Games for chromatic numbers of analytic graphs

David Chodounský
Institute of Mathematics
of the Czech Academy of Sciences

joint work with Jindřich Zapletal
$G=(X, \Gamma) \quad \ldots \quad$ graph
$X \quad \ldots$ Polish space
$\Gamma \quad \ldots$ analytic edge relation, $\Gamma \subseteq[X]^{2}$
$G=(X, Г) \quad \ldots \quad$ graph
$X \quad \ldots$ Polish space
$\Gamma \quad \ldots$ analytic edge relation, $\Gamma \subseteq[X]^{2}$
Chromatic number
$\chi(G)=\min \left\{\kappa, X=\bigcup\left\{X_{i} \mid i \in \kappa, X_{i}\right.\right.$ are anticliques $\left.\}\right\}$
$G=(X, \Gamma) \quad \ldots \quad$ graph
$X \quad$... Polish space
$\Gamma \quad \ldots$ analytic edge relation, $\Gamma \subseteq[X]^{2}$
Chromatic number
$\chi(G)=\min \left\{\kappa, X=\bigcup\left\{X_{i} \mid i \in \kappa, X_{i}\right.\right.$ are anticliques $\left.\}\right\}$
$c: X \rightarrow V$ is a proper coloring of G if $c(x) \neq c(y)$ whenever $x\lceil y$
$\chi(G)=\min \{\kappa$ । there is a proper coloring $c: X \rightarrow \kappa\}$
$G=(X, \Gamma) \quad \ldots \quad$ graph
$X \quad$... Polish space
$\Gamma \quad \ldots$ analytic edge relation, $\Gamma \subseteq[X]^{2}$
Chromatic number
$\chi(G)=\min \left\{\kappa, X=\bigcup\left\{X_{i} \mid i \in \kappa, X_{i}\right.\right.$ are anticliques $\left.\}\right\}$
$c: X \rightarrow V$ is a proper coloring of G if $c(x) \neq c(y)$ whenever $x\lceil y$
$\chi(G)=\min \{\kappa$ । there is a proper coloring $c: X \rightarrow \kappa\}$

Coloring number
$\mu(G)=$
$\min \{\kappa$ । \exists well order \prec on $X,(\forall x \in X) \mid\{y \prec x|y\lceil x\}|<\kappa\}$
$G=(X, \Gamma) \quad \ldots \quad$ graph
$X \quad \ldots$ Polish space
$\Gamma \quad \ldots$ analytic edge relation, $\Gamma \subseteq[X]^{2}$
Chromatic number
$\chi(G)=\min \left\{\kappa, X=\bigcup\left\{X_{i} \mid i \in \kappa, X_{i}\right.\right.$ are anticliques $\left.\}\right\}$
$c: X \rightarrow V$ is a proper coloring of G if $c(x) \neq c(y)$ whenever $x\lceil y$
$\chi(G)=\min \{\kappa$ । there is a proper coloring $c: X \rightarrow \kappa\}$

Coloring number
$\mu(G)=$
$\min \{\kappa$ । \exists well order \prec on $X,(\forall x \in X) \mid\{y \prec x|y\lceil x\}|<\kappa\}$
List chromatic number (choosing number) $\operatorname{ch}(G)=\min \left\{\kappa, \forall L: X \rightarrow[V]^{\kappa} \exists c: X \rightarrow V\right.$ proper L-selector $\}$
$G=(X, \Gamma) \quad \ldots \quad$ graph
$X \quad \ldots$ Polish space
$\Gamma \quad \ldots$ analytic edge relation, $\Gamma \subseteq[X]^{2}$
Chromatic number
$\chi(G)=\min \left\{\kappa, X=\bigcup\left\{X_{i} \mid i \in \kappa, X_{i}\right.\right.$ are anticliques $\left.\}\right\}$
$c: X \rightarrow V$ is a proper coloring of G if $c(x) \neq c(y)$ whenever $x\lceil y$
$\chi(G)=\min \{\kappa$ । there is a proper coloring $c: X \rightarrow \kappa\}$

