Measure avoiding and measure supporting filters

Piotr Borodulin-Nadzieja

Wrocław

Gdańsk Logic Conference 2023

Piotr Borodulin-Nadzieja (Wrocław)

Measures and filters

Gdańsk 2023 1 / 20

This is a joint (and ongoing) work with Jonathan Cancino (Prague) & Adam Morawski (Wrocław) and Artsiom Ranchynski (Wrocław).

Homogeneity of ω^{\star}

Definition

- $\beta\omega$ is the Stone space of $\mathcal{P}(\omega)$
- $\omega^{\star} = \beta \omega \setminus \omega$ is the Stone space of $\mathcal{P}(\omega)/Fin$.

.

Homogeneity of ω^{\star}

Definition

- $\beta\omega$ is the Stone space of $\mathcal{P}(\omega)$
- $\omega^{\star} = \beta \omega \setminus \omega$ is the Stone space of $\mathcal{P}(\omega)/Fin$.

Theorem (Frolik, 1967)

 ω^* is not homogeneous.

→ Ξ →

Homogeneity of ω^{\star}

Definition

- $\beta\omega$ is the Stone space of $\mathcal{P}(\omega)$
- $\omega^{\star} = \beta \omega \setminus \omega$ is the Stone space of $\mathcal{P}(\omega)/Fin$.

Theorem (Frolik, 1967)

 ω^* is not homogeneous.

Demand (van Douwen)

A *decent* proof of non-homogeneity of ω^* !

→ < Ξ → <</p>

Definition (Rudin)

An ultrafilter \mathcal{U} on ω is a P-point if for every descending (X_n) of elements of \mathcal{U} , there is $X \in \mathcal{U}$ such that $X \subseteq^* X_n$ for each n.

Remark

In the topological setting: $x \in K$ is a P-point if each G_{δ} containing x has non-empty interior containing x.

• • • • • • •

Definition (Rudin)

An ultrafilter \mathcal{U} on ω is a P-point if for every descending (X_n) of elements of \mathcal{U} , there is $X \in \mathcal{U}$ such that $X \subseteq^* X_n$ for each n.

Remark

In the topological setting: $x \in K$ is a P-point if each G_{δ} containing x has non-empty interior containing x.

Theorem (Rudin, 1956)

CH implies the existence of P-points in ω^* .

(日)

Definition (Rudin)

An ultrafilter \mathcal{U} on ω is a P-point if for every descending (X_n) of elements of \mathcal{U} , there is $X \in \mathcal{U}$ such that $X \subseteq^* X_n$ for each *n*.

Remark

In the topological setting: $x \in K$ is a P-point if each G_{δ} containing x has non-empty interior containing x.

Theorem (Rudin, 1956)

CH implies the existence of P-points in ω^* .

Remark

Suppose that ${\mathcal U}$ extends a density filter. Then ${\mathcal U}$ is not a P-point.

イロト イポト イヨト イヨト 三日

Definition (Rudin)

An ultrafilter \mathcal{U} on ω is a P-point if for every descending (X_n) of elements of \mathcal{U} , there is $X \in \mathcal{U}$ such that $X \subseteq^* X_n$ for each *n*.

Remark

In the topological setting: $x \in K$ is a P-point if each G_{δ} containing x has non-empty interior containing x.

Theorem (Rudin, 1956)

CH implies the existence of P-points in ω^* .

Remark

Suppose that ${\mathcal U}$ extends a density filter. Then ${\mathcal U}$ is not a P-point.

Theorem (Shelah, 1977)

Consistently, there are no P-points in ω^{\star} .

Piotr Borodulin-Nadzieja (Wrocław)

Weak P-points

Definition

A point $x \in K$ is a weak P-point if $x \notin \overline{A}$ for each countable $A \subseteq K$ such that $x \notin A$.

Weak P-points

Definition

A point $x \in K$ is a weak P-point if $x \notin \overline{A}$ for each countable $A \subseteq K$ such that $x \notin A$.

Remark

Each P-point is a weak P-point.

Weak P-points

Definition

A point $x \in K$ is a weak P-point if $x \notin \overline{A}$ for each countable $A \subseteq K$ such that $x \notin A$.

Remark

Each P-point is a weak P-point.

Theorem (Kunen, 1980)

c-OK points exist in ω^* . c-OK points are weak P-points.

Measures on $\boldsymbol{\omega}$

Definition

Measure on ω is a finitely additive function $\mu \colon \mathcal{P}(\omega) \to [0,1]$.

<ロト < 同ト < ヨト < ヨト

Definition

Measure on ω is a finitely additive function $\mu: \mathcal{P}(\omega) \to [0, 1]$. We will assume that it vanishes on points, i.e. $\mu(\{n\}) = 0$ for each n.

