A quantifier elimination theorem for Weak König's Lemma with a negated induction axiom

> Leszek Kołodziejczyk University of Warsaw

(joint work with Marta Fiori Carones, Tin Lok Wong, and Keita Yokoyama)

Gdansk Logic Conference May 2023

Preliminaries: second-order arithmetic

This talk is about (weak) fragments of second-order arithmetic.

The language of second-order arithmetic has two sorts of variables:

- first-order: x, y, z, ..., i, j, k ... for natural numbers (can be used to code rationals, finite sets and sequences etc.).
- second-order: X, Y, Z, ... for sets of natural numbers (can be used to code reals, continuous functions etc.).

Non-logical symbols: $+, \cdot, 2^x, \leq, 0, 1; \in$.

 Σ_n^0 : class of formulas with n first-order quantifier blocks, beginning with \exists , then only bounded quantifiers $\exists x \leq t$, $\forall x \leq t$. Arithmetical formulas have only first-order quantifiers. Σ_n^1 : class of formulas with n second-order quantifier blocks, beginning with \exists , followed by an arithmetical formula. Π_n^0, Π_n^1 : dual classes to Σ_n^0, Π_n^0 .

Strong fragments of second-order arithmetic

Full second-order arithmetic, Z₂, is axiomatized by:

- the axioms of the nonnegative part of a discrete ordered ring,
- ► comprehension for all formulas: $\exists X \forall k \ (k \in X \Leftrightarrow \varphi(x)),$
- ▶ induction: $\forall X (0 \in X \land \forall k (k \in X \Rightarrow k+1 \in X) \Rightarrow \forall k (k \in X)).$

The intended model is $(\omega, \mathcal{P}(\omega))$.

Strong fragments of Z_2 have a set-theoretic feel to them. They are, in fact, biinterpretable with various fragments of

 $\mathsf{ZF} \setminus {\mathsf{Power Set}} \cup {\mathsf{every set is countable}}$

(with ZF axiomatized using Collection rather than Replacement).

Weaker fragments of second-order arithmetic

 ACA_0 is weaker than Z_2 in that it only allows comprehension for arithmetically definable properties.

E.g.: given a tree $T \subseteq \omega^{<\omega}$, { $v \in T : T$ is infinite below v} will exist, but { $v \in T : T$ is well-founded below v} might not.

RCA₀ is weaker still:

- comprehension only for Δ⁰₁-definable properties (i.e. definable by both a Σ⁰₁ and a Π⁰₁ formula),
- to compensate for that: induction for Σ₁⁰-definable properties (not merely the Δ₁⁰ ones that correspond to sets).

Such fragments have a computability-theoretic feel to them:

- RCA₀ says: "given sets X₁,...,X_n, any property computable with oracles for X₁,...,X_n corresponds to a set".
- ACA₀ can be axiomatized as: RCA₀ + "for every set X, the Turing jump of X exists".

Reverse mathematics

RCA₀ typically plays the role of the base theory in a research programme called reverse mathematics.

The idea is to measure the strength of theorems from "everyday mathematics" by proving equivalences and implications between the theorems and some fragments of second-order arithmetic. The equivalences/implications are usually proved over RCA₀.

Reverse mathematics: some examples for ACA₀

Often, the theorems studied are Π_2^1 statements ($\forall X \exists Y \ldots$), and their reverse-mathematical strength is connected to how hard it is to compute Y given X.

 ACA_0 is equivalent over RCA_0 to, among other things:

- the Bolzano-Weierstrass theorem: every sequence of reals from [0, 1] has a convergent subsequence,
- every countable ring has a maximal ideal,
- Ramsey's theorem for 2-colourings of triples, RT³₂.

Intuitively, the reason why e.g. RT_2^3 implies ACA₀ is that there is a computable 2-colouring of triples such that every infinite homogeneous set can be used to compute the halting problem.

Weak König's Lemma

WKL says: "every infinite tree T $\subseteq 2^{<\omega}$ has an infinite path". WKL_0:= RCA_0 + WKL.

 WKL_0 is strictly in between RCA_0 and ACA_0 .

It is equivalent over RCA_0 e.g. to:

- every open cover of [0, 1] contains a finite subcover,
- every countable ring has a prime ideal,
- the completeness theorem for first-order logic,
- Peano's existence theorem for ODEs.

