A quantifier elimination theorem for Weak König's Lemma with a negated induction axiom

Leszek Kołodziejczyk
University of Warsaw

(joint work with Marta Fiori Carones, Tin Lok Wong, and Keita Yokoyama)

Gdansk Logic Conference
May 2023

Preliminaries: second-order arithmetic

This talk is about (weak) fragments of second-order arithmetic.
The language of second-order arithmetic has two sorts of variables:

- first-order: $x, y, z, \ldots, i, i, k \ldots$ for natural numbers (can be used to code rationals, finite sets and sequences etc.).
- second-order: X, Y, Z, \ldots for sets of natural numbers (can be used to code reals, continuous functions etc.).
Non-logical symbols: $+, \cdot 2^{\mathrm{x}}, \leq, 0,1 ; \in$.
Σ_{n}^{0} : class of formulas with n first-order quantifier blocks, beginning with \exists, then only bounded quantifiers $\exists x \leq t, \forall x \leq t$. Arithmetical formulas have only first-order quantifiers.
Σ_{n}^{1} : class of formulas with n second-order quantifier blocks, beginning with \exists, followed by an arithmetical formula. Π_{n}^{0}, Π_{n}^{1} : dual classes to $\Sigma_{n}^{0}, \Pi_{n}^{0}$.

Strong fragments of second-order arithmetic

Full second-order arithmetic, Z_{2}, is axiomatized by:

- the axioms of the nonnegative part of a discrete ordered ring,
- comprehension for all formulas: $\exists \mathrm{X} \forall \mathrm{k}(\mathrm{k} \in \mathrm{X} \Leftrightarrow \varphi(\mathrm{x}))$,
- induction: $\forall X(0 \in X \wedge \forall k(k \in X \Rightarrow k+1 \in X) \Rightarrow \forall k(k \in X))$.

The intended model is $(\omega, \mathcal{P}(\omega))$.

Strong fragments of Z_{2} have a set-theoretic feel to them.
They are, in fact, biinterpretable with various fragments of

$$
\text { ZF } \backslash\{\text { Power Set }\} \cup\{\text { every set is countable }\}
$$

(with ZF axiomatized using Collection rather than Replacement).

Weaker fragments of second-order arithmetic

$A C A_{0}$ is weaker than Z_{2} in that it only allows comprehension for arithmetically definable properties.
E.g.: given a tree $T \subseteq \omega^{<\omega},\{v \in T: T$ is infinite below $v\}$ will exist, but $\{v \in T: T$ is well-founded below $v\}$ might not.
$R C A_{0}$ is weaker still:

- comprehension only for Δ_{1}^{0}-definable properties (i.e. definable by both a Σ_{1}^{0} and a Π_{1}^{0} formula),
- to compensate for that: induction for Σ_{1}^{0}-definable properties (not merely the Δ_{1}^{0} ones that correspond to sets).

Such fragments have a computability-theoretic feel to them:
$-R C A_{0}$ says: "given sets X_{1}, \ldots, X_{n}, any property computable with oracles for X_{1}, \ldots, X_{n} corresponds to a set".

- $A C A_{0}$ can be axiomatized as:
$R C A_{0}+$ "for every set X, the Turing jump of X exists".

Reverse mathematics

$R C A_{0}$ typically plays the role of the base theory in a research programme called reverse mathematics.

The idea is to measure the strength of theorems from "everyday mathematics" by proving equivalences and implications between the theorems and some fragments of second-order arithmetic. The equivalences/implications are usually proved over RCA_{0}.

Reverse mathematics: some examples for ACA_{0}

Often, the theorems studied are Π_{2}^{1} statements ($\left.\forall X \exists Y \ldots\right)$, and their reverse-mathematical strength is connected to how hard it is to compute Y given X.
$A C A_{0}$ is equivalent over $R C A_{0}$ to, among other things:

- the Bolzano-Weierstrass theorem: every sequence of reals from $[0,1]$ has a convergent subsequence,
- every countable ring has a maximal ideal,
- Ramsey's theorem for 2-colourings of triples, RT_{2}^{3}.

