Games for chromatic numbers of analytic graphs

David Chodounský

Institute of Mathematics of the Czech Academy of Sciences

joint work with Jindřich Zapletal

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$G = (X, \Gamma)$$
 ... graph
 X ... Polish space
 Γ ... analytic edge relation, $\Gamma \subseteq [X]^2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□▶ ▲□▶

 $\begin{array}{lll} G = (X, \Gamma) & \dots & \text{graph} \\ X & \dots & \text{Polish space} \\ \Gamma & \dots & \text{analytic edge relation}, \ \Gamma \subseteq [X]^2 \end{array}$

Chromatic number

 $\chi(G) = \min\{\kappa \mid X = \bigcup\{X_i \mid i \in \kappa, X_i \text{ are anticliques }\}\}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 $\begin{array}{lll} G = (X, \Gamma) & \dots & \text{graph} \\ X & \dots & \text{Polish space} \\ \Gamma & \dots & \text{analytic edge relation, } \Gamma \subseteq \left[X\right]^2 \end{array}$

Chromatic number

 $\chi(G) = \min\{\kappa \mid X = \bigcup\{X_i \mid i \in \kappa, X_i \text{ are anticliques }\}\}$

 $c: X \to V$ is a proper coloring of G if $c(x) \neq c(y)$ whenever $x \Gamma y$ $\chi(G) = \min\{\kappa \mid \text{ there is a proper coloring } c: X \to \kappa\}$

 $\begin{array}{lll} G = (X, \Gamma) & \dots & \text{graph} \\ X & \dots & \text{Polish space} \\ \Gamma & \dots & \text{analytic edge relation, } \Gamma \subseteq [X]^2 \end{array}$

Chromatic number

 $\chi(G) = \min\{\kappa \mid X = \bigcup\{X_i \mid i \in \kappa, X_i \text{ are anticliques }\}\}$

 $c: X \to V$ is a proper coloring of G if $c(x) \neq c(y)$ whenever $x \Gamma y$ $\chi(G) = \min\{\kappa \mid \text{ there is a proper coloring } c: X \to \kappa\}$

Coloring number

 $\mu(G) = \min\{\kappa \mid \exists \text{ well order } \prec \text{ on } X, (\forall x \in X) | \{y \prec x \mid y \Gamma x\} | < \kappa \}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\begin{array}{lll} G = (X, \Gamma) & \dots & \text{graph} \\ X & \dots & \text{Polish space} \\ \Gamma & \dots & \text{analytic edge relation, } \Gamma \subseteq [X]^2 \end{array}$

Chromatic number

 $\chi(G) = \min\{\kappa \mid X = \bigcup\{X_i \mid i \in \kappa, X_i \text{ are anticliques }\}\}$

 $c: X \to V$ is a proper coloring of G if $c(x) \neq c(y)$ whenever $x \Gamma y$ $\chi(G) = \min\{\kappa \mid \text{ there is a proper coloring } c: X \to \kappa\}$

Coloring number

$$\mu(G) = \min\{ \kappa \mid \exists \text{ well order } \prec \text{ on } X, (\forall x \in X) | \{ y \prec x \mid y \Gamma x \} | < \kappa \}$$

List chromatic number (choosing number)

 $ch(G) = \min\{ \kappa \mid \forall L \colon X \to [V]^{\kappa} \exists c \colon X \to V \text{ proper } L\text{-selector } \}$

 $\begin{array}{lll} G = (X, \Gamma) & \dots & \text{graph} \\ X & \dots & \text{Polish space} \\ \Gamma & \dots & \text{analytic edge relation, } \Gamma \subseteq [X]^2 \end{array}$

Chromatic number

 $\chi(G) = \min\{\kappa \mid X = \bigcup\{X_i \mid i \in \kappa, X_i \text{ are anticliques }\}\}$