Coloring number
$\mu(G)=$
$\min \{\kappa \mid \exists$ well order \prec on $X,(\forall x \in X) \mid\{y \prec x|y\lceil x\}|<\kappa\}$
List chromatic number (choosing number) $\operatorname{ch}(G)=\min \left\{\kappa, \forall L: X \rightarrow[V]^{\kappa} \exists c: X \rightarrow V\right.$ proper L-selector $\}$

$$
\chi(G) \leq \operatorname{ch}(G) \leq \mu(G)
$$

$$
\begin{aligned}
& \chi(G) \leq \operatorname{ch}(G) \leq \mu(G) \\
& \chi(G)=\omega \quad \Leftarrow \operatorname{ch}(G)=\omega \Leftarrow \mu(G)=\omega
\end{aligned}
$$

$$
\begin{gathered}
\quad \chi(G) \leq \operatorname{ch}(G) \leq \mu(G) \\
\chi(G)=\omega \quad \Leftarrow \operatorname{ch}(G)=\omega \Leftarrow \mu(G)=\omega
\end{gathered}
$$

Example
$G=\left(\mathbb{R}^{2}, d(x, y) \in \mathbb{Q}\right) \quad \chi(G)=\omega \quad$ (Komjáth)

$$
\begin{aligned}
& \quad \chi(G) \leq \operatorname{ch}(G) \leq \mu(G) \\
& \chi(G)=\omega \quad \Leftarrow \operatorname{ch}(G)=\omega \Leftarrow \mu(G)=\omega
\end{aligned}
$$

Example

$$
\begin{array}{lll}
G=\left(\mathbb{R}^{2}, d(x, y) \in \mathbb{Q}\right) & \chi(G)=\omega & \text { (Komjáth) } \\
G=\left(\mathbb{R}^{3}, d(x, y) \in \mathbb{Q}\right) & \chi(G)=\omega & (\text { Schmerl })
\end{array}
$$

Example

$\Delta=\left(2^{<\omega} \cup 2^{\omega}, \Gamma\right), \quad s \Gamma x \quad$ if $\quad s \in 2^{<\omega}, x \in 2^{\omega}$, and $s \sqsubset x$

Example

$\Delta=\left(2^{<\omega} \cup 2^{\omega}, \Gamma\right), \quad s \Gamma x \quad$ if $\quad s \in 2^{<\omega}, x \in 2^{\omega}$, and $s \sqsubset x$ $\chi(\Delta)=2, \operatorname{ch}(\Delta)>\omega$

Example

$\Delta=\left(2^{<\omega} \cup 2^{\omega}, \Gamma\right), \quad s \Gamma x \quad$ if $\quad s \in 2^{<\omega}, x \in 2^{\omega}$, and $s \sqsubset x$
$\chi(\Delta)=2, \operatorname{ch}(\Delta)>\omega$
Proof.
$E: 2^{\omega} \leftrightarrow\left\{g: 2^{<\omega} \rightarrow \omega, \forall t \in 2^{<\omega} g(t)>|t|\right\}$

Example

$\Delta=\left(2^{<\omega} \cup 2^{\omega}, \Gamma\right), \quad s \Gamma x \quad$ if $\quad s \in 2^{<\omega}, x \in 2^{\omega}$, and $s \sqsubset x$
$\chi(\Delta)=2, \operatorname{ch}(\Delta)>\omega$
Proof.
$E: 2^{\omega} \leftrightarrow\left\{g: 2^{<\omega} \rightarrow \omega, \forall t \in 2^{<\omega} g(t)>|t|\right\}$ for $t \in 2^{<\omega}$ let $L(t)=\{n \in \omega|n>|t|\}$ for $x \in 2^{\omega}$ let $L(x)=\left\{E(x)(t)\right.$ । $\left.t \sqsubset x, t \in 2^{<\omega}\right\}$

Example

$\Delta=\left(2^{<\omega} \cup 2^{\omega}, \Gamma\right), \quad s \Gamma x \quad$ if $\quad s \in 2^{<\omega}, x \in 2^{\omega}$, and $s \sqsubset x$
$\chi(\Delta)=2, \operatorname{ch}(\Delta)>\omega$
Proof.
$E: 2^{\omega} \leftrightarrow\left\{g: 2^{<\omega} \rightarrow \omega, \forall t \in 2^{<\omega} g(t)>|t|\right\}$ for $t \in 2^{<\omega}$ let $L(t)=\{n \in \omega|n>|t|\}$
for $x \in 2^{\omega}$ let $L(x)=\left\{E(x)(t) \mid t \sqsubset x, t \in 2^{<\omega}\right\}$
Let c be a L-selector. There is $x \in 2^{\omega}$ such that $c \upharpoonright 2^{<\omega}=E(x)$.

