Descriptive Set Theory in Generalized Baire Spaces

Jouko Väänänen

May 2023

<ロ>

<ロ>

<1/50</p>

Structure of the talk

Introduction

- Part one: Trees and EF-games.
- Part two: Universally Baire sets.

Introduction.

Why generalize?

- Classical Baire space ω^ω: Limits of finite measurements, as in Natural Sciences.
- Generalized Baire space ω₁^{ω1}: Limits of countable measurements, as in ?
- Cohen, L. W.; Goffman, Casper: A theory of transfinite convergence. (1949)
- Sikorski, Roman: Remarks on some topological spaces of high power. (1950)

Countable models I

- Countable models as elements of the Baire space ω^ω (Mostowski 1947, Kuratowski 1948).
- The orbit of a countable model is always Borel (Scott 1963).
- An invariant set is Borel iff it is $L_{\omega_1\omega}$ -definable (Scott 1963).
- Useful tool: *EF*-game of length ω (Fraisse 1954, Ehrenfeucht 1957).
- Countable ordinals can work as "clocks".

Countable models II

- ► The Scott rank of a countable model.
- The isomorphism of countable models of any complete consistent extension of Peano is Borel complete. (Coskey-Kossak 2010)
- The isomorphism of countable models of any complete consistent extension of ZFC + Global Choice is Borel complete. (Clemens-Coskey-Dworetzky 2020)

Uncountable models

- EF-game of length ω with countable sequences, rather than single elements, as moves.
- Let η be the order type of the rationals. Let Φ(A), A ⊆ ω₁ \ {0}, be the result of replacing α in (ω₁, <) by 1 + η if α ∈ A, and by η if α ∉ A.
- $\Phi(A) \cong \Phi(B)$ iff $A = B \mod NS_{\omega_1}$. (Conway 1964)
- $\Phi(A) \equiv_{\infty \omega_1} \Phi(B)$. (Nadel-Stavi 1978)
- *Ergo*, the language $L_{\infty\omega_1}$ is not enough.

Generalized Baire Spaces

- ► Models of cardinality \aleph_1 as elements of $\omega_1^{\omega_1}$, 2^{ω_1} . (Mekler-V. 1993)
- Topology: $N(f, \alpha) = \{g : g \upharpoonright \alpha = f \upharpoonright \alpha\}.$
- **•** Dense set of size 2^{ω} . A common assumption: CH.
- More generally κ^{κ} , 2^{κ} , κ^{λ} .

Even more generally: κ -spaces

There is a neighbourhood basis $\mathcal{U} = \{U_{\alpha}(x) : \alpha < \kappa, x \in S\}$, such that

1.
$$\bigcap_{\alpha < \kappa} U_{\alpha}(x) = \{x\}.$$

- **2.** $\beta < \alpha$ implies $U_{\beta}(x) \supseteq U_{\alpha}(x)$.
- 3. If $x, y \in S$, then for all $\alpha < \kappa$ there is $\beta < \kappa$ such that $\alpha < \beta$ and $U_{\beta}(x) \cap U_{\beta}(y) = \emptyset$ or $U_{\beta}(x) \subseteq U_{\alpha}(y)$.
- 4. If $\{U_{\delta_{\beta}}(x_{\beta}) : \beta < \alpha\}$, where $\alpha < \kappa$, is such that $\beta < \gamma < \alpha$ implies $U_{\delta_{\beta}}(x_{\beta}) \supseteq U_{\delta_{\gamma}}(x_{\gamma})$, then $\bigcap_{\beta < \alpha} U_{\delta_{\beta}}(x_{\beta})$ is open and non-empty.
- 5. Every κ -Cauchy sequence, i.e. sequence $(x_{\alpha})_{\alpha < \kappa}$ such that

$$\forall \alpha < \kappa \exists \beta < \kappa \forall \gamma, \gamma' (\beta < \gamma, \gamma' < \kappa \Rightarrow \mathbf{X}_{\gamma} \in U_{\alpha}(\mathbf{X}_{\gamma'})),$$

converges.