 $c: X \to V$ is a proper coloring of G if $c(x) \neq c(y)$ whenever $x \Gamma y$ $\chi(G) = \min\{\kappa \mid \text{ there is a proper coloring } c: X \to \kappa\}$

Coloring number

$$\mu(G) = \min\{\kappa \mid \exists \text{ well order } \prec \text{ on } X, (\forall x \in X) | \{y \prec x \mid y \lceil x \} | < \kappa \}$$

List chromatic number (choosing number) $ch(G) = min\{ \kappa \mid \forall L \colon X \to [V]^{\kappa} \exists c \colon X \to V \text{ proper } L\text{-selector } \}$

$$\chi(G) \leq \operatorname{ch}(G) \leq \mu(G)$$

$$\chi(G) \le \operatorname{ch}(G) \le \mu(G)$$

 $\chi(G) = \omega \iff \operatorname{ch}(G) = \omega \iff \mu(G) = \omega$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□▶ ▲□▶

$$\chi(G) \le \operatorname{ch}(G) \le \mu(G)$$

 $\chi(G) = \omega \iff \operatorname{ch}(G) = \omega \iff \mu(G) = \omega$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Example

 $G = (\mathbb{R}^2, d(x, y) \in \mathbb{Q})$ $\chi(G) = \omega$ (Komjáth)

$$\chi(G) \le \operatorname{ch}(G) \le \mu(G)$$

 $\chi(G) = \omega \iff \operatorname{ch}(G) = \omega \iff \mu(G) = \omega$

Example

$G=(\mathbb{R}^2,d(x,y)\in\mathbb{Q})$	$\chi(G) = \omega$	(Komjáth)
$G=(\mathbb{R}^3,d(x,y)\in\mathbb{Q})$	$\chi(G) = \omega$	(Schmerl)

Example $\Delta = (2^{<\omega} \cup 2^{\omega}, \Gamma), \quad s\Gamma x \quad \text{if} \quad s \in 2^{<\omega}, x \in 2^{\omega}, \text{ and } s \sqsubset x$

Example $\Delta = (2^{<\omega} \cup 2^{\omega}, \Gamma), \quad s\Gamma x \quad \text{if} \quad s \in 2^{<\omega}, x \in 2^{\omega}, \text{ and } s \sqsubset x$ $\chi(\Delta) = 2, \operatorname{ch}(\Delta) > \omega$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Example $\Delta = (2^{<\omega} \cup 2^{\omega}, \Gamma), \quad s\Gamma x \quad \text{if} \quad s \in 2^{<\omega}, x \in 2^{\omega}, \text{ and } s \sqsubset x$ $\chi(\Delta) = 2, \operatorname{ch}(\Delta) > \omega$ Proof. $E: 2^{\omega} \leftrightarrow \{ g: 2^{<\omega} \to \omega, \forall t \in 2^{<\omega} g(t) > |t| \}$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Example

 $\Delta = (2^{<\omega} \cup 2^{\omega}, \Gamma), \quad s\Gamma x \quad \text{if} \quad s \in 2^{<\omega}, x \in 2^{\omega}, \text{and } s \sqsubset x$ $\chi(\Delta) = 2, \operatorname{ch}(\Delta) > \omega$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Proof.

$$E: 2^{\omega} \leftrightarrow \{ g: 2^{<\omega} \to \omega, \forall t \in 2^{<\omega} g(t) > |t| \}$$

for $t \in 2^{<\omega}$ let $L(t) = \{ n \in \omega \mid n > |t| \}$
for $x \in 2^{\omega}$ let $L(x) = \{ E(x)(t) \mid t \sqsubset x, t \in 2^{<\omega} \}$

Example

 $\Delta = (2^{<\omega} \cup 2^{\omega}, \Gamma), \quad s\Gamma x \quad \text{if} \quad s \in 2^{<\omega}, x \in 2^{\omega}, \text{ and } s \sqsubset x$ $\chi(\Delta) = 2, \operatorname{ch}(\Delta) > \omega$

Proof.