<ロト < 同ト < 三ト < 三

Definition

Measure on ω is a finitely additive function $\mu: \mathcal{P}(\omega) \to [0, 1]$. We will assume that it vanishes on points, i.e. $\mu(\{n\}) = 0$ for each n.

Proposition

Each measure μ on ω can be uniquely extended to a σ -additive measure on $\beta\omega$. If μ vanishes on points, then μ can be extended to a measure on ω^* .

Definition

Measure on ω is a finitely additive function $\mu: \mathcal{P}(\omega) \to [0, 1]$. We will assume that it vanishes on points, i.e. $\mu(\{n\}) = 0$ for each n.

Proposition

Each measure μ on ω can be uniquely extended to a σ -additive measure on $\beta\omega$. If μ vanishes on points, then μ can be extended to a measure on ω^* .

Example

Ultrafilters on ω 'are' measures.

・ 同 ト ・ ヨ ト ・ ヨ

Definition

Measure on ω is a finitely additive function $\mu: \mathcal{P}(\omega) \to [0, 1]$. We will assume that it vanishes on points, i.e. $\mu(\{n\}) = 0$ for each n.

Proposition

Each measure μ on ω can be uniquely extended to a σ -additive measure on $\beta\omega$. If μ vanishes on points, then μ can be extended to a measure on ω^* .

Example

Ultrafilters on ω 'are' measures.

Example

If ${\mathcal U}$ is an ultrafilter on $\omega,$ then the following defines a measure

$$\mu_{\mathcal{U}}(A) = \lim_{n \to \mathcal{U}} |A \cap n| / n$$

Piotr Borodulin-Nadzieja (Wrocław)

I. Measure avoiding ultrafilters.

Definition

We say that $x \in K$ avoids measures if for each μ such that $\mu(\{x\}) = 0$ we have $x \notin \operatorname{supp}(\mu)$, where the support of μ is the smallest closed set of μ -measure 1.

Definition

We say that $x \in K$ avoids measures if for each μ such that $\mu(\{x\}) = 0$ we have $x \notin \operatorname{supp}(\mu)$, where the support of μ is the smallest closed set of μ -measure 1.

Proposition

• P-points avoid measures.

Definition

We say that $x \in K$ avoids measures if for each μ such that $\mu(\{x\}) = 0$ we have $x \notin \operatorname{supp}(\mu)$, where the support of μ is the smallest closed set of μ -measure 1.

Proposition

- P-points avoid measures.
- c-OK points avoid measures.

Definition

We say that $x \in K$ avoids measures if for each μ such that $\mu(\{x\}) = 0$ we have $x \notin \operatorname{supp}(\mu)$, where the support of μ is the smallest closed set of μ -measure 1.

Proposition

- P-points avoid measures.
- c-OK points avoid measures.

Remark

There are non-atomic measures on ω and so some ultrafilters do not avoid measures.

< ロ > < 同 > < 三 > < 三

Proposition

Weak *P*-points = points avoiding strictly atomic measures.

Proposition

Weak *P*-points = points avoiding strictly atomic measures.

Problem

Weak P-points vs. points avoiding non-atomic measures.

Proposition

Weak *P*-points = points avoiding strictly atomic measures.

Problem

Weak P-points vs. points avoiding non-atomic measures.

Theorem (PBN, Ranchynski, 2023)

In ZFC there are weak P-points which do not avoid non-atomic measures.

Proposition

Weak *P*-points = points avoiding strictly atomic measures.

Problem

Weak P-points vs. points avoiding non-atomic measures.

Theorem (PBN, Ranchynski, 2023)

In ZFC there are weak P-points which do not avoid non-atomic measures. Under CH there are non weak P-points which avoid non-atomic measures.

Problem

Is there a 'simpler' construction of a measure avoiding ultrafilter?

Problem

Is there a 'simpler' construction of a measure avoiding ultrafilter?

Definition

We say that an ultrafilter \mathcal{U} avoids a (dyadic) tree $\mathcal{T} \subseteq \mathcal{P}(\omega)$ if for each n there is $X \in \mathcal{U}$ and a level m such that

 $|\{T \in \mathcal{T}: T \cap X \neq \emptyset, \operatorname{level}(T) = m\}| \leq 2^m/n.$

Problem

Is there a 'simpler' construction of a measure avoiding ultrafilter?

Definition

We say that an ultrafilter \mathcal{U} avoids a (dyadic) tree $\mathcal{T} \subseteq \mathcal{P}(\omega)$ if for each n there is $X \in \mathcal{U}$ and a level m such that

$$|\{T \in \mathcal{T}: T \cap X \neq \emptyset, \operatorname{level}(T) = m\}| \leq 2^m/n.$$

Proposition

If \mathcal{U} avoids trees, then it avoids non-atomic measures.