What is it that we want?

- Topological properties of uncountable models, in analogy with countable models.
- How can we say that two uncountable models are very close to being isomorphic, without actually being isomorphic?
- Can we measure how close to being isomorphic two uncountable models are? This measure need not be in terms of ordinals?

Some history

1950-1976: Juhasz, Sikorski, Wang, Weiss: General topology.

- 1990-1993: Halko, Hyttinen, Mekler, Shelah, Tuuri, V.: Basic setup of descriptive set theory higher up. Trees as generalized ordinals - paradigm.
- 1999-2004: Dzamonja, Hyttinen, Shelah, Todorcevic, V., Velickovic: Structure of trees.
- 2012-2023: Dzamonja, Friedman, Hyttinen, Weinstein, Lücke, Montoya, Moreno, Motto Ros, Schlicht, Shelah, Sziraki, V. et al: Deeper into descriptive set theory higher up.

An example of a property of κ -spaces

Proposition (Baire Category Theorem)

Every κ -space satisfies the Baire Category Theorem i.e. the space itself is never κ -meager. (Cohen-Goffman 1949)

Proof.

Suppose we are given nowhere dense sets A_i , $i < \kappa$. We construct $f \notin \bigcup_{i < \kappa} A_i$. Since A_0 is not dense there is $U_{\delta_0}(x_0)$ such that $U_{\delta_0}(x_0) \cap A_0 = \emptyset$. Let us suppose we have constructed $U_{\delta_{\xi}}(x_{\xi}), \xi < \alpha$, such that $U_{\delta_{\xi}}(x_{\xi}) \cap A_{\xi} = \emptyset$ and $\xi < \zeta < \alpha$ implies $U_{\delta_{\xi}}(x_{\xi}) \supseteq U_{\delta_{\zeta}}(x_{\zeta})$. By the properties of the family $\mathcal{U}, \bigcap_{\beta < \alpha} U_{\delta_{\beta}}(x_{\beta})$ is open and non-empty. Since A_{α} is nowhere dense, there is $U_{\delta_{\alpha}}(x_{\alpha}) \subseteq \bigcap_{\beta < \alpha} U_{\delta_{\beta}}(x_{\beta})$ such that $U_{\delta_{\alpha}}(x_{\alpha}) \cap A_{\alpha} = \emptyset$. The sequence $\{x_i : i < \kappa\}$ is a κ -Cauchy sequence, hence converges to some f. This is the f we claimed exists.

A Cantor-Bendixson Theorem

A set is ω_1 -perfect if II wins the perfect set game of length ω_1 . It is ω_1 -scattered if I wins it.

```
Theorem (V. 1991)
```

Assume $I(\omega)^1$. Then every closed subset of $\omega_1^{\omega_1}$ is the disjoint union of an ω_1 -perfect part and an ω_1 -scattered part of cardinality $\leq \aleph_1$.

Note that $I(\omega)$ implies CH.

¹For some normal ideal *I* on ω_2 , *I*⁺ has a dense σ -closed subset. (Laver)

Part one: Trees and EF-games.

- To remedy the failure of L_{∞ω1} to describe (to any reasonable extent) models of cardinality ℵ₁, we introduce(d) the EF-game of length ω₁, denoted EF_{ω1}.
- Players move countable sequences.
- There are ω_1 moves.
- Non-isomorphism player plays at limit stages.
- ► If $|M| = |N| = \aleph_1$, then $M \cong N$ iff isomorphism player has a winning strategy.

An unsurprising fact of life

► For models bigger than ℵ₁ the game may be non-determined. (Mekler-Shelah-V. 1993)

- ► Cardinality \aleph_2 : \Box implies EF_{ω_1} can be non-determined, $I^*(\omega)^2$ implies it is always determined.³
- Cardinality ≥ ℵ₃: There are non-determined models, provably in ZFC.