 $E: 2^{\omega} \leftrightarrow \{g: 2^{<\omega} \rightarrow \omega, \forall t \in 2^{<\omega} g(t) > |t| \}$ for $t \in 2^{<\omega}$ let $L(t) = \{n \in \omega \mid n > |t| \}$ for $x \in 2^{\omega}$ let $L(x) = \{E(x)(t) \mid t \sqsubset x, t \in 2^{<\omega} \}$ Let *c* be a *L*-selector. There is $x \in 2^{\omega}$ such that $c \upharpoonright 2^{<\omega} = E(x)$.

(日)

Example

 $\Delta = (2^{<\omega} \cup 2^{\omega}, \Gamma), \quad s\Gamma x \quad \text{if} \quad s \in 2^{<\omega}, x \in 2^{\omega}, \text{ and } s \sqsubset x$ $\chi(\Delta) = 2, \operatorname{ch}(\Delta) > \omega$

Proof.

 $E: 2^{\omega} \leftrightarrow \{g: 2^{<\omega} \to \omega, \forall t \in 2^{<\omega} g(t) > |t| \}$ for $t \in 2^{<\omega}$ let $L(t) = \{n \in \omega + n > |t| \}$ for $x \in 2^{\omega}$ let $L(x) = \{E(x)(t) + t \sqsubset x, t \in 2^{<\omega} \}$ Let *c* be a *L*-selector. There is $x \in 2^{\omega}$ such that $c \upharpoonright 2^{<\omega} = E(x)$. $c(x) \in L(x) \Rightarrow$ there is $n \in \omega$ such that $c(x) = E(x)(x \upharpoonright n) = c(x \upharpoonright n); c$ is not proper.

(日)

Let $\Delta_0 = \Delta$, where 2^{ω} is isomorphic to the Cantor space and $2^{<\omega}$ is a closed set of isolated points.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem 0 (Adams, Zapletal)

Let $G = (X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation. Then one of the following holds

- 1. $\Delta_0 \hookrightarrow G$ continuously, or
- 2. $\mu(G) \leq \omega$.

Let $\Delta_0 = \Delta$, where 2^{ω} is isomorphic to the Cantor space and $2^{<\omega}$ is a closed set of isolated points.

Theorem 0 (Adams, Zapletal)

Let $G = (X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation. Then one of the following holds

1. $\Delta_0 \hookrightarrow G$ continuously, or

2.
$$\mu(G) \leq \omega$$
.

Game $\mathcal{G}_0(X, \Gamma)$

Player 1	 $x_n \in X$, B_n basic open of diameter $< 2^{-n}$	
Player 2	 $y_n \in X$	

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Player 1 wins if

•
$$x_n \neq x_m$$
 if $n \neq m$,

•
$$y_n \notin \overline{B_{n+1}} \subset B_n$$
 for every $n \in \omega$,

•
$$(\forall n \in \omega) \ z \Gamma x_n$$
, where $z = \bigcap \{ B_n \mid n \in \omega \}$.

Theorem 0 (Adams, Zapletal)

Let $G = (X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation. Then one of the following holds

- 1. $\Delta_0 \hookrightarrow G$ continuously, or
- 2. $\mu(G) \leq \omega$.

Theorem 0⁺

Let $G = (X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation.

- 1. The game $\mathcal{G}_0(X, \Gamma)$ is determined.
- 2. Player 1 has a winning strategy iff $\Delta_0 \hookrightarrow G$ continuously.

3. Player 2 has a winning strategy iff $\mu(G) \leq \omega$.

Theorem 0⁺

Let $G = (X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation.

- 1. The game $\mathcal{G}_0(X, \Gamma)$ is determined.
- 2. Player 1 has a winning strategy iff $\Delta_0 \hookrightarrow G$ continuously.
- 3. Player 2 has a winning strategy iff $\mu(G) \leq \omega$.

Proof of 1.