Example

$\Delta=\left(2^{<\omega} \cup 2^{\omega}, \Gamma\right), \quad s \Gamma x \quad$ if $\quad s \in 2^{<\omega}, x \in 2^{\omega}$, and $s \sqsubset x$
$\chi(\Delta)=2, \operatorname{ch}(\Delta)>\omega$
Proof.
$E: 2^{\omega} \leftrightarrow\left\{g: 2^{<\omega} \rightarrow \omega, \forall t \in 2^{<\omega} g(t)>|t|\right\}$ for $t \in 2^{<\omega}$ let $L(t)=\{n \in \omega|n>|t|\}$
for $x \in 2^{\omega}$ let $L(x)=\left\{E(x)(t)\right.$ । $\left.t \sqsubset x, t \in 2^{<\omega}\right\}$
Let c be a L-selector. There is $x \in 2^{\omega}$ such that $c \upharpoonright 2^{<\omega}=E(x)$. $c(x) \in L(x) \quad \Rightarrow \quad$ there is $n \in \omega$ such that $c(x)=E(x)(x \upharpoonright n)=c(x \upharpoonright n) ; c$ is not proper.

Let $\Delta_{0}=\Delta$, where 2^{ω} is isomorphic to the Cantor space and $2^{<\omega}$ is a closed set of isolated points.

Theorem 0 (Adams, Zapletal)

Let $G=(X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation. Then one of the following holds

1. $\Delta_{0} \hookrightarrow G$ continuously, or
2. $\mu(G) \leq \omega$.

Let $\Delta_{0}=\Delta$, where 2^{ω} is isomorphic to the Cantor space and $2^{<\omega}$ is a closed set of isolated points.

Theorem 0 (Adams, Zapletal)

Let $G=(X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation. Then one of the following holds

1. $\Delta_{0} \hookrightarrow G$ continuously, or
2. $\mu(G) \leq \omega$.

Game $\mathcal{G}_{0}(X, \Gamma)$

Player 1	\ldots	$x_{n} \in X, B_{n}$ basic open of diameter $<2^{-n}$	\ldots
Player 2	\ldots	$y_{n} \in X$	\ldots

Player 1 wins if

- $x_{n} \neq x_{m} \quad$ if $n \neq m$,
- $y_{n} \notin \overline{B_{n+1}} \subset B_{n} \quad$ for every $n \in \omega$,
- $(\forall n \in \omega) z \Gamma x_{n}$, where $z=\bigcap\left\{B_{n} \mid n \in \omega\right\}$.

Theorem 0 (Adams, Zapletal)
Let $G=(X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation. Then one of the following holds

1. $\Delta_{0} \hookrightarrow G$ continuously, or
2. $\mu(G) \leq \omega$.

Theorem 0^{+}

Let $G=(X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation.

1. The game $\mathcal{G}_{0}(X, \Gamma)$ is determined.
2. Player 1 has a winning strategy iff $\Delta_{0} \hookrightarrow G$ continuously.
3. Player 2 has a winning strategy iff $\mu(G) \leq \omega$.

Theorem 0^{+}

Let $G=(X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation.

1. The game $\mathcal{G}_{0}(X, \Gamma)$ is determined.
2. Player 1 has a winning strategy iff $\Delta_{0} \hookrightarrow G$ continuously.
3. Player 2 has a winning strategy iff $\mu(G) \leq \omega$.

Proof of 1.

Fix a continuous function $k: \omega^{\omega} \rightarrow X^{\omega+1}$ such that

$$
k\left[\omega^{\omega}\right]=\left\{\left\langle\left\langle x_{n} \mid n \in \omega\right\rangle, z\right\rangle \text { such that }(\forall n) x_{n} \Gamma z\right\} .
$$

Theorem 0^{+}

Let $G=(X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation.

1. The game $\mathcal{G}_{0}(X, \Gamma)$ is determined.
2. Player 1 has a winning strategy iff $\Delta_{0} \hookrightarrow G$ continuously.
3. Player 2 has a winning strategy iff $\mu(G) \leq \omega$.

Proof of 1 .