Π_1^1 -conservativity of WKL

Theorem (Harrington 1977, independently Ratajczyk 1980's) WKL₀ is Π_1^1 -conservative over RCA₀, i.e. every Π_1^1 sentence provable in WKL₀ is also provable in RCA₀.

The usual proof is by showing that a countable $(M, \mathcal{X}) \models \text{RCA}_0$ can be extended to some $(M, \mathcal{Y}) \models \text{WKL}_0$ (so M stays unchanged). Adding a path through a single tree $\mathcal{X} \ni T \subseteq 2^{<\omega} \rightsquigarrow$ forcing with infinite subtrees of T. Main difficulty: preserving Σ_1^0 induction.

Π_1^1 -conservativity of WKL

Theorem (Harrington 1977, independently Ratajczyk 1980's) WKL₀ is Π_1^1 -conservative over RCA₀, i.e. every Π_1^1 sentence provable in WKL₀ is also provable in RCA₀.

The usual proof is by showing that a countable $(M, \mathcal{X}) \models \text{RCA}_0$ can be extended to some $(M, \mathcal{Y}) \models \text{WKL}_0$ (so M stays unchanged). Adding a path through a single tree $\mathcal{X} \ni T \subseteq 2^{<\omega} \rightsquigarrow$ forcing with infinite subtrees of T. Main difficulty: preserving Σ_1^0 induction.

It is always the case that (M, \mathcal{X}) can be extended to many different (non-elementarily equivalent) (M, \mathcal{Y}) 's.

Other Π_1^1 -conservative statements

WKL is by no means the only Π_2^1 statement that is Π_1^1 -conservative over RCA₀. E.g., here is an incomparable one:

COH :=

"for every family {R_n : n $\in \omega$ } of subsets of ω , there exists infinite C $\subseteq \omega$ s.t. for each n, either $\forall^{\infty} k \in C (k \in R_n)$ or $\forall^{\infty} k \in C (k \notin R_n)$ ".

Other Π_1^1 -conservative statements

WKL is by no means the only Π_2^1 statement that is Π_1^1 -conservative over RCA₀. E.g., here is an incomparable one:

COH :=

"for every family {R_n : n $\in \omega$ } of subsets of ω , there exists infinite C $\subseteq \omega$ s.t. for each n, either $\forall^{\infty}k \in C (k \in R_n)$ or $\forall^{\infty}k \in C (k \notin R_n)$ ".

In fact:

Theorem (Towsner 2015)

The set of Π_2^1 sentences that are Π_1^1 -conservative over RCA₀ is a consistent theory that is not c.e. (it is Π_2^0 -complete). In particular, it is not finitely nor even computably axiomatizable.

A weaker base theory

Recall: RCA₀ has comprehension for Δ_1^0 -definable properties and induction for Σ_1^0 -definable properties.

A weaker base theory

Recall: RCA₀ has comprehension for Δ_1^0 -definable properties and induction for Σ_1^0 -definable properties.

 RCA_0^* (Simpson-Smith 1986) is weaker than RCA_0 in that we no longer allow induction for Σ_1^0 properties.

We only have induction for those properties that correspond to sets (i.e. the Δ_1^0 -definable ones.)

 RCA_0^* is used e.g. to track essential applications of Σ_1^0 induction, and because it is proof-theoretically more modest than RCA_0 .

Π_1^1 -conservativity over WKL₀*

 $\mathsf{WKL}_0^* := \mathsf{RCA}_0^* + \mathsf{WKL}.$

Theorem (Simpson-Smith 1986) WKL₀^{*} is Π_1^1 -conservative over RCA₀^{*}.

The proof is quite similar to the one over RCA_0 .

Π_1^1 -conservativity over WKL₀*

 $\mathsf{WKL}_0^* := \mathsf{RCA}_0^* + \mathsf{WKL}.$

Theorem (Simpson-Smith 1986) WKL₀ is Π_1^1 -conservative over RCA₀^{*}.

The proof is quite similar to the one over RCA_0 .

Question (essentially Towsner 2015)

Is the set of Π^1_2 sentences that are $\Pi^1_1\text{-}conservative over RCA^*_0$ also $\Pi^0_2\text{-}complete?$

Main results

Theorem

 $\begin{array}{l} \text{Let} (M,\mathcal{X}) \models \text{RCA}_0^* + \neg \text{RCA}_0 \text{, and let} (M,\mathcal{Y}), (M,\mathcal{W}) \models \text{WKL}_0^* \\ \text{be countable with } \mathcal{Y}, \mathcal{W} \supseteq \mathcal{X}. \text{ Then } (M,\mathcal{Y}) \simeq (M,\mathcal{W}). \end{array}$

(We may also require the iso to fix a given finite tuple pointwise.)