Fix a continuous function $k \colon \omega^{\omega} \to X^{\omega+1}$ such that

$$k[\omega^{\omega}] = \{ \langle \langle x_n \mid n \in \omega \rangle, z \rangle \text{ such that } (\forall n) x_n \Gamma z \}.$$

Theorem 0⁺

Let $G = (X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation.

- 1. The game $\mathcal{G}_0(X, \Gamma)$ is determined.
- 2. Player 1 has a winning strategy iff $\Delta_0 \hookrightarrow G$ continuously.
- 3. Player 2 has a winning strategy iff $\mu(G) \leq \omega$.

Proof of 1.

Fix a continuous function $k \colon \omega^{\omega} \to X^{\omega+1}$ such that

$$k[\omega^{\omega}] = \{ \langle \langle x_n \mid n \in \omega \rangle, z \rangle \text{ such that } (\forall n) x_n \Gamma z \}.$$

Unraveled game $\mathcal{G}_0^{U}(X, \Gamma)$

Player 1	 $x_n \in X$, B_n basic open of diameter $< 2^{-n}$, $t_n \in \omega^n$	
Player 2	 $y_n \in X$	

Player 1 wins if he wins $\mathcal{G}_0(X, \Gamma)$, and additionally $k(\bigcup \{ t_n \mid n \in \omega \}) = \langle \langle x_n \mid n \in \omega \rangle, z \rangle.$

The unraveled game $\mathcal{G}_0^U(X, \Gamma)$ is closed for Player 1 and thus determined.

(ロト・日本)・モン・モン・モー のへの

The unraveled game $\mathcal{G}_0^U(X, \Gamma)$ is closed for Player 1 and thus determined.

If Player 1 has a winning strategy for $\mathcal{G}_0^U(X, \Gamma)$, then he has a winning strategy for $\mathcal{G}_0(X, \Gamma)$.

If Player 2 has a winning strategy for $\mathcal{G}_0^U(X, \Gamma)$, then he has a winning strategy for $\mathcal{G}_0(X, \Gamma)$.

The unraveled game $\mathcal{G}_0^U(X, \Gamma)$ is closed for Player 1 and thus determined.

If Player 1 has a winning strategy for $\mathcal{G}_0^U(X, \Gamma)$, then he has a winning strategy for $\mathcal{G}_0(X, \Gamma)$.

If Player 2 has a winning strategy for $\mathcal{G}_0^U(X, \Gamma)$, then he has a winning strategy for $\mathcal{G}_0(X, \Gamma)$.

Proof of 2. (Hand-waving)

The unraveled game $\mathcal{G}_0^U(X, \Gamma)$ is closed for Player 1 and thus determined.

If Player 1 has a winning strategy for $\mathcal{G}_0^U(X, \Gamma)$, then he has a winning strategy for $\mathcal{G}_0(X, \Gamma)$.

If Player 2 has a winning strategy for $\mathcal{G}_0^U(X, \Gamma)$, then he has a winning strategy for $\mathcal{G}_0(X, \Gamma)$.

Proof of 2. (Hand-waving)

Proof of 3 (\Leftarrow).

If $\mu(G) \leq \omega$, then Δ_0 can not embed, and Player 1 does not have a winning strategy.

Let σ be a wining strategy for Player 2.

Let σ be a wining strategy for Player 2.

Lemma

If $b \subseteq X$ *is closed with respect to* σ *, and* $z \in X \setminus b$ *, then*

 $|\{x \in b \mid x \Gamma z\}| < \omega.$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let σ be a wining strategy for Player 2.

Lemma

If $b \subseteq X$ *is closed with respect to* σ *, and* $z \in X \setminus b$ *, then*

$$|\{x \in b \mid x \Gamma z\}| < \omega.$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Lemma

If $b \subseteq X$ is closed with respect to σ , then $\mu(G \upharpoonright b) \leq \omega$.

Proof. By induction on |b|.