Fix a continuous function $k: \omega^{\omega} \rightarrow X^{\omega+1}$ such that

$$
k\left[\omega^{\omega}\right]=\left\{\left\langle\left\langle x_{n} \mid n \in \omega\right\rangle, z\right\rangle \text { such that }(\forall n) x_{n}\lceil z\} .\right.
$$

Unraveled game $\mathcal{G}_{0}^{\mathrm{U}}(X, \Gamma)$

Player 1	\ldots	$x_{n} \in X, B_{n}$ basic open of diameter $<2^{-n}, t_{n} \in \omega^{n}$	\ldots
Player 2	\ldots	$y_{n} \in X$	\ldots

Player 1 wins if he wins $\mathcal{G}_{0}(X, \Gamma)$, and additionally
$k\left(\bigcup\left\{t_{n} \mid n \in \omega\right\}\right)=\left\langle\left\langle x_{n} \mid n \in \omega\right\rangle, z\right\rangle$.

Proof continued

The unraveled game $\mathcal{G}_{0}^{\mathrm{U}}(X, \Gamma)$ is closed for Player 1 and thus determined.

Proof continued

The unraveled game $\mathcal{G}_{0}^{\mathrm{U}}(X, \Gamma)$ is closed for Player 1 and thus determined.

If Player 1 has a winning strategy for $\mathcal{G}_{0}^{\mathrm{U}}(X, \Gamma)$, then he has a winning strategy for $\mathcal{G}_{0}(X, \Gamma)$.
If Player 2 has a winning strategy for $\mathcal{G}_{0}^{\mathrm{U}}(X, \Gamma)$, then he has a winning strategy for $\mathcal{G}_{0}(X, \Gamma)$.

Proof continued

The unraveled game $\mathcal{G}_{0}^{\mathrm{U}}(X, \Gamma)$ is closed for Player 1 and thus determined.

If Player 1 has a winning strategy for $\mathcal{G}_{0}^{\mathrm{U}}(X, \Gamma)$, then he has a winning strategy for $\mathcal{G}_{0}(X, \Gamma)$.
If Player 2 has a winning strategy for $\mathcal{G}_{0}^{\mathrm{U}}(X, \Gamma)$, then he has a winning strategy for $\mathcal{G}_{0}(X, \Gamma)$.
Proof of 2.
(Hand-waving)

Proof continued

The unraveled game $\mathcal{G}_{0}^{\mathrm{U}}(X, \Gamma)$ is closed for Player 1 and thus determined.

If Player 1 has a winning strategy for $\mathcal{G}_{0}^{\mathrm{U}}(X, \Gamma)$, then he has a winning strategy for $\mathcal{G}_{0}(X, \Gamma)$.
If Player 2 has a winning strategy for $\mathcal{G}_{0}^{U}(X, \Gamma)$, then he has a winning strategy for $\mathcal{G}_{0}(X, \Gamma)$.
Proof of 2.
(Hand-waving)
Proof of $3(\Leftarrow)$.
If $\mu(G) \leq \omega$, then Δ_{0} can not embed, and Player 1 does not have a winning strategy.

Proof of $3(\Rightarrow)$.
Let σ be a wining strategy for Player 2.

Proof of $3(\Rightarrow)$.
Let σ be a wining strategy for Player 2.
Lemma
If $b \subseteq X$ is closed with respect to σ, and $z \in X \backslash b$, then

$$
|\{x \in b \mid x \Gamma z\}|<\omega .
$$

Proof of $3(\Rightarrow)$.
Let σ be a wining strategy for Player 2.
Lemma
If $b \subseteq X$ is closed with respect to σ, and $z \in X \backslash b$, then

$$
|\{x \in b, x \Gamma z\}|<\omega .
$$

Lemma
If $b \subseteq X$ is closed with respect to σ, then $\mu(G \upharpoonright b) \leq \omega$.
Proof.
By induction on $|b|$.

Proof of $3(\Rightarrow)$.
Let σ be a wining strategy for Player 2.
Lemma
If $b \subseteq X$ is closed with respect to σ, and $z \in X \backslash b$, then

$$
\mid\{x \in b|x\lceil z\}|<\omega .
$$

Lemma
If $b \subseteq X$ is closed with respect to σ, then $\mu(G \upharpoonright b) \leq \omega$.
Proof.
By induction on $|b|$. For $|b|=\omega$ OK.