Main results

Theorem

Let $(M, \mathcal{X}) \models \text{RCA}_0^* + \neg \text{RCA}_0$, and let $(M, \mathcal{Y}), (M, \mathcal{W}) \models \text{WKL}_0^*$ be countable with $\mathcal{Y}, \mathcal{W} \supseteq \mathcal{X}$. Then $(M, \mathcal{Y}) \simeq (M, \mathcal{W})$.

(We may also require the iso to fix a given finite tuple pointwise.)

Corollaries:

- WKL^{*}₀ + ¬RCA₀ proves the collapse of the second-order quantifier hierarchy to Δ¹₁ (even a bit more).
- WKL^{*}₀ is the strongest Π¹₂ sentence that is Π¹₁-conservative over RCA^{*}₀ + ¬RCA₀.

Note: $\neg RCA_0$ is a false Σ_1^1 statement, but the Π_1^1 consequences of $RCA_0^* + \neg RCA_0$ are a true theory. In fact, they are contained in the Π_1^1 consequences of ACA_0.

Plan for rest of talk

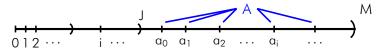
- Comment on how the isomorphism theorem is proved.
- Explain the already mentioned consequences.
- Explain what this has to do with Ramsey's theorem for pairs.

The isomorphism theorem: role of failure of induction

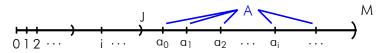
Theorem (Recalled)

Let $(M, \mathcal{X}) \models RCA_0^* + \neg RCA_0$, and let $(M, \mathcal{Y}), (M, \mathcal{W}) \models WKL_0^*$ be countable with $\mathcal{Y}, \mathcal{W} \supseteq \mathcal{X}$. Then $(M, \mathcal{Y}) \simeq (M, \mathcal{W})$.

In the proof, the main reason why $\neg RCA_0$ matters is as follows. When Σ_1^0 -induction fails, ω behaves like a singular cardinal: there is a Σ_1^0 -definable proper cut J and an infinite set $A \in \mathcal{X}$ s.t. $A = \{a_i : i \in J\}$ enumerated in increasing order.



The isomorphism theorem: ideas behind proof



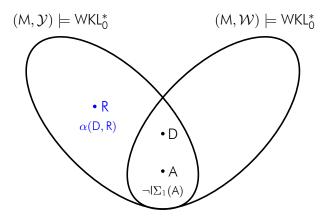
We use back-and-forth. At each step, we have finite tuples r̄, R̄ in the domain, s̄, S̄ in the range of the partial iso. The inductive invariant is roughly: for each Δ₀ formula δ, each i, k ∈ J,

 $(M,\mathcal{Y})\models \delta(a_i,k,\bar{r},\bar{R}) \text{ iff } (M,\mathcal{W})\models \delta(a_i,k,\bar{s},\bar{S}).$

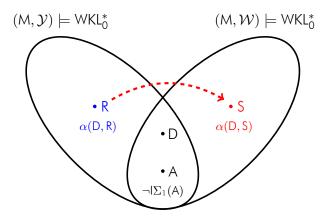
To express this properly, one uses a truth definition for Δ_0 formulas.

In the inductive step, we add say new set R* to domain and need to find corresponding S* to add to range. Inductive assumption gives a tree of finite approximations to S*. WKL gives a path, which can be used as S*.

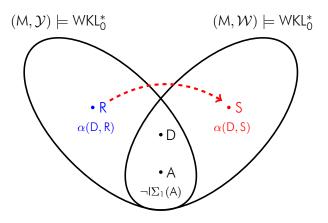
Elimination of second-order quantifiers



Elimination of second-order quantifiers



Elimination of second-order quantifiers



This is (almost) the usual model-theoretic criterion for q.e., if we treat arithmetical formulas as quantifier-free!