Let σ be a wining strategy for Player 2.

Lemma

If $b \subseteq X$ *is closed with respect to* σ *, and* $z \in X \setminus b$ *, then*

$$|\{x \in b \mid x \Gamma z\}| < \omega.$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Lemma

If $b \subseteq X$ is closed with respect to σ , then $\mu(G \upharpoonright b) \leq \omega$.

Proof. By induction on |b|. For $|b| = \omega$ OK.

Let σ be a wining strategy for Player 2.

Lemma

If $b \subseteq X$ *is closed with respect to* σ *, and* $z \in X \setminus b$ *, then*

$$|\{x \in b \mid x \Gamma z\}| < \omega.$$

Lemma

If $b \subseteq X$ is closed with respect to σ , then $\mu(G \upharpoonright b) \leq \omega$.

Proof.

By induction on |b|. For $|b| = \omega$ OK.

Let $b = \bigcup b_{\alpha}$, a continuous increasing union of σ -closed sets, $|b_{\alpha}| < |b|$ for each α .

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let σ be a wining strategy for Player 2.

Lemma

If $b \subseteq X$ *is closed with respect to* σ *, and* $z \in X \setminus b$ *, then*

$$|\{x \in b \mid x \Gamma z\}| < \omega.$$

Lemma

If $b \subseteq X$ is closed with respect to σ , then $\mu(G \upharpoonright b) \leq \omega$.

Proof.

By induction on |b|. For $|b| = \omega$ OK.

Let $b = \bigcup b_{\alpha}$, a continuous increasing union of σ -closed sets, $|b_{\alpha}| < |b|$ for each α .

The induction hypothesis gives us well orders $(b_{\alpha}, \prec_{\alpha})$.

Let σ be a wining strategy for Player 2.

Lemma

If $b \subseteq X$ *is closed with respect to* σ *, and* $z \in X \setminus b$ *, then*

$$|\{x \in b \mid x \Gamma z\}| < \omega.$$

Lemma

If $b \subseteq X$ is closed with respect to σ , then $\mu(G \upharpoonright b) \leq \omega$.

Proof.

By induction on |b|. For $|b| = \omega$ OK.

Let $b = \bigcup b_{\alpha}$, a continuous increasing union of σ -closed sets, $|b_{\alpha}| < |b|$ for each α .

The induction hypothesis gives us well orders $(b_{\alpha}, \prec_{\alpha})$.

For $x, y \in b$ let $x \prec y$ if either

•
$$x \in b_{\alpha}, y \in b_{\alpha+1} \setminus b_{\alpha}$$
 for some α , or

►
$$x, y \in b_{\alpha+1} \setminus b_{\alpha}$$
 and $x \prec_{\alpha+1} y$ for some α .

Let σ be a wining strategy for Player 2.

Lemma

If $b \subseteq X$ *is closed with respect to* σ *, and* $z \in X \setminus b$ *, then*

$$|\{x \in b \mid x \Gamma z\}| < \omega.$$

Lemma

If $b \subseteq X$ is closed with respect to σ , then $\mu(G \upharpoonright b) \leq \omega$.

Proof.

By induction on |b|. For $|b| = \omega$ OK.

Let $b = \bigcup b_{\alpha}$, a continuous increasing union of σ -closed sets, $|b_{\alpha}| < |b|$ for each α .

The induction hypothesis gives us well orders $(b_{\alpha},\prec_{\alpha})$.

For $x, y \in b$ let $x \prec y$ if either

•
$$x \in b_{\alpha}, y \in b_{\alpha+1} \setminus b_{\alpha}$$
 for some α , or
• $x, y \in b_{\alpha+1} \setminus b_{\alpha}$ and $x \prec_{\alpha+1} y$ for some α .
{ $x \prec y + x \Gamma y$ } = { $x \in b_{\alpha} + x \Gamma y$ } \cup { $x \prec_{\alpha+1} y + x \Gamma y$ } for $y \in b_{\alpha+1}$

Theorem 0⁺

Let $G = (X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation.