• • • • • • •

Problem

Is there a 'simpler' construction of a measure avoiding ultrafilter?

Definition

We say that an ultrafilter \mathcal{U} avoids a (dyadic) tree $\mathcal{T} \subseteq \mathcal{P}(\omega)$ if for each n there is $X \in \mathcal{U}$ and a level m such that

$$|\{T \in \mathcal{T}: T \cap X \neq \emptyset, \operatorname{level}(T) = m\}| \leq 2^m/n.$$

Proposition

If \mathcal{U} avoids trees, then it avoids non-atomic measures.

Theorem (Ranchynski, 2023)

Under CH there is an ultrafilter which is not a P-point but which avoids trees.

Piotr Borodulin-Nadzieja (Wrocław)

II. Measures supporting filters.

(日)

P-measures

Definition

A measure μ on ω is a *P*-measure if for every descending sequence (X_n) of subsets of ω there is $X \subseteq \omega$ such that

- $X \subseteq^* X_n$ for each n,
- $\mu(X) = \lim_{n \to \infty} \mu(X_n)$.

P-measures

Definition

A measure μ on ω is a *P*-measure if for every descending sequence (X_n) of subsets of ω there is $X \subseteq \omega$ such that

•
$$X \subseteq^* X_n$$
 for each n ,

•
$$\mu(X) = \lim_{n \to \infty} \mu(X_n).$$

Remark

Each P-point is a P-measure.

P-measures

Definition

A measure μ on ω is a *P*-measure if for every descending sequence (X_n) of subsets of ω there is $X \subseteq \omega$ such that

•
$$X \subseteq^* X_n$$
 for each n ,

•
$$\mu(X) = \lim_{n \to \infty} \mu(X_n).$$

Remark

Each P-point is a P-measure.

Proposition

If \mathcal{U} is a P-point, then $\mu_{\mathcal{U}}$ is a P-measure.

・ 同 ト ・ ヨ ト ・ ヨ ト

P-measures vs P-points

Theorem (Shelah, 1977)

Consistently, there is no P-point.

P-measures vs P-points

Theorem (Shelah, 1977)

Consistently, there is no P-point.

Theorem (Mekler, 1984) Consistently, there is no P-measure.

P-measures vs P-points

Theorem (Shelah, 1977)

Consistently, there is no P-point.

Theorem (Mekler, 1984)

Consistently, there is no P-measure.

Problem

Is it consistent that there is a P-measure but there is no P-point?

P-points in the Silver model

Theorem (Chodounsky, Guzman, 2018)

In the Silver model there is no P-point.

P-points in the Silver model

Theorem (Chodounsky, Guzman, 2018)

In the Silver model there is no P-point.

Theorem (Chodounsky, Guzman, 2018)

It is not known if there is a P-point in the random model.

P-points in the Silver model

Theorem (Chodounsky, Guzman, 2018)

In the Silver model there is no P-point.

Theorem (Chodounsky, Guzman, 2018)

It is not known if there is a P-point in the random model.

Theorem (Kunen, 197*)

If you add ω_1 Cohen reals and then force with the random forcing, you get *P*-point in the resulting model.

Theorem (Kunen, 197*)

If you add ω_1 Cohen reals and then force with the random forcing, you get *P*-point in the resulting model.

Theorem (Dow, 2018)

Assuming \Box_{ω_1} in the ground model, there is a P-point in the random extension.

Theorem (Kunen, 197*)

If you add ω_1 Cohen reals and then force with the random forcing, you get *P*-point in the resulting model.

Theorem (Dow, 2018)

Assuming \Box_{ω_1} in the ground model, there is a P-point in the random extension.

Theorem (PBN, Sobota, 2022)

Each P-point from the ground model can be extended to a P-measure in the random extension. In particular, there are P-measures in the random model.

(日)

Theorem (Kunen, 197*)

If you add ω_1 Cohen reals and then force with the random forcing, you get *P*-point in the resulting model.

Theorem (Dow, 2018)

Assuming \Box_{ω_1} in the ground model, there is a P-point in the random extension.

Theorem (PBN, Sobota, 2022)

Each P-point from the ground model can be extended to a P-measure in the random extension. In particular, there are P-measures in the random model.

(日)

Theorem (Chodounsky, Guzman, 2018)

There is no P-point in the Silver model.

Theorem (Chodounsky, Guzman, 2018)

There is no P-point in the Silver model.

Problem

Is there a P-measure in the Silver model?

Theorem (Chodounsky, Guzman, 2018)

There is no P-point in the Silver model.

Problem

Is there a P-measure in the Silver model?