 $^{{}^{2}}NS_{\omega_{2}}^{+}$ has a dense σ -closed subset K. (Laver)

³If there is a club of non-isomorphic initial segments, then I wins. Otherwise the set of isomorphic initial segments is stationary and II wins by playing moves which work for a set of initial segments in the dense set K.

Trees as clocks to make the game stop faster

- ▶ Hyttinen-V. 1990.
- ► Let *T* be a wide Aronszajn tree i.e. a tree of size and height ℵ₁ without uncountable branches.
- Approximated game: Non-isomorphism player has to go up the tree move by move: EF^T_{ω1}.
- Harder for non-isomorphism player but easier for isomorphism player.

Comparing trees, or how long does the clock tick?

• $T \leq T'$ if there is $\pi : T \rightarrow T'$ such that always

$$t <_T t' \to \pi(t) <_{T'} \pi(t').$$

• $T \leq^* T'$ if additionally π is one-one.

Winning the game $EF_{\omega_1}^T$ with T as a clock.

(a)

Examples

- Let B_{α} be the tree of descending sequences in α .
- Then $B_{\alpha} \leq B_{\beta}$ iff $\alpha \leq \beta$.
- If A ⊆ ω₁, let T(A) be the tree of increasing closed sequences in A.
- ▶ Then $T(A) \leq T(B)$ if and only if $A \subseteq B \pmod{NS_{\omega_1}}$.
- Aronszajn trees, Souslin trees, etc.

From a tree to a bigger tree of the same height

- Let $\sigma(T)$ be the tree of increasing chains in T.
- Always $T < \sigma(T)$. (Kurepa)
- Typically $|\sigma(T)| = |T|^{<|T|}$.
- Example: If CH holds and T is a wide Aronszajn tree, then so is σ(T).

The structure of trees of size and height \aleph_1 under \leq

イロン イロン イヨン イヨン

Approximating games with trees, trees as ordinals

- Are there for every wide Aronszajn tree *T* models *M*, *N* of cardinality ℵ₁ such that M ≇ N but isomorphism player has a winning strategy in EF^T_{ω1}?
- Yes, if we assume CH (Hyttinen-Tuuri 1991). Otherwise open, but Shelah has a sequence of partial results.
- An easier question: Are there for every wide Aronszajn tree *T* models *M*, *N* of cardinality ℵ₁ such that *M* ≇ *N* but non-isomorphism player does not have a winning strategy in *EF*^T_{ω1}? Yes. (Hyttinen-Tuuri 1991)

Boundary between the advantages of the players.

Two analogues for Scott rank

- A tree *T* without κ-branches is called a *universal non-equivalence tree* for a model *M* of cardinality κ if for all models *N* of cardinality κ in the same vocabulary, if *M* ≇ *N*, then Player *I* has a winning strategy in *EF*^T_κ(*M*, *N*).
- ► A Canary Trees⁴ is (if it exists) a universal non-equivalence tree for the free Abelian group of cardinality ℵ₁.
- ► (CH) *M* has a universal non-equivalence tree of cardinality \aleph_1 iff orb(M) is Δ_1^1 . (Mekler-V. 1993)
- It is consistent relative to the consistency of ZF that CH holds and every non-classifiable theory has a model of cardinality ℵ₁ without a universal non-equivalence tree. (Hyttinen-Tuuri 1991)

⁴Mekler-Shelah 1993

Two analogues for Scott rank

- A tree *T* without κ -branches is called a *universal* equivalence tree for a model *M* of cardinality κ if for all models *N* of cardinality κ in the same vocabulary, if Player *II* has a winning strategy in $EF_{\kappa}^{T}(M, N)$, then $M \cong N$.
- If κ = ω, every countable model has a universal non-equivalence tree B_{α+1} and a universal equivalence tree B_α, where α is the Scott height of the model.
- CH implies every unstable theory has a model of cardinality \%₁ without a universal equivalence tree. (Hyttinen-Tuuri 1991)

Let $B(\kappa, T)$ be the Borel rank of \cong for models of T of cardinality κ , if it is Borel and $B(\kappa, T) = \infty$ otherwise.