- 1. The game $\mathcal{G}_0(X, \Gamma)$ is determined.
- 2. Player 1 has a winning strategy iff $\Delta_0 \hookrightarrow G$ continuously.

3. Player 2 has a winning strategy iff $\mu(G) \leq \omega$.

Corollary (Adams, Zapletal)

Let $G = (X, \Gamma)$ be a graph. If Γ is analytic, then $ch(G) \le \omega$ if and only if $\mu(G) \le \omega$.

Theorem 0⁺

Let $G = (X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation.

- 1. The game $\mathcal{G}_0(X, \Gamma)$ is determined.
- 2. Player 1 has a winning strategy iff $\Delta_0 \hookrightarrow G$ continuously.

3. Player 2 has a winning strategy iff $\mu(G) \leq \omega$.

Corollary (Adams, Zapletal)

Let $G = (X, \Gamma)$ be a graph. If Γ is analytic, then $ch(G) \le \omega$ if and only if $\mu(G) \le \omega$.

Corollary (Komjáth) If $G = (\mathbb{R}^2, d(x, y) \in \mathbb{Q})$, then $\mu(G) = \omega$.

Neighborhood assignments for $G = (X, \Gamma)$

A function $O: X \to \tau(x)$ is a *neighborhood assignment* if $x \in O(x)$ for each $x \in X$. A neighborhood assignment is *proper* if $x \Gamma y$ implies $x \notin O(y)$ or $y \notin O(x)$ for every $x, y \in X$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A function $O: X \to \tau(x)$ is a neighborhood assignment

if $x \in O(x)$ for each $x \in X$.

A neighborhood assignment is proper

if $x \Gamma y$ implies $x \notin O(y)$ or $y \notin O(x)$ for every $x, y \in X$.

We say that G is *left-separated* if there is a well order \prec on X such

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

that $x \notin \overline{\{y \in X | y \prec x, y \lceil x\}}$ for each $x \in X$.

A function $O: X \to \tau(x)$ is a neighborhood assignment

if $x \in O(x)$ for each $x \in X$.

A neighborhood assignment is proper

if $x \Gamma y$ implies $x \notin O(y)$ or $y \notin O(x)$ for every $x, y \in X$.

We say that *G* is *left-separated* if there is a well order \prec on *X* such that $x \notin \overline{\{y \in X | y \prec x, y \upharpoonright x\}}$ for each $x \in X$.

Proposition

Let G be a graph on a Polish space. The graph G is left separated if and only if G has a proper neighborhood assignment.

A function $O: X \to \tau(x)$ is a neighborhood assignment

if $x \in O(x)$ for each $x \in X$.

A neighborhood assignment is proper

if $x \Gamma y$ implies $x \notin O(y)$ or $y \notin O(x)$ for every $x, y \in X$.

We say that *G* is *left-separated* if there is a well order \prec on *X* such that $x \notin \overline{\{y \in X | y \prec x, y \upharpoonright x\}}$ for each $x \in X$.

Proposition

Let G be a graph on a Polish space. The graph G is left separated if and only if G has a proper neighborhood assignment.

$\mathsf{Proof} \Leftarrow$.

Let *O* be a proper neighborhood assignment. For each $x \in X$ choose $n(x) \in \omega$ such that $B_{2^{-n(x)}}(x) \subseteq O(x)$. Any well order \prec satisfying $(n(x) < n(y)) \Rightarrow (x \prec y)$ works.

A function $O: X \to \tau(x)$ is a neighborhood assignment

if $x \in O(x)$ for each $x \in X$.

A neighborhood assignment is *proper*

if $x \Gamma y$ implies $x \notin O(y)$ or $y \notin O(x)$ for every $x, y \in X$.

We say that *G* is *left-separated* if there is a well order \prec on *X* such that $x \notin \overline{\{y \in X | y \prec x, y \upharpoonright x\}}$ for each $x \in X$.

