Approachable free subsets and a question of Pereira Gdansk, 5.v.2023, Philip Welch, University of Bristol # Definition (Free Sets) A set $X \subseteq A$ where $\mathfrak{A} = (A, \langle f_n \rangle_{n < \omega}, \ldots)$ is an algebra is *free* if $$\forall y \in X(y \notin SH^{\mathfrak{A}}[X \setminus \{y\}]).$$ $SH^{\mathfrak{A}}[Z]$ denotes the *Skolem Hull* inside \mathfrak{A} of Z. Definition (Free Sets) A set $X \subseteq A$ where $\mathfrak{A} = (A, \langle f_n \rangle_{n < \omega}, \ldots)$ is an algebra is *free* if $$\forall y \in X(y \notin SH^{\mathfrak{A}}[X \setminus \{y\}]).$$ $SH^{\mathfrak{A}}[Z]$ denotes the *Skolem Hull* inside \mathfrak{A} of Z. Definition (Free Sets with respect to a substructure) A set $X \subseteq A$ for such an $\mathfrak A$ is *free over N* where $N \prec \mathfrak A$ if $$\forall y \in X(y \notin SH^{\mathfrak{A}}[N \cup X \setminus \{y\}]).$$ - For full generality we consider \mathfrak{A} as some $(H(\kappa), \in, \triangleleft, \langle F^n \rangle, \ldots)$ where \triangleleft is a well order of $H(\kappa)$, and indeed the F^n include a set of skolem functions for \mathfrak{A} . - We shall assume the signature is always countable. - For full generality we consider \mathfrak{A} as some $(H(\kappa), \in, \triangleleft, \langle F^n \rangle, \ldots)$ where \triangleleft is a well order of $H(\kappa)$, and indeed the F^n include a set of skolem functions for \mathfrak{A} . - We shall assume the signature is always countable. - Let $Fr(\theta, \lambda)$ be the assertion that every structure $\mathfrak A$ containing θ has a free subset $X \subseteq \theta$ with order type λ . • (Baumgartner; V = L) $Fr(\theta, \omega) \Leftrightarrow \kappa \longrightarrow (\omega)_2^{<\omega}$. • (Erdős-Hajnal; Devlin) (i) $Fr(\aleph_{\alpha}, n) \leftrightarrow \alpha \geq n$); (ii) $\neg Fr(\aleph_{\omega}, \omega_1)$. Let H_{α} be the least κ s.t. $Fr(\kappa, \omega_{\alpha})$. • (Shelah) $\neg Fr(\aleph_{\alpha}, |\alpha|^+)$ and hence $H_{\alpha} \geq \omega_{\omega_{\alpha}}$ • If λ is an infinite cardinal, then $\neg Fr(\kappa, \lambda) \Rightarrow \neg Fr(\kappa^+, \lambda)$. • If λ is an infinite cardinal, then $\neg Fr(\kappa, \lambda) \Rightarrow \neg Fr(\kappa^+, \lambda)$. (cf. Jónsson cardinals; n.b. also $Fr(\kappa, \kappa) \Rightarrow \kappa$ Jónsson. • If λ is an infinite cardinal, then $\neg Fr(\kappa, \lambda) \Rightarrow \neg Fr(\kappa^+, \lambda)$. # Theorem (Koepke) The following are equiconsistent: - (i) ZFC+ "There exists a measurable cardinal". - (ii) $ZFC + Fr(\aleph_{\omega}, \omega)$. ### Definition N is an *internally approachable* substructure (of length τ) means $N = \bigcup_{\iota < \tau} N_{\iota}$ for some $\langle N_{\iota} | \iota < \tau \rangle$ which is a continuous chain of substructures of $N \prec \langle H(\theta), \in, \langle F_n \rangle_{n < \omega}, \ldots \rangle$ - continuous meaning in turn that $\langle N_{\xi} | \xi \leq \iota \rangle \in N_{\iota+1}$ and $\operatorname{Lim}(\zeta) \to \bigcup_{\iota < \zeta} N_{\iota} = N_{\zeta}$, for $\iota < \zeta < \tau$. Our internally approachable substructures