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G = (X , Γ) . . . graph
X . . . Polish space
Γ . . . analytic edge relation, Γ ⊆ [X ]2

Chromatic number
χ(G) = min{κ p X =

⋃
{Xi p i ∈ κ,Xi are anticliques } }

c : X → V is a proper coloring of G if c(x) ̸= c(y) whenever xΓy
χ(G) = min{κ p there is a proper coloring c : X → κ }

Coloring number
µ(G) =
min{κ p ∃ well order ≺ on X , (∀x ∈ X)|{ y ≺ x p yΓx }| < κ }

List chromatic number (choosing number)
ch(G) = min{κ p ∀L : X → [V ]κ ∃c : X → V proper L-selector }

χ(G) ≤ ch(G) ≤ µ(G)
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χ(G) ≤ ch(G) ≤ µ(G)

χ(G) = ω ⇐ ch(G) = ω ⇐ µ(G) = ω

Example
G = (R2, d(x, y) ∈ Q) χ(G) = ω (Komjáth)
G = (R3, d(x, y) ∈ Q) χ(G) = ω (Schmerl)
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Example
∆ = (2<ω ∪ 2ω, Γ), sΓx if s ∈ 2<ω , x ∈ 2ω , and s ⊏ x

χ(∆) = 2, ch(∆) > ω

Proof.
E : 2ω ↔ { g : 2<ω → ω,∀t ∈ 2<ω g(t) > |t| }
for t ∈ 2<ω let L(t) = { n ∈ ω p n > |t| }
for x ∈ 2ω let L(x) = { E(x)(t) p t ⊏ x, t ∈ 2<ω }
Let c be a L-selector. There is x ∈ 2ω such that c↾ 2<ω = E(x).
c(x) ∈ L(x) ⇒ there is n ∈ ω such that
c(x) = E(x)(x ↾ n) = c(x ↾ n); c is not proper.
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Let∆0 = ∆, where 2ω is isomorphic to the Cantor space and 2<ω is a
closed set of isolated points.

Theorem 0 (Adams, Zapletal)
Let G = (X , Γ) be a graph, X a Polish space, Γ an analytic edge
relation. Then one of the following holds

1. ∆0 ↪→ G continuously, or

2. µ(G) ≤ ω.

Game G0(X , Γ)

Player 1 . . . xn ∈ X , Bn basic open of diameter <2−n . . .

Player 2 . . . yn ∈ X . . .

Player 1 wins if
▶ xn ̸= xm if n ̸= m,
▶ yn /∈ Bn+1 ⊂ Bn for every n ∈ ω,
▶ (∀n ∈ ω) zΓxn, where z =

⋂
{Bn p n ∈ ω }.
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3. Player 2 has a winning strategy iff µ(G) ≤ ω.
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Fix a continuous function k : ωω → Xω+1 such that

k[ωω] = { ⟨⟨xn p n ∈ ω⟩, z⟩ such that (∀n) xnΓz }.

Unraveled game GU
0 (X , Γ)
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⋃
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Proof continued

The unraveled game GU
0 (X , Γ) is closed for Player 1 and thus

determined.

If Player 1 has a winning strategy for GU
0 (X , Γ), then he has a

winning strategy for G0(X , Γ).

If Player 2 has a winning strategy for GU
0 (X , Γ), then he has a

winning strategy for G0(X , Γ).

Proof of 2.
(Hand-waving)

Proof of 3 (⇐).
If µ(G) ≤ ω, then ∆0 can not embed, and Player 1 does not have a
winning strategy.
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Proof of 3 (⇒).
Let σ be a wining strategy for Player 2.

Lemma
If b ⊆ X is closed with respect to σ, and z ∈ X \ b, then

|{ x ∈ b p xΓz }| < ω.

Lemma
If b ⊆ X is closed with respect to σ, then µ(G↾ b) ≤ ω.