Theorem (Mangraviti-Motto Ros 2021)

Let $\kappa^{<\kappa} = \kappa > 2^{\aleph_0}$ and T be a countable complete first-order theory.

- 1. If T is classifiable shallow of depth α , then $B(\kappa, T) \leq 4\alpha$.
- 2. If T is not classifiable shallow, then $B(\kappa, T) = \infty$.

Are there truly maximal trees?

- The role of universal trees in understanding of uncountable models raises the question of existence of maximal trees of size and height κ without κ-branches (i.e. wide κ-Aronszajn trees).
- The σ -operation shows that none exist if $\kappa^{<\kappa} = \kappa$.
- What if we have $\kappa^{<\kappa} > \kappa$?

Earlier results on maximal trees.

- Assuming MA_{ω1}, the class of Aronszajn trees does not have a maximal tree. (Todorcevic 2007)
- Assuming MA_{ω_1} , the class of wide Aronszajn trees does not have a maximal tree. (Dzamonja-Shelah 2021)

The consistency of maximal trees

Theorem (Todorcevic-V. 2001, Ben-Neria - Magidor - V. 2023)

Assume V = L and κ regular but not weakly compact. For every wide κ -Aronszajn tree T there is a κ -Souslin tree S such that $S \not\leq T$.

Theorem (Ben-Neria - Magidor - V. 2023)

Suppose λ is weakly compact and $\kappa < \lambda$ is regular. There is a forcing extension which does not collapse cardinals $\leq \kappa^+$ and in which there is a wide κ^+ -Aronszajn tree T such that every wide κ^+ -Aronszajn tree can be embedded into T.

Part two: Universally Baire sets.

Universally Baire sets in generalized Baire spaces

- Joint work with Menachem Magidor.
- Independently, similar but stronger results from stronger assumptions by Ikegami and Viale (unpublished).
- κ regular. We do not assume $\kappa^{<\kappa} = \kappa$.

κ-universally Baire

Definition

We call a model *M* internally κ -closed, if $M = \bigcup_{\alpha < \kappa} M_{\alpha}$ such that $|M_{\alpha}| < \kappa$ and $\langle M_{\xi} : \xi < \alpha \rangle \cup \{M_{\alpha}\} \subseteq M_{\alpha+1}$ for all $\alpha < \kappa$.

Definition

A set $A \subseteq \kappa^{\kappa}$ is κ -universally Baire if for every κ -strategically closed forcing \mathbb{P} there is a term τ such that for any $\theta > 2^{|\mathbb{P}|}$, if $M \prec H_{\theta}$, $|M| = \kappa$, M internally κ -closed, $\mathbb{P}, \tau \in M$, and G \mathbb{P} -generic over M, then

$$[\tau]_G = A \cap M[G].$$

A more familiar formulation

Theorem

The following are equivalent for $A \subseteq \kappa^{\kappa}$:

- (1) A is κ -universally Baire
- (2) If $f : E \to \kappa^{\kappa}$, where E is a κ -space, then $f^{-1}[A]$ is Baire in E.

Proof idea:

(1) \rightarrow (2): Let \mathbb{P} be the poset of non-empty basic open neighbourhoods of *E*.

(2) \rightarrow (1): Let *E* be the space of descending chains of conditions in \mathbb{P} .

Bernstein Property

Theorem

If $A \subseteq \kappa^{\kappa}$ is κ -universally Baire, then either A or $\omega_1^{\omega_1} \setminus A$ contains a copy of 2^{κ} .

Proof.

Let us force a Cohen element μ of κ^{κ} . Suppose τ is the \mathbb{P} -term given by κ -universal Baireness. Let us first suppose there is a condition p such that $p \Vdash [\mu]_G \in \tau$. Otherwise there is a condition p such that $p \Vdash [\mu]_G \notin \tau$, which is a similar case. Using the universal Baireness of A we build a tree T of conditions which force different elements to τ . At the same time we build models $M_t \prec H_{\theta}$ of size $< \kappa$ (θ big) and $\mathbb{P} \cap M_t$ -generic over M_t sets G_t . Each branch of the tree of height κ gives rise to an element of A in V, by virtue of the universal Baireness of A.