Elimination of second-order quantifiers (cont'd)

Corollary

For every formula $\psi(\bar{X},\bar{x})$ there exists an arithmetical formula $\alpha(\bar{X},\bar{x},Y)$ such that

$$\mathsf{WKL}_0^* \vdash \forall \mathsf{A} \left[\neg \mathsf{I}\Sigma_1(\mathsf{A}) \to \left(\forall \bar{\mathsf{x}} \, \forall \bar{\mathsf{X}} \left(\psi(\bar{\mathsf{X}}, \bar{\mathsf{x}}) \leftrightarrow \alpha(\bar{\mathsf{X}}, \bar{\mathsf{x}}, \mathsf{A}) \right) \right) \right].$$

(Using formalized forcing, this can be given a more informative proof than the compactness argument hidden inside the model-theoretic criterion for q.e.)

Since WKL₀^{*} + \neg RCA₀ is Π_1^1 -conservative over RCA₀^{*} + \neg RCA₀ and can eliminate (second-order) quantifiers, it is the model companion of RCA₀^{*} + \neg RCA₀, in a setting where we ignore first-order quantification.

Towsner's problem

By general properties of model companions:

Any model of WKL^{*}₀ + ¬RCA₀ is Σ¹₁-closed: extending the second-order universe will not make new Σ¹₁ formulas true.
WKL^{*}₀ + ¬RCA₀ is the strongest Π¹₂-axiomatized theory that is Π¹₁-conservative over RCA^{*}₀ + ¬RCA₀.

Towsner's problem

By general properties of model companions:

→ Any model of WKL₀^{*} + ¬RCA₀ is Σ₁¹-closed: extending the second-order universe will not make new Σ₁¹ formulas true.
→ WKL₀^{*} + ¬RCA₀ is the strongest Π₂¹-axiomatized theory that is Π₁¹-conservative over RCA₀^{*} + ¬RCA₀.

So, we get the following in answer to Towsner's problem:

Corollary

- The set of Π¹₂ sentences that are Π¹₁-conservative over RCA^{*}₀ is Π⁰₂-complete. [By a rather boring proof.]
- But, the set of Π¹₂ sentences that are Π¹₁-conservative over RCA^{*}₀ + ¬RCA₀ is axiomatized by WKL. So, it is c.e.

(Fine print: what Towsner really asked about was conservativity over $|\Delta_n^0$ for $n \ge 2$. The answers are similar except that we seem to lose finite axiomatizability.)

Reverse mathematics of combinatorial statements

A major problem in reverse mathematics: describe the Π_1^1 consequences of RCA₀ + RT₂². (Here RT₂² is Ramsey's Thm for 2-colourings of pairs. There are some other combinatorial statements of apparently similar Π_1^1 strength.)

 $RCA_0 + RT_2^2$ proves $I\Delta_2^0$, and it is plausible that its Π_1^1 consequences coincide with $I\Delta_2^0$.

It is also known (Cholak-Jockusch-Slaman 2001) that it suffices to understand RT_2^2 over $RCA_0 + I\Delta_2^0 + \neg I\Sigma_2^0$.

But if $(M, \mathcal{X}) \models RCA_0 + |\Delta_2^0 + \neg |\Sigma_2^0$, then $(M, \Delta_2^0 - Def(M, \mathcal{X})) \models RCA_0^* + \neg RCA_0!$ Is there a simple way to tell when this is also a model of WKL?

The cohesive set principle COH

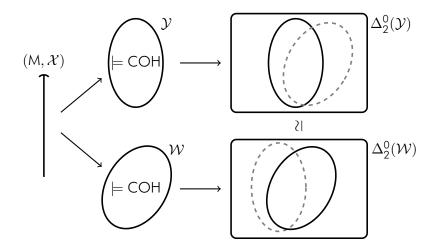
 $\begin{array}{l} \mbox{Recall COH} := \mbox{"for every family } \{R_n : n \in \omega\} \mbox{ of subsets of } \omega, \mbox{ there exists infinite } \\ C \subseteq \omega \mbox{ s.t. for each n, either } \forall^{\infty} k \in C \ (k \in R_n) \mbox{ or } \forall^{\infty} k \in C \ (k \notin R_n) \mbox{"}. \end{array}$

► Every countable $(M, \mathcal{X}) \models \text{RCA}_0 + I\Delta_2^0$ can be extended to $(M, \mathcal{Y}) \models \text{RCA}_0 + I\Delta_2^0 + \text{COH}$ (Chong-Slaman-Yang 2012).