Proof of $3(\Rightarrow)$.
Let σ be a wining strategy for Player 2.
Lemma
If $b \subseteq X$ is closed with respect to σ, and $z \in X \backslash b$, then

$$
|\{x \in b \mid x \Gamma z\}|<\omega .
$$

Lemma
If $b \subseteq X$ is closed with respect to σ, then $\mu(G \upharpoonright b) \leq \omega$.
Proof.
By induction on $|b|$. For $|b|=\omega$ OK.
Let $b=\bigcup b_{\alpha}$, a continuous increasing union of σ-closed sets, $\left|b_{\alpha}\right|<|b|$ for each α.

Proof of $3(\Rightarrow)$.
Let σ be a wining strategy for Player 2.
Lemma
If $b \subseteq X$ is closed with respect to σ, and $z \in X \backslash b$, then

$$
\mid\{x \in b|x\lceil z\}|<\omega .
$$

Lemma
If $b \subseteq X$ is closed with respect to σ, then $\mu(G \upharpoonright b) \leq \omega$.
Proof.
By induction on $|b|$. For $|b|=\omega$ OK.
Let $b=\bigcup b_{\alpha}$, a continuous increasing union of σ-closed sets, $\left|b_{\alpha}\right|<|b|$ for each α.
The induction hypothesis gives us well orders ($b_{\alpha}, \prec_{\alpha}$).

Proof of $3(\Rightarrow)$.

Let σ be a wining strategy for Player 2.
Lemma
If $b \subseteq X$ is closed with respect to σ, and $z \in X \backslash b$, then

$$
|\{x \in b \mid x \Gamma z\}|<\omega .
$$

Lemma
If $b \subseteq X$ is closed with respect to σ, then $\mu(G \upharpoonright b) \leq \omega$.
Proof.
By induction on $|b|$. For $|b|=\omega$ OK.
Let $b=\bigcup b_{\alpha}$, a continuous increasing union of σ-closed sets, $\left|b_{\alpha}\right|<|b|$ for each α.
The induction hypothesis gives us well orders ($b_{\alpha}, \prec_{\alpha}$).
For $x, y \in b$ let $x \prec y$ if either

- $x \in b_{\alpha}, y \in b_{\alpha+1} \backslash b_{\alpha}$ for some α, or
- $x, y \in b_{\alpha+1} \backslash b_{\alpha}$ and $x \prec_{\alpha+1} y$ for some α.

Proof of $3(\Rightarrow)$.

Let σ be a wining strategy for Player 2.
Lemma
If $b \subseteq X$ is closed with respect to σ, and $z \in X \backslash b$, then

$$
\mid\{x \in b|x\lceil z\}|<\omega .
$$

Lemma
If $b \subseteq X$ is closed with respect to σ, then $\mu(G \upharpoonright b) \leq \omega$.
Proof.
By induction on $|b|$. For $|b|=\omega$ OK.
Let $b=\bigcup b_{\alpha}$, a continuous increasing union of σ-closed sets, $\left|b_{\alpha}\right|<|b|$ for each α.
The induction hypothesis gives us well orders ($b_{\alpha}, \prec_{\alpha}$).
For $x, y \in b$ let $x \prec y$ if either

- $x \in b_{\alpha}, y \in b_{\alpha+1} \backslash b_{\alpha}$ for some α, or
- $x, y \in b_{\alpha+1} \backslash b_{\alpha}$ and $x \prec_{\alpha+1} y$ for some α.
$\left\{x \prec y \mid x\lceil y\}=\left\{x \in b_{\alpha} \mid x\lceil y\} \cup\left\{x \prec_{\alpha+1} y \mid x\lceil y\}\right.\right.\right.$ for $y \in b_{\alpha+1}$

Theorem 0^{+}

Let $G=(X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation.

1. The game $\mathcal{G}_{0}(X, \Gamma)$ is determined.
2. Player 1 has a winning strategy iff $\Delta_{0} \hookrightarrow G$ continuously.
3. Player 2 has a winning strategy iff $\mu(G) \leq \omega$.

Corollary (Adams, Zapletal)
Let $G=(X, \Gamma)$ be a graph. If Γ is analytic, then $\operatorname{ch}(G) \leq \omega \quad$ if and only if $\quad \mu(G) \leq \omega$.

Theorem 0^{+}
Let $G=(X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation.