Example (Halko-Shelah)

The Σ_1^1 -set CLUB is **not** Baire, hence not κ -universally Baire.

Proof.

We can first use the proof of the Baire Category Theorem to show that CLUB is non- κ -meager. Similarly, $N(f, \alpha) \setminus$ CLUB is non- κ -meager for any f and α . From this the claim follows.

 \diamond implies SLN i.e. the Σ_1^1 -set of $x \in \omega_1^{\omega_1}$ coding a Souslin tree, is not Baire.

Similarly for the Σ_1^1 -set Tree of $x \in \omega_1^{\omega_1}$ coding a tree without an uncountable branch.

A wrong start?

- The concept "κ-universally Baire" seems very restrictive.
- Hardly any interesting sets are κ -universally Baire.

A step back

Suppose \mathcal{P} is a class of forcing notions, \mathcal{M} is a class of models, and \mathcal{G} is a class of generics for forcing notions in \mathcal{P} over models in \mathcal{M} .

Definition

A is $UB(\mathcal{P}, \mathcal{M}, \mathcal{G})$ if for each forcing $\mathbb{P} \in \mathcal{P}$ there is a term τ such that for any $\theta > 2^{|\mathbb{P}|}$, if $M \prec H_{\theta}, M \in \mathcal{M}, \mathbb{P}, \tau \in M$, and $G \in \mathcal{G}$ \mathbb{P} -generic over M, then $[\tau]_G = A \cap M[G]$.

Definition

- 1. $\mathcal{P} = \text{CC: } \sigma\text{-closed}$
- 2. SP: preserves stationarity of subsets of ω_1
- 3. $\mathcal{M} = \mathrm{IC}_{\omega_1}$: internally σ -closed.
- 4. $\mathcal{G} = \text{SCO} = \text{stationary correct: If}$ $M[G] \models "\dot{S} \subseteq \omega_1 \text{ is stationary", then } [\dot{S}]_G \text{ is stationary.}$

Towards a more familiar formulation

Definition

A topological space E is stationary preserving (SP) if the poset of its non-empty open sets under the set inclusion is SP as a forcing notion.

Proposition

A space *E* is SP if and only if for every open *B* and sequence $(B_{\alpha})_{\alpha < \omega_1}$ of non-empty open sets there is $C \subseteq B$ such that either eventually $C \cap B_{\alpha}$ is nowhere dense or there is a club $D \subseteq \omega_1$ such that for all $\alpha \in D$,

$$\mathcal{C} \cap (\bigcap_{\beta < \alpha} \bigcup_{\beta < \gamma < \alpha} \mathcal{B}_{\gamma}) \neq \emptyset.$$

A more familiar formulation

Theorem

Suppose $A \subseteq \omega_1^{\omega_1}$. TFAE:

- 1. *A is* UB(SP, IC_{ω_1}, SCO).
- 2. For every ω_1 -space X that is SP and continuous $f: X \to \omega^{\omega_1}$ the set $f^{-1}(A)$ has the Bairo property in
 - $f: X \to \omega_1^{\omega_1}$ the set $f^{-1}(A)$ has the Baire property in X.

Good news and bad news

Example CLUB is UB(SP, IC $_{\omega_1}$, SCO).

Theorem

Assume \Diamond . Suppose there is a Woodin cardinal and a measurable cardinal above it. Then the sets SLN and Tree are not UB(CC, IC_{ω_1}, SCO).

Corollary

Large cardinals cannot imply that all Σ_1^1 -subsets of $\omega_1^{\omega_1}$ are UB(CC, IC $_{\omega_1}$, SCO).

Definition

- 1. SP(MM): SP and MM-inducing.
- 2. $SP(\star)$: SP and (\star) -inducing.

Theorem

If there is a proper class of Woodin cardinals, then every Σ_1^1 -subset of $\omega_1^{\omega_1}$ is UB(SP(MM), IC $_{\omega_1}$, SCO).