will always be of length some τ with $cf(\tau) > \omega$. ## AFSB - The Approachable Free Subset Property #### Definition (*Pereira*) The *Approachable Free Subset Property* (*AFSP*) for \aleph_{ω} states that for every internally approachable $N \prec \langle H(\theta), \in, \langle F_n \rangle_{n < \omega} \rangle$, the latter any extension of $\langle H(\theta), \in \rangle$, of length ω_l , for some $l < \omega$ and some large θ , if $\chi_N(m) =_{df} \sup(N \cap \omega_m)$ for $m < \omega$ then there is an infinite subsequence $\langle \aleph_{n_m} \rangle_{m < \omega}$ so that $C =_{df} \{\chi_N(n_m)\}_m$ is *free over N*. That is: for any $p < \omega$, then $$\chi_N(n_m) \notin F_p$$ " $(N \cup C \setminus \{\chi_N(n_m)\}).$ ## AFSB - The Approachable Free Subset Property #### Definition (*Pereira*) The *Approachable Free Subset Property* (*AFSP*) for \aleph_{ω} states that for every internally approachable $N \prec \langle H(\theta), \in, \langle F_n \rangle_{n < \omega} \rangle$, the latter any extension of $\langle H(\theta), \in \rangle$, of length ω_l , for some $l < \omega$ and some large θ , if $\chi_N(m) =_{df} \sup(N \cap \omega_m)$ for $m < \omega$ then there is an infinite subsequence $\langle \aleph_{n_m} \rangle_{m < \omega}$ so that $C =_{df} \{\chi_N(n_m)\}_m$ is *free over N*. That is: for any $p < \omega$, then $$\chi_N(n_m) \notin F_p$$ " $(N \cup C \setminus \{\chi_N(n_m)\}).$ • Isolated by Pereira (2007 thesis). He showed: Theorem (Pereira, 2007) $$ZFC \vdash \neg AFSP for \aleph_{\omega} then ZFC \vdash \neg (pcf\text{-}conjecture).$$ I thought this had (2008) been shown: (1) $\operatorname{Con}(\operatorname{ZFC} + \operatorname{AFSB} for \aleph_{\omega}) \Rightarrow \operatorname{Con}(\operatorname{ZFC} + For \ any \ k \geq 1 \ and \ for \ arbitrarily \ large \ m > k\{\alpha < \omega_m | o^K(\alpha) \geq \omega_k\} \ \ is \ stationary).$ In particular, in the core model K, there were measurable cardinals of unbounded below \aleph_{ω} Mitchell order. I thought this had (2008) been shown: (1) $\operatorname{Con}(\operatorname{ZFC} + \operatorname{AFSB} for \aleph_{\omega}) \Rightarrow \operatorname{Con}(\operatorname{ZFC} + For \ any \ k \geq 1 \ and \ for \ arbitrarily \ large \ m > k\{\alpha < \omega_m | o^K(\alpha) \geq \omega_k\} \ \ is \ stationary).$ In particular, in the core model K, there were measurable cardinals of unbounded below \aleph_{ω} Mitchell order. Theorem (Adolf, Ben-Neria) $$Con(ZFC + \exists \langle \tau_n \rangle_{n < \omega} \text{ with } \sup o(\tau_n) = \sup_n \langle \tau_n \rangle_{n < \omega}) \Rightarrow Con(ZFC + \exists \langle \aleph_{n_m} \rangle_{m < \omega} \land AFSP \text{ for } \aleph_{\omega}).