Remark

Such a measure would necessarily extend a P-measure from the ground model.

Theorem (Morawski, 2022)

No rapid filter from the ground model can be extended to a *P*-measure in the Silver extension.

Theorem (Morawski, 2022)

No rapid filter from the ground model can be extended to a *P*-measure in the Silver extension.

Definition

We say that μ is Rudin-Blass below ν ($\mu \leq_{RB} \nu$) if there is a finite-to-one function $f: \omega \to \omega$ such that

$$\mu(A) = \nu(f^{-1}[A])$$

for each $A \subseteq \omega$

Theorem (Morawski, 2022)

No rapid filter from the ground model can be extended to a P-measure in the Silver extension.

Definition

We say that μ is Rudin-Blass below ν ($\mu \leq_{RB} \nu$) if there is a finite-to-one function $f: \omega \to \omega$ such that

$$\mu(A) = \nu(f^{-1}[A])$$

for each $A \subseteq \omega$

Theorem (PBN, Cancino, Morawski, 2023)

If there is an ultrafilter Rudin-Blass below μ , then μ cannot be extended to a P-measure in the Silver extension.

<ロト < 同ト < ヨト < ヨト

Theorem (Morawski, 2022)

No rapid filter from the ground model can be extended to a P-measure in the Silver extension.

Definition

We say that μ is Rudin-Blass below ν ($\mu \leq_{RB} \nu$) if there is a finite-to-one function $f: \omega \to \omega$ such that

$$\mu(A) = \nu(f^{-1}[A])$$

for each $A \subseteq \omega$

Theorem (PBN, Cancino, Morawski, 2023)

If there is an ultrafilter Rudin-Blass below μ , then μ cannot be extended to a P-measure in the Silver extension.

<ロト < 同ト < ヨト < ヨト

P-measures in the Silver model

Theorem (PBN, Cancino, Morawski, 2023)

If there is an ultrafilter Rudin-Blass below μ , then μ cannot be extended to a P-measure in the Silver extension.

P-measures in the Silver model

Theorem (PBN, Cancino, Morawski, 2023)

If there is an ultrafilter Rudin-Blass below μ , then μ cannot be extended to a P-measure in the Silver extension.

Proposition (PBN, Cancino, Morawski, 2023)

If $\mu_{\mathcal{U}}$ is a P-measure, then there is a P-point Rudin-Blass below $\mu_{\mathcal{U}}$.

P-measures in the Silver model

Theorem (PBN, Cancino, Morawski, 2023)

If there is an ultrafilter Rudin-Blass below μ , then μ cannot be extended to a P-measure in the Silver extension.

Proposition (PBN, Cancino, Morawski, 2023)

If $\mu_{\mathcal{U}}$ is a P-measure, then there is a P-point Rudin-Blass below $\mu_{\mathcal{U}}$.

Definition

A filter \mathcal{F} is ccc if $\mathcal{P}(\omega)/\mathcal{F}$ is ccc.

<ロト < 同ト < ヨト < ヨト

Definition

A filter \mathcal{F} is ccc if $\mathcal{P}(\omega)/\mathcal{F}$ is ccc.

Definition

A filter \mathcal{F} supports a measure if $\mathcal{F} = \{A \colon \mu(A) = 1\}$ for some measure μ on ω .

イロト イポト イヨト イヨト 三日

Definition

A filter \mathcal{F} is ccc if $\mathcal{P}(\omega)/\mathcal{F}$ is ccc.

Definition

A filter \mathcal{F} supports a measure if $\mathcal{F} = \{A \colon \mu(A) = 1\}$ for some measure μ on ω .

Definition

A filter \mathcal{F} is non-meager if it is non-meager as a subset of 2^{ω} .

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Definition

A filter \mathcal{F} is ccc if $\mathcal{P}(\omega)/\mathcal{F}$ is ccc.

Definition

A filter \mathcal{F} supports a measure if $\mathcal{F} = \{A \colon \mu(A) = 1\}$ for some measure μ on ω .

Definition

A filter \mathcal{F} is non-meager if it is non-meager as a subset of 2^{ω} .

Remark

ultra \implies support \implies ccc \implies non-meager

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Definition

A filter \mathcal{F} is ccc if $\mathcal{P}(\omega)/\mathcal{F}$ is ccc.

Definition

A filter \mathcal{F} supports a measure if $\mathcal{F} = \{A \colon \mu(A) = 1\}$ for some measure μ on ω .

Definition

A filter \mathcal{F} is non-meager if it is non-meager as a subset of 2^{ω} .

Remark

ultra \implies support \implies ccc \implies non-meager

Problem

Is it consistent that there are no non-meager P-filters?

Thanks.

・ロト ・四ト ・ヨト ・ヨト