Proof sketch:

- Suppose ℙ ∈ SP(MM). Let ∃fφ(f, x) be a Σ¹₁-formula defining in the space ω^{ω1}₁ a subset A. We choose the term τ canonically.
- Suppose now $\theta > 2^{|\mathbb{P}|}$ and $N \prec H_{\theta}$ internally ω_1 -closed. We claim that for all stationary correct \mathbb{P} -generic G_N over N the equation $[\tau]_{G_N} = N[G_N] \cap A$ holds. Call N bad if this is not the case, i.e. there is a stationary correct $\mathbb{P} \cap N$ -generic G_N over N such that there is $x_N \in N[G_N]$ with $N[G_N] \models \neg \exists f \varphi(f, x_N)$ although $\exists f \varphi(f, x_N)$ is true in V.
- ▶ We claim bad *N* do not exist. Suppose they do.

- ▶ W.I.o.g. $S = \{N \prec H_{\theta} : N \text{ is bad}\}$ is stationary in $\mathcal{P}_{\leq \omega_1}(H_{\theta})$.
- We can now use a big Woodin cardinal to form a stationary tower forcing P^{*} with a generic *H*, a P-generic *G* over *V* inside *V*[*H*], such that P^{*}/P is SP and for a suitable *x* we have *V*[*G*] ⊨ ¬∃*f*φ(*f*, *x*) while *V*[*H*] ⊨ ∃*f*φ(*f*, *x*). This violates:
- Suppose MM, f ∈ ω₁^{ω₁}, Φ(x) is a Σ₁¹ formula, and ℙ is an SP forcing such that ℙ ⊢ "ω₁^{ω₁} ⊨ Φ(f)". Then Φ(f) is true.

Theorem

Assume (*) and a proper class of Woodin cardinals (or PFA). Then every subset of $\omega_1^{\omega_1}$ which is definable over H_{ω_2} is UB(SP(*), IC_{ω_1}, SCO).

Proof sketch:

- Suppose ℙ ∈ SP(⋆). Let φ(x) be a first order formula defining in H_{ω2} a subset A of ω₁^{ω1}. We choose the term τ canonically.
- Suppose now θ > 2^{|ℙ|}, M ≺ H_θ internally ω₁-closed, and G stationary correct ℙ-generic over N.
- ▶ Let $x \in [\tau]_G$. Since $M[G] \models (\star)$, there is a P_{max}-term μ in $L(\mathbb{R})^{M[G]}$ for x.
- It is a pity that $\mu \in M[G]$ rather than $\mu \in M!$
- We can use the universal Baireness of \mathbb{R}^{\sharp} to eliminate the effect of *G*.

A Bernstein-type Property

Theorem Assume MM⁺⁺ and a supercompact cardinal. If $A \subseteq \omega_1^{\omega_1}$ is UB(SP(*), IC_{ω_1}, SCO), then A or $\omega_1^{\omega_1} \setminus A$ contains an \aleph_1 -rake.

Proof idea

- Force a generic element of $\omega_1^{\omega_1}$ and then (*).
- Generate a full binary tree of height ω of conditions so that every branch determines a different element of ω₁^{ω1}.
- ► Use MM^{++} to obtain for each branch a model $M \prec H_{\theta}$ and a generic.
- Use universal Baireness to conclude that all branches are in *A* or all branches are in ω^{ω1}₁ \ *A*. The stem decides this.
- Cannot construct a full binary tree of height ω₁ because the union of stationary correct generics is not stationary correct.

Bottom line

- The CLUB-filter is a stumbling block in generalizing descriptive set theory, at least universal Baireness, to generalized Baire spaces.
- We can overcome CLUB by restricting to stationary preserving forcings and stationary correct generics.
- UB-sets can be meaningfully defined (even if they are not even Baire) and they obey Bernstein-like properties.
- How ubiquitous is this (or other) UB in generalized Baire spaces?
- Is universal Baireness useful in a deeper understanding of uncountable models?

Thank you!