1. The game $\mathcal{G}_{0}(X, \Gamma)$ is determined.
2. Player 1 has a winning strategy iff $\Delta_{0} \hookrightarrow G$ continuously.
3. Player 2 has a winning strategy iff $\mu(G) \leq \omega$.

Corollary (Adams, Zapletal)
Let $G=(X, \Gamma)$ be a graph. If Γ is analytic, then $\operatorname{ch}(G) \leq \omega \quad$ if and only if $\quad \mu(G) \leq \omega$.

Corollary (Komjáth)
If $G=\left(\mathbb{R}^{2}, d(x, y) \in \mathbb{Q}\right)$, then $\mu(G)=\omega$.

Neighborhood assignments for $G=(X, Г)$

A function $O: X \rightarrow \tau(x)$ is a neighborhood assignment if $x \in O(x)$ for each $x \in X$.
A neighborhood assignment is proper
if $x\lceil y$ implies $x \notin O(y)$ or $y \notin O(x)$ for every $x, y \in X$.

Neighborhood assignments for $G=(X, Г)$

A function $O: X \rightarrow \tau(x)$ is a neighborhood assignment if $x \in O(x)$ for each $x \in X$.
A neighborhood assignment is proper
if $x\lceil y$ implies $x \notin O(y)$ or $y \notin O(x)$ for every $x, y \in X$.
We say that G is left-separated if there is a well order \prec on X such that $x \notin \overline{\{y \in X \mid y \prec x, y\lceil x\}}$ for each $x \in X$.

Neighborhood assignments for $G=(X, Г)$

A function $O: X \rightarrow \tau(x)$ is a neighborhood assignment if $x \in O(x)$ for each $x \in X$.
A neighborhood assignment is proper
if $x\lceil y$ implies $x \notin O(y)$ or $y \notin O(x)$ for every $x, y \in X$.
We say that G is left-separated if there is a well order \prec on X such that $x \notin \overline{\{y \in X \mid y \prec x, y\lceil x\}}$ for each $x \in X$.

Proposition

Let G be a graph on a Polish space. The graph G is left separated if and only if G has a proper neighborhood assignment.

Neighborhood assignments for $G=(X, Г)$

A function $O: X \rightarrow \tau(x)$ is a neighborhood assignment if $x \in O(x)$ for each $x \in X$.
A neighborhood assignment is proper
if $x\lceil y$ implies $x \notin O(y)$ or $y \notin O(x)$ for every $x, y \in X$.
We say that G is left-separated if there is a well order \prec on X such that $x \notin \overline{\{y \in X \mid y \prec x, y\lceil x\}}$ for each $x \in X$.

Proposition

Let G be a graph on a Polish space. The graph G is left separated if and only if G has a proper neighborhood assignment.

Proof \Leftarrow.

Let O be a proper neighborhood assignment.
For each $x \in X$ choose $n(x) \in \omega$ such that $B_{2^{-n(x)}}(x) \subseteq O(x)$.
Any well order \prec satisfying $(n(x)<n(y)) \Rightarrow(x \prec y)$ works.

Neighborhood assignments for $G=(X, Г)$

A function $O: X \rightarrow \tau(x)$ is a neighborhood assignment if $x \in O(x)$ for each $x \in X$.
A neighborhood assignment is proper
if $x\lceil y$ implies $x \notin O(y)$ or $y \notin O(x)$ for every $x, y \in X$.
We say that G is left-separated if there is a well order \prec on X such that $x \notin\{y \in X \mid y \prec x, y\ulcorner x\}$ for each $x \in X$.

Proposition

Let G be a graph on a Polish space. The graph G is left separated if and only if G has a proper neighborhood assignment.
Proof \Leftarrow.
Let O be a proper neighborhood assignment.
For each $x \in X$ choose $n(x) \in \omega$ such that $B_{2-n(x)}(x) \subseteq O(x)$.
Any well order \prec satisfying $(n(x)<n(y)) \Rightarrow(x \prec y)$ works.
Corollary
$\chi(G) \leq \omega \Leftarrow G$ is left-separated $\Leftarrow \mu(G) \leq \omega \Leftrightarrow \operatorname{ch}(G) \leq \omega$

Let $\Delta_{1}=\Delta$, where 2^{ω} is isomorphic to the Cantor space, $2^{<\omega}$ are isolated points, and for every $x \in 2^{\omega}$ the sequence $\{x \upharpoonright n \mid n \in \omega\}$ converges to x.