Proposition

Let G be a graph on a Polish space. The graph G is left separated if and only if G has a proper neighborhood assignment.

$\mathsf{Proof} \Leftarrow$.

Let *O* be a proper neighborhood assignment. For each $x \in X$ choose $n(x) \in \omega$ such that $B_{2^{-n(x)}}(x) \subseteq O(x)$. Any well order \prec satisfying $(n(x) < n(y)) \Rightarrow (x \prec y)$ works.

Corollary

 $\chi(G) \leq \omega \quad \Leftarrow \quad G \text{ is left-separated} \quad \Leftarrow \quad \mu(G) \leq \omega \Leftrightarrow \operatorname{ch}(G) \leq \omega$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Let $\Delta_1 = \Delta$, where 2^{ω} is isomorphic to the Cantor space, $2^{<\omega}$ are isolated points, and for every $x \in 2^{\omega}$ the sequence $\{x \upharpoonright n \mid n \in \omega\}$ converges to x.

Observation

The graph Δ_1 is left-separated. (Put the isolated points at the end.)

- コン・4回シュービン・4回シューレー

Observation

The graph Δ_1 is left-separated. (Put the isolated points at the end.)

Theorem 1

Let $G = (X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation. Then (at least) one of the following holds

- 1. $\Delta_1 \hookrightarrow G$ continuously, or
- 2. *G* is left-separated.

Observation

The graph Δ_1 is left-separated. (Put the isolated points at the end.)

Theorem 1

Let $G = (X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation. Then (at least) one of the following holds

- 1. $\Delta_1 \hookrightarrow G$ continuously, or
- 2. *G* is left-separated.

Theorem 0

Let $G = (X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation. Then one of the following holds

1. $\Delta_0 \hookrightarrow G$ continuously, or

2.
$$\mu(G) \leq \omega$$
.

Game $\mathcal{G}_1(X, \Gamma)$

Player 1	 $x_n \in X$	
Player 2	 $y_n \in X$	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Player 1 wins if

lim
$$x_n = z \in X$$
,

•
$$(\forall n \in \omega) \ z \Gamma x_n$$
, and

$$\blacktriangleright (\forall n \in \omega) \ z \neq y_n.$$

Game $\mathcal{G}_1(X, \Gamma)$

Player 1	 $x_n \in X$	
Player 2	 $y_n \in X$	

Player 1 wins if

$$lim x_n = z \in X,$$

- $(\forall n \in \omega) \ z \Gamma x_n$, and
- $\blacktriangleright (\forall n \in \omega) \ z \neq y_n.$

Theorem 1⁺

Let $G = (X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation.

- 1. The game $\mathcal{G}_1(X, \Gamma)$ is determined.
- 2. Player 1 has a winning strategy iff $\Delta_1 \hookrightarrow G$ continuously.
- 3. If Player 2 has a winning strategy, then *G* is left-separated.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Game $\mathcal{G}_1(X, \Gamma)$

Player 1	 $x_n \in X$	
Player 2	 $y_n \in X$	

Player 1 wins if

$$lim x_n = z \in X,$$

•
$$(\forall n \in \omega) \ z \Gamma x_n$$
, and

$$\blacktriangleright (\forall n \in \omega) \ z \neq y_n.$$

Theorem 1⁺

Let $G = (X, \Gamma)$ be a graph, X a Polish space, Γ an analytic edge relation.

- 1. The game $\mathcal{G}_1(X, \Gamma)$ is determined.
- 2. Player 1 has a winning strategy iff $\Delta_1 \hookrightarrow G$ continuously.
- 3. If Player 2 has a winning strategy, then G is left-separated.

Corollary (Schmerl)

If $G = (\mathbb{R}^3, d(x, y) \in \mathbb{Q})$, then G is left-separated. I.e. $\chi(G) = \omega$.