$$ ## ABSP - The Approachable Bounded Subset Property Definition (A, B-N; Approachable Bounded Subset Property ABSP)) Let $\langle n_m \rangle_{m < \omega}$ be an ascending sequence from ω . The *ABSP* for $\langle \aleph_{n_m} \rangle_{m < \omega}$ states that for every internally approachable $N \prec \langle H(\theta), \in, \langle F_n \rangle_{n < \omega} \rangle$, of length ω_k for some $0 < k < \omega$ and some $\theta > \omega_\omega$, if $\chi_N(m) =_{df} \sup(N \cap \omega_{n_m})$, then for some $n_0 < \omega$, setting $C = \{\chi_N(m) \mid m \ge n_0\}$, for any $m \ge n_0$ $\chi_N(m) = \chi_{N[C \setminus \{\chi_N(m)\}]}(m)$. ## ABSP - The Approachable Bounded Subset Property ### Definition (A, B-N; Approachable Bounded Subset Property ABSP)) Let $\langle n_m \rangle_{m < \omega}$ be an ascending sequence from ω . The *ABSP* for $\langle \aleph_{n_m} \rangle_{m < \omega}$ states that for every internally approachable $N \prec \langle H(\theta), \in, \langle F_n \rangle_{n < \omega} \rangle$, of length ω_k for some $0 < k < \omega$ and some $\theta > \omega_\omega$, if $\chi_N(m) =_{df} \sup(N \cap \omega_{n_m})$, then for some $n_0 < \omega$, setting $C = \{\chi_N(m) \mid m \ge n_0\}$, for any $m \ge n_0$ $\chi_N(m) = \chi_{N[C \setminus \{\chi_N(m)\}]}(m)$. **Remark:** (i) *ABSP* for $\langle \aleph_{n_m} \rangle_{m < \omega}$ implies that for $m \ge n_0$ and C in the above definition, and for any $F \in N$, that: - (a) F " $(N \cup C \setminus \{\chi_N(m)\}) \cap [\chi_N(m), \omega_{n_m}) = \emptyset$ and in particular - (b) $\chi_N(m) \notin F$ " $(N \cup C \setminus \{\chi_N(m)\})$. #### **Remark:** - (ii) Thus if *ABSP* for $\langle \aleph_{n_m} \rangle_{m < \omega}$ holds then *a fortiori AFSP* for \aleph_{ω} holds. - (iii) Similarly we define *ABSP* in exactly the same way for $\langle \tau_m \rangle_{m < \omega}$ any ascending sequence of regular cardinals, rather than just an infinite subset of the \aleph_n . We shall use this in the sequel. #### Remark: - (ii) Thus if *ABSP* for $\langle \aleph_{n_m} \rangle_{m < \omega}$ holds then *a fortiori AFSP* for \aleph_{ω} holds. - (iii) Similarly we define *ABSP* in exactly the same way for $\langle \tau_m \rangle_{m < \omega}$ any ascending sequence of regular cardinals, rather than just an infinite subset of the \aleph_n . We shall use this in the sequel. Our previous 2008 argument for (1) actually showed (or can be read as having showed): #### Theorem Con(ZFC + ABSP for $$\langle \aleph_{n_m} \rangle_{m < \omega}$$, for some $\{n_m\}_m \subseteq \omega \} \Rightarrow$ Con(ZFC +For any $k \geq 1$, for arbitrarily large $m > k$ $\{\alpha < \omega_{n_m} | o^K(\alpha) \geq \omega_k \}$ is stationary). ### Theorem (Adolf, Ben-Neria) The following are equiconsistent: - (1) There exists an ascending sequence of regular cardinals $\langle \tau_n \rangle_{n < \omega}$ for which the ABSP holds $\langle \tau_n \rangle_{n < \omega}$. - (2) There exists an ascending sequence of regular cardinals $\langle \tau_n \rangle_{n < \omega}$ for which the AFSP holds $\langle \tau_n \rangle_{n < \omega}$. - (3) There exists an ascending sequence of regular cardinals $\langle \tau_n \rangle_{n < \omega}$ for which the product $\prod_n \tau_n$ does not carry a continuous tree-like scale. - (4) There exists a cardinal λ such that the set of Mitchell orders $\{o(\mu) \mid \mu < \lambda\}$ is unbounded in λ . ### Theorem (W) $(\neg O^{\text{pistol}})$ Let $\langle \tau_n \rangle_{n < \omega}$ be an increasing sequence of regular