Let $\Delta_{1}=\Delta$, where 2^{ω} is isomorphic to the Cantor space, $2^{<\omega}$ are isolated points, and for every $x \in 2^{\omega}$ the sequence $\{x \upharpoonright n \mid n \in \omega\}$ converges to x. In particular $\Delta_{0} \hookrightarrow \Delta_{1}$ continuously.

Let $\Delta_{1}=\Delta$, where 2^{ω} is isomorphic to the Cantor space, $2^{<\omega}$ are isolated points, and for every $x \in 2^{\omega}$ the sequence $\{x \upharpoonright n \mid n \in \omega\}$ converges to x. In particular $\Delta_{0} \hookrightarrow \Delta_{1}$ continuously.
Observation
The graph Δ_{1} is left-separated. (Put the isolated points at the end.)

Let $\Delta_{1}=\Delta$, where 2^{ω} is isomorphic to the Cantor space, $2^{<\omega}$ are isolated points, and for every $x \in 2^{\omega}$ the sequence $\{x \upharpoonright n \mid n \in \omega\}$ converges to x. In particular $\Delta_{0} \hookrightarrow \Delta_{1}$ continuously.

Observation

The graph Δ_{1} is left-separated. (Put the isolated points at the end.)

Theorem 1

Let $G=(X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation. Then (at least) one of the following holds

1. $\Delta_{1} \hookrightarrow G$ continuously, or
2. G is left-separated.

Let $\Delta_{1}=\Delta$, where 2^{ω} is isomorphic to the Cantor space, $2^{<\omega}$ are isolated points, and for every $x \in 2^{\omega}$ the sequence $\{x \upharpoonright n \mid n \in \omega\}$ converges to x. In particular $\Delta_{0} \hookrightarrow \Delta_{1}$ continuously.

Observation

The graph Δ_{1} is left-separated. (Put the isolated points at the end.)

Theorem 1

Let $G=(X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation. Then (at least) one of the following holds

1. $\Delta_{1} \hookrightarrow G$ continuously, or
2. G is left-separated.

Theorem 0

Let $G=(X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation. Then one of the following holds

1. $\Delta_{0} \hookrightarrow G$ continuously, or
2. $\mu(G) \leq \omega$.

Game $\mathcal{G}_{1}(X, \Gamma)$

Player 1	\ldots	$x_{n} \in X$	\ldots
Player 2	\ldots	$y_{n} \in X$	\ldots

Player 1 wins if

- $\lim x_{n}=z \in X$,
- $(\forall n \in \omega) z \Gamma x_{n}$, and
- $(\forall n \in \omega) z \neq y_{n}$.

Game $\mathcal{G}_{1}(X, \Gamma)$

Player 1	\ldots	$x_{n} \in X$	\ldots
Player 2	\ldots	$y_{n} \in X$	\ldots

Player 1 wins if

- $\lim x_{n}=z \in X$,
- $(\forall n \in \omega) z \Gamma x_{n}$, and
- $(\forall n \in \omega) z \neq y_{n}$.

Theorem 1^{+}
Let $G=(X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation.

1. The game $\mathcal{G}_{1}(X, \Gamma)$ is determined.
2. Player 1 has a winning strategy iff $\Delta_{1} \hookrightarrow G$ continuously.
3. If Player 2 has a winning strategy, then G is left-separated.

Game $\mathcal{G}_{1}(X, \Gamma)$

Player 1	\ldots	$x_{n} \in X$	\ldots
Player 2	\ldots	$y_{n} \in X$	\ldots

Player 1 wins if

- $\lim x_{n}=z \in X$,
- $(\forall n \in \omega) z \Gamma x_{n}$, and
- $(\forall n \in \omega) z \neq y_{n}$.

Theorem 1^{+}
Let $G=(X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation.

1. The game $\mathcal{G}_{1}(X, \Gamma)$ is determined.
2. Player 1 has a winning strategy iff $\Delta_{1} \hookrightarrow G$ continuously.
3. If Player 2 has a winning strategy, then G is left-separated.

Corollary (Schmerl)

If $G=\left(\mathbb{R}^{3}, d(x, y) \in \mathbb{Q}\right)$, then G is left-separated. I.e. $\chi(G)=\omega$.