► For
$$(M, \mathcal{X}) \models \text{RCA}_0 + I\Delta_2^0$$
, we have
 $(M, \Delta_2^0 - \text{Def}(M, \mathcal{X})) \models \text{WKL iff } (M, \mathcal{X}) \models \text{COH}$ (Belanger).

Corollary (of the isomorphism theorem for WKL₀^{*} + ¬RCA₀) Let (M, \mathcal{X}) be a countable model of RCA₀ + $I\Delta_2^0$ + $\neg I\Sigma_2^0$. If $\mathcal{Y}, \mathcal{W} \supseteq \mathcal{X}$ countable s.t. $(M, \mathcal{Y}), (M, \mathcal{W}) \models \text{RCA}_0 + I\Delta_2^0 + \text{COH}$, then $(M, \Delta_2^0 \text{-Def}(M, \mathcal{Y})) \simeq (M, \Delta_2^0 \text{-Def}(M, \mathcal{W}))$.

The isomorphism theorem for COH, pictured



In general, $(M, \mathcal{Y}) \not\equiv (M, \mathcal{W}).$

Π_1^1 -conservation over RCA₀ + $I\Delta_2^0$ + $\neg I\Sigma_2^0$

Given a model of $RCA_0^* + \neg RCA_0$, we could witness new Σ_1^1 formulas by extending to a model of WKL, and nothing more could be done.

Given a model of $RCA_0 + I\Delta_2^0 + \neg I\Sigma_2^0$, we can extend to a model of COH. And then we can do a bit more, by turning Δ_2^0 -sets that are "kind-of-low" – their jumps are themselves Δ_2^0 – into sets.

Corollary

A Π_2^1 statement $\psi := \forall X \exists Y \alpha(X, Y)$ is Π_1^1 -conservative over RCA₀ + $I\Delta_2^0 + \neg I\Sigma_2^0$ iff RCA₀ + $I\Delta_2^0$ proves the following statement: $\forall A [\neg I\Sigma_2(A) \rightarrow \forall X \forall W (W \text{ solution to appropriate instance of COH} \rightarrow$ there is low-in-($W \oplus A$) Δ_2^0 -set Υ s.t. $\alpha(X, \Upsilon)$)].

[The statement above roughly says that in any extension of the ground model to a model of COH, we can witness the $\exists Y$ by turning properties "very close to sets" into sets. It is a consequence of $RCA_0 + I\Delta_2^0 + \psi$.]

The case of RT_2^2

Corollary $RCA_0 + RT_2^2$ is Π_1^1 -conservative over $RCA_0 + I\Delta_2^0$ iff it is $\forall \Pi_5^0$ -conservative over $RCA_0 + I\Delta_2^0$.

Note:

- ► RCA₀ + RT₂² is ∀II₃⁰-conservative over RCA₀ + I∆₂⁰. [Patey-Yokoyama 2018]
- We have a slightly better "upper bound" for the ∀∏₄⁰than for the ∀∏₅⁰-consequences of RT₂². (By analyzing [Chong-Slaman-Yang 2017].)
- RCA₀^{*} + RT₂² is ∀II₃⁰- but not ∀II₄⁰-conservative over RCA₀^{*}. [K-Kowalik-Yokoyama 202X]

Questions for further work

- Are there analogues in other settings? Say, elimination of class quantifiers over some weak set theory?
- What are the Π_1^1 consequences of RCA₀ + RT₂²?
- Are the Π¹₁ consequences of RCA₀ + IΔ⁰₂ + ¬IΣ⁰₂ finitely axiomatizable?

References

Talk was based on the paper:

Fiori Carones, K, Wong, Yokoyama, An isomorphism theorem for models of Weak König's Lemma without primitive recursion. Accepted to J. Eur. Math. Soc.; arXiv:2112.10876.

Other 21st-century papers referenced:

Belanger, Conservation theorems for the cohesiveness principle, preprint, arXiv: 2212.13011 (earlier version 2015).

Chong, Slaman, Yang, The inductive strength of Ramsey's Theorem for pairs, Adv. Math. 308 (2017), 121–141.

K, Kowalik, Yokoyama, How strong is Ramsey's theorem if infinity can be weak?, J. Symb. Log., to appear. DOI: 10.1017/jsl.2022.46.

Patey, Yokoyama, The proof-theoretic strength of Ramsey's theorem for pairs and two colors, Adv. Math. 330 (2018), 1034–1070.

Towsner, On maximum conservative extensions, Computability 4(1) (2015), 57–68.