | E$, where proj_1 is the projection of $2^{\mathbb{N}} \times 2^{\mathbb{N}}$ onto the first axis.

The proof is completed by showing that *E* is not a \mathbf{PM}_{σ} -set in *K*.

It is done by showing that if F^* is an F_{σ} -set in K such that $E \subseteq F^*$, then F^* contains one of the members of the countable collection $\{P_s: s \in 2^{\leq \mathbb{N}}\}$ of perfect subsets of K defined by letting

 $P_s = \pi(N_s \times C_n).$

To that end, let F^* be an F_{σ} -set in K such that $E \subseteq F^*$.

Then $F = \pi^{-1}(F^*)$ is an F_{σ} -set in $2^{\mathbb{N}} \times 2^{\mathbb{N}}$ containing H, so there are $t \in T$ and a non-empty open set V in $2^{\mathbb{N}}$ such $\{t\} \times V \subseteq F$, cf. Claim 1. Let us fix $C_n \subseteq V$ (cf. (1)) and let s = t | n. We have $\{t\} \times C_n \subseteq F$, so (2) $\pi(\{t\} \times C_n) \subseteq F^*$.

But for any $y \in C_n$

$$\pi(t, \mathbf{y}) = N_{\mathbf{s}} \times \{\mathbf{y}\}.$$

so it follows that:

$$\pi(\lbrace t \rbrace \times C_n) = \lbrace N_s \times \lbrace y \rbrace : y \in C_n \rbrace = \pi(N_s \times C_n) = P_s$$

Consequently, $P_s \subseteq F^*$ by (2).

We shall split the argument into two cases.

Case (A): non $(\mathcal{M}) = \aleph_2$.

Then, by a result of Grzegorek, there exists a universally meager set in $2^{\mathbb{N}}$ of cardinality $\aleph_2 = 2^{\aleph_0}$ and the result follows from Theorem 1.

Case (B): non $(\mathcal{M}) = \aleph_1$. Then, since $\mathfrak{b} \leq non(\mathcal{M})$, we also have $\mathfrak{b} = \aleph_1$. An idea:

Let T be a universally meager set in $2^{\mathbb{N}}$ of cardinality \aleph_1 with some additional properties strong enough for the argument to work.

More precisely, the assumption $\mathfrak{b} = \aleph_1$ gives us a set $X = \{x_\alpha : \alpha < \omega_1\} \subseteq [\mathbb{N}]^{\aleph_0}$ which is unbounded and increasing in the sense of the ordering of eventual domination (when viewed as the subset of $\mathbb{N}^{\mathbb{N}}$ consisting of increasing enumerations of sets x_α) and such that x_β is almost contained in x_α whenever $\alpha < \beta < \omega_1$.

We let $T = X \cup \mathbb{Q} \subseteq 2^{\mathbb{N}}$ be the union of X (identified with a subset of $2^{\mathbb{N}}$ via the characteristic functions) and \mathbb{Q} , the copy of rationals in $2^{\mathbb{N}}$ consisting of all eventually zero binary sequences.

Then X is concentrated on \mathbb{Q} and by a result of Scheepers, T has property $S_1(\Gamma, \Gamma)$,

i.e., for every sequence $\mathcal{U}_0, \mathcal{U}_1 \dots$ of point-cofinite open covers of T there are sets $U_0 \in \mathcal{U}_0, U_1 \in \mathcal{U}_1, \dots$ such that $\{U_n : n \in \mathbb{N}\}$ is a point-cofinite open cover of T.

In particular, T is universally meager.

The assumption non $(\mathcal{M}) = \aleph_1$ gives us a non-meager set $M \subseteq 2^{\mathbb{N}}$ of cardinality \aleph_1 .

Finally, let H be the graph of any bijection between T and M.

Since T is the injective continuous image of H under the projection onto the first axis and T is universally meager, so is H.

The proof is completed by showing that *H* is not a **PM**_{σ}-set in 2^{\mathbb{N}} × 2^{\mathbb{N}}.

Some more details.

Let *C* and *D* be disjoint copies of the Cantor set in $2^{\mathbb{N}}$ such that

(1) the operation + of addition is a homeomorphism between $C \times D$ and C + D.

The idea is to repeat the above construction in $C \times D$.

More precisely, abusing the notation, let $T = X \cup \mathbb{Q} \subseteq C$, where $X \cap \mathbb{Q} = \emptyset$, $|X| = \aleph_1$, $|\mathbb{Q}| = \aleph_0$, X is concentrated on \mathbb{Q} and T has property $S_1(\Gamma, \Gamma)$.

Let *M* be a non-meager set in *D* of cardinality \aleph_1 .

Let *H* be the graph of a bijection $f : T \rightarrow M$.

Finally, let

(2)
$$Z = \{x + y : (x, y) \in H\} = \{x + f(x) : x \in T\}.$$

Clearly, Z is universally meager as the image of H under the homeomorphism + between $C \times D$ and C + D (cf. (1)).

The proof is completed by showing that *Z* is not a \mathbf{PM}_{σ} -set in $2^{\mathbb{N}}$ (which is actually equivalent to *H* not being \mathbf{PM}_{σ} -set in $C \times D$).

Namely, for the countable collection of perfect sets of the form $P_q = q + D$, where $q \in \mathbb{Q}$, there is no F_{σ} -set F with $Z \subseteq F$ and $F \cap P_q$ meager in P_q .

The point is that otherwise $(\mathbb{Q} + F) \cap D$ is relatively meager in D,

from which with the help of properties of *T* one shows that $(T' + F) \cap D$ is meager in *D* for some $T' \subseteq T$ with $|T \setminus T'| \leq \aleph_0$.

This, however, is impossible as already T' + Z almost contains M which is non-meager in D.

Indeed, let $N = T \setminus T'$.

If $y \in M \setminus f(N)$, then y = f(x) for some $x \in T'$ hence $y = (x + (x + f(x))) \in x + Z$.

Problems:

- Is $\mathbf{PM}_{\sigma} = \mathbf{UM}$ consistent ?
- Is $\mathbf{PM}_{\sigma} = \mathbf{PM}$ consistent ?

Thank you for your attention!