cardinals, for which ABSP holds. - (i) If the τ_n are inaccessible cardinals in K then for all sufficiently large m either $\{\alpha < \tau_m | o^K(\alpha) \ge \tau_k\}$ is stationary below τ_m or there is $\lambda_m < \tau_m$ with $o^K(\lambda_m) \ge \tau_m$. - (ii) If additionally in (i), for all $\gamma < \tau =_{df} \sup_n \tau_n$ we have $\operatorname{cf}(\gamma) = \operatorname{cf}^K(\gamma)$ then the second alternative holds: for a tail of the τ_m , there is $\lambda_m < \tau_m$ with λ_m strong up to τ_m . - (iii) If the τ_n are successor cardinals in K, with $\tau_n = \lambda_n^{+K}$ for λ_n K-cardinals, then $$\{\alpha \mid E_{\alpha}^{K} \text{ is an extender with } crit(E_{\alpha}^{K}) < \lambda_{m}\}$$ is unbounded in τ_m for all sufficiently large τ_m . Theorem $((\neg \exists IM(o(\kappa) = \kappa^{++}))$ If the τ_n are inaccessible cardinals in K then for all sufficiently large m $\{\alpha < \tau_m | o^K(\alpha) \ge \tau_k\}$ is stationary below τ_m . Theorem $((\neg \exists IM(o(\kappa) = \kappa^{++}))$ If the τ_n are inaccessible cardinals in K then for all sufficiently large m $\{\alpha < \tau_m | o^K(\alpha) \ge \tau_k\}$ is stationary below τ_m . **Proof:** For a contradiction suppose that in K and for an infinite set $Q \subseteq \omega$ we have for $m \in Q$ that we have cub $D_m \subseteq \tau_m$ and with no $\alpha \in D_m$ having $o^K(\alpha) \geq \tau_k$. Fix least such an Q and $\langle D_m | m \in Q \rangle$. Fix an arbitrary k > 0. Let N be internally approachable of length τ_k . Let $\chi_N(m) =_{df} \sup(N \cap \tau_m)$. (1) For $k < m < \omega$, $\chi_N(m) \in \operatorname{Cof}_{\tau_k}$. Theorem $((\neg \exists IM(o(\kappa) = \kappa^{++}))$ If the τ_n are inaccessible cardinals in K then for all sufficiently large m $\{\alpha < \tau_m | o^K(\alpha) \ge \tau_k\}$ is stationary below τ_m . **Proof:** For a contradiction suppose that in K and for an infinite set $Q \subseteq \omega$ we have for $m \in Q$ that we have cub $D_m \subseteq \tau_m$ and with no $\alpha \in D_m$ having $o^K(\alpha) \ge \tau_k$. Fix least such an Q and $\langle D_m | m \in Q \rangle$. Fix an arbitrary k > 0. Let N be internally approachable of length τ_k . Let $\chi_N(m) =_{df} \sup(N \cap \tau_m)$. (1) For $k < m < \omega$, $\chi_N(m) \in \operatorname{Cof}_{\tau_k}$. By ABSP for $\langle \tau_n \rangle_{n < \omega}$, let $n_0 < \omega$ be such that the Goodness holds for N with respect to the set $X =_{df} \{ \chi_N(m) \mid n_0 < m < \omega \}$, thus for any $n \ge n_0$ $\chi_N(n) = \chi_{N[X \setminus \{\chi_N(n)\}]}(n)$. For $r \in \omega$, we set $\pi_r : SH^{\mathcal{K}}[X \setminus \chi_N(r)] \leftrightarrow K^r$ to be the transitive collapse map. (2) Claim: $\exists p \in \omega \forall r, s \geq p \text{ then } K^r = K^s$. *Pf*: By Dodd-Jensen and the wellfoundedness of the \leq^* order. (2) Claim: $\exists p \in \omega \forall r, s \geq p \text{ then } K^r =^* K^s$. Pf: By Dodd-Jensen and the wellfoundedness of the \leq^* order. To facilitate our notation let $q =_{df} \min Q \setminus \max\{k+1,p\}$ and $D = \{\chi_N(n) \mid n \geq q\}$ and also let $x_0 < x_1 < \cdots$ enumerate D in ascending order. We set $\pi_D =_{df} \pi_q$, and $K_D =_{df} K^q$. • We note that the ABSP implies, *a fortiori*, also that X is free for F, and then so is the above subset D. Moreover if we define \bar{D} via π_D^{-1} " $\bar{D} = D$ then \bar{D} is free for $\bar{F} =_{df} \pi_D^{-1}$ "F in K_D . Let $\langle \bar{x}_I \rangle_{I < \omega}$ enumerate \overline{D} with $\pi_D(\bar{x}_I) = x_I$. (2) Claim: $\exists p \in \omega \forall r, s \geq p \text{ then } K^r = K^s$. *Pf*: By Dodd-Jensen and the wellfoundedness of the \leq^* order. To facilitate our notation let $q =_{df} \min Q \setminus \max\{k+1,p\}$ and $D = \{\chi_N(n) \mid n \geq q\}$ and also let $x_0 < x_1 < \cdots$ enumerate D in ascending order. We set $\pi_D =_{df} \pi_q$, and $K_D =_{df} K^q$. • We note that the ABSP implies, *a fortiori*, also that X is free for F, and then so is the above subset D. Moreover if we define \bar{D} via π_D^{-1} " $\bar{D} = D$ then \bar{D} is free for $\bar{F} =_{df} \pi_D^{-1}$ "F in K_D . Let $\langle \bar{x}_I \rangle_{I < \omega}$ enumerate \overline{D} with $\pi_D(\bar{x}_I) = x_I$. (3) Claim: Let $\alpha < x_0$, then $\sup N[\alpha \cup D \setminus \{x_0\}] \cap \tau_q = x_0$. Define $\tilde{H} = SH^{K_D}[\bar{x}_0 \cup \bar{D} \setminus \{\bar{x}_0\}]$. Let $\sigma : \bar{K} \leftrightarrow \tilde{H}$ again with \bar{K} transitive. Let $\tau =_{df} \operatorname{crit}(\sigma)$ Then: (4) (i) $\bar{K} \upharpoonright \tau = K_D \upharpoonright \tau$; (ii) $\tau = \bar{x}_0$; (iii) $K^{q+1} =^* K_D =^* \bar{K}$. Define $\tilde{H} = SH^{K_D}[\bar{x}_0 \cup \bar{D} \setminus \{\bar{x}_0\}]$. Let $\sigma : \bar{K} \leftrightarrow \tilde{H}$ again with \bar{K} transitive. Let $\tau =_{df} \operatorname{crit}(\sigma)$ Then: (4) (i) $$\bar{K} \upharpoonright \tau = K_D \upharpoonright \tau$$; (ii) $\tau = \bar{x}_0$; (iii) $K^{q+1} =^* K_D =^* \bar{K}$. (5) $\overline{K} \models$ " \overline{x}_0 is a regular cardinal". Proof: By (4)(ii). (6) \bar{x}_0 is a K_D -singular. Proof: $\pi_D(\bar{x}_0) = x_0 \in X$ and has, by (1), V-cofinality τ_k , whilst at the same time the closed D_n is unbounded below it, where n is such that $x_0 \in (\tau_{n-1}, \tau_n)$; hence $x_0 \in D_n$ and has $o^K(x_0) < \tau_k$. By Cox's extension of the Covering Lemma we must have x_0 a K-singular. Hence (6) follows by elementarity. \square (6) On coiterating $K^D = \overline{K}$ the only way to ensure the power sets of \bar{x}_0 to become equal, is for there to be an extender $E = E_{\alpha}$ in one of the models K^{α} of the coiteration with $(\operatorname{crit}(E_{\alpha})^+)^{K\alpha} \leq \bar{x}_0$ whilst $\alpha \geq \bar{x}_0$. But that would imply in \overline{K} that crit(E) is strong up to the \overline{K} -inaccessible \overline{x}_0 . • Hence in K by elementarity we have $o^K(\pi_D \circ \sigma(\operatorname{crit}(E_\alpha)) \geq \tau_q$. But $q \in Q$ and so there is no such extender E_{α} . Hence the conjunction of (4), (5) and (6) is a contradiction, and our supposition that there was such a sequence of sets $\langle D_m \rangle_{m \in Q}$ was false.