Proof.
By induction on |b|. For |b| = ω OK.
Let b =

⋃
bα, a continuous increasing union of σ-closed sets,

|bα| < |b| for each α.
The induction hypothesis gives us well orders (bα,≺α).
For x, y ∈ b let x ≺ y if either
▶ x ∈ bα, y ∈ bα+1 \ bα for some α, or
▶ x, y ∈ bα+1 \ bα and x ≺α+1 y for some α.

{ x ≺ y p xΓy } = { x ∈ bα p xΓy } ∪ { x ≺α+1 y p xΓy } for y ∈ bα+1
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Let G = (X , Γ) be a graph, X a Polish space, Γ an analytic edge
relation.

1. The game G0(X , Γ) is determined.

2. Player 1 has a winning strategy iff∆0 ↪→ G continuously.

3. Player 2 has a winning strategy iff µ(G) ≤ ω.

Corollary (Adams, Zapletal)
Let G = (X , Γ) be a graph. If Γ is analytic,
then ch(G) ≤ ω if and only if µ(G) ≤ ω.

Corollary (Komjáth)
If G = (R2, d(x, y) ∈ Q), then µ(G) = ω.
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Neighborhood assignments for G = (X , Γ)
A function O : X → τ(x) is a neighborhood assignment
if x ∈ O(x) for each x ∈ X .
A neighborhood assignment is proper
if xΓy implies x /∈ O(y) or y /∈ O(x) for every x, y ∈ X .

We say that G is left-separated if there is a well order ≺ on X such
that x /∈ { y ∈ X p y ≺ x, yΓx } for each x ∈ X .

Proposition
Let G be a graph on a Polish space. The graph G is left separated
if and only if G has a proper neighborhood assignment.

Proof⇐.
Let O be a proper neighborhood assignment.
For each x ∈ X choose n(x) ∈ ω such that B2−n(x)(x) ⊆ O(x).
Any well order ≺ satisfying (n(x) < n(y)) ⇒ (x ≺ y) works.

Corollary

χ(G) ≤ ω ⇐ G is left-separated ⇐ µ(G) ≤ ω ⇔ ch(G) ≤ ω
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Proof⇐.
Let O be a proper neighborhood assignment.
For each x ∈ X choose n(x) ∈ ω such that B2−n(x)(x) ⊆ O(x).
Any well order ≺ satisfying (n(x) < n(y)) ⇒ (x ≺ y) works.
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χ(G) ≤ ω ⇐ G is left-separated ⇐ µ(G) ≤ ω ⇔ ch(G) ≤ ω
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Let ∆1 = ∆, where 2ω is isomorphic to the Cantor space, 2<ω are
isolated points, and for every x ∈ 2ω the sequence { x ↾ n p n ∈ ω }
converges to x .

In particular∆0 ↪→ ∆1 continuously.

Observation
The graph∆1 is left-separated. (Put the isolated points at the end.)

Theorem 1
Let G = (X , Γ) be a graph, X a Polish space, Γ an analytic edge
relation. Then (at least) one of the following holds

1. ∆1 ↪→ G continuously, or

2. G is left-separated.

Theorem 0
Let G = (X , Γ) be a graph, X a Polish space, Γ an analytic edge
relation. Then one of the following holds

1. ∆0 ↪→ G continuously, or

2. µ(G) ≤ ω.
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Game G1(X , Γ)

Player 1 . . . xn ∈ X . . .

Player 2 . . . yn ∈ X . . .

Player 1 wins if
▶ lim xn = z ∈ X ,
▶ (∀n ∈ ω) zΓxn, and
▶ (∀n ∈ ω) z ̸= yn.

Theorem 1+

Let G = (X , Γ) be a graph, X a Polish space, Γ an analytic edge
relation.

1. The game G1(X , Γ) is determined.

2. Player 1 has a winning strategy iff∆1 ↪→ G continuously.

3. If Player 2 has a winning strategy, then G is left-separated.

Corollary (Schmerl)
If G = (R3, d(x, y) ∈ Q), then G is left-separated. I.e. χ(G) = ω.
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