Intuitively, the reason why e.g. RT_{2}^{3} implies ACA_{0} is that there is a computable 2-colouring of triples such that every infinite homogeneous set can be used to compute the halting problem.

Weak König's Lemma

WKL says: "every infinite tree $T \subseteq 2^{<\omega}$ has an infinite path".
$W K L_{0}:=R C A_{0}+W K L$.
$W K L_{0}$ is strictly in between $R C A_{0}$ and $A C A_{0}$.
It is equivalent over $R C A_{0}$ e.g. to:

- every open cover of $[0,1]$ contains a finite subcover,
- every countable ring has a prime ideal,
- the completeness theorem for first-order logic,
- Peano's existence theorem for ODEs.

Π_{1}^{1}-conservativity of WKL

Theorem (Harrington 1977, independently Ratajczyk 1980's) $W K L_{0}$ is Π_{1}^{1}-conservative over $R C A_{0}$, i.e. every Π_{1}^{1} sentence provable in $W K L_{0}$ is also provable in $R C A_{0}$.

The usual proof is by showing that a countable $(M, \mathcal{X}) \models R C A_{0}$ can be extended to some $(\mathrm{M}, \mathcal{Y}) \models W K L_{0}$ (so M stays unchanged). Adding a path through a single tree $\mathcal{X} \ni \mathrm{T} \subseteq 2^{<\omega} \rightsquigarrow$ forcing with infinite subtrees of T . Main difficulty: preserving Σ_{1}^{0} induction.

$\Pi_{1}^{\}}$-conservativity of WKL

Theorem (Harrington 1977, independently Ratajczyk 1980's) $W K L_{0}$ is Π_{1}^{1}-conservative over $R C A_{0}$, i.e. every Π_{1}^{1} sentence provable in $W K L_{0}$ is also provable in $R C A_{0}$.

The usual proof is by showing that a countable $(M, \mathcal{X}) \models R C A_{0}$ can be extended to some (M, \mathcal{Y}) $\models W K L_{0}$ (so M stays unchanged). Adding a path through a single tree $\mathcal{X} \ni \mathrm{T} \subseteq 2^{<\omega} \rightsquigarrow$ forcing with infinite subtrees of T . Main difficulty: preserving Σ_{1}^{0} induction.

It is always the case that (M, \mathcal{X}) can be extended to many different (non-elementarily equivalent) (M, \mathcal{Y})'s.

Other Π_{1}^{1}-conservative statements

WKL is by no means the only Π_{2}^{1} statement that is Π_{1}^{1}-conservative over RCA $_{0}$. E.g., here is an incomparable one:

COH:=
"for every family $\left\{R_{n}: n \in \omega\right\}$ of subsets of ω, there exists infinite $C \subseteq \omega$ s.t. for each n, either $\forall^{\infty} k \in C\left(k \in R_{n}\right)$ or $\forall^{\infty} k \in C\left(k \notin R_{n}\right)^{\prime \prime}$.

Other Π_{1}^{1}-conservative statements

WKL is by no means the only Π_{2}^{1} statement that is Π_{1}^{1}-conservative over $R C A_{0}$. E.g., here is an incomparable one:
$\mathrm{COH}:=$
"for every family $\left\{R_{n}: n \in \omega\right\}$ of subsets of ω, there exists infinite $C \subseteq \omega$ s.t. for each n, either $\forall^{\infty} k \in C\left(k \in R_{n}\right)$ or $\forall^{\infty} k \in C\left(k \notin R_{n}\right)$ ".

In fact:
Theorem (Towsner 2015)
The set of Π_{2}^{1} sentences that are Π_{1}^{1}-conservative over RCA 0 is a consistent theory that is not c.e. (it is Π_{2}^{0}-complete).
In particular, it is not finitely nor even computably axiomatizable.

A weaker base theory

Recall: RCA $_{0}$ has comprehension for Δ_{1}^{0}-definable properties and induction for Σ_{1}^{0}-definable properties.

A weaker base theory

Recall: RCA A_{0} has comprehension for Δ_{1}^{0}-definable properties and induction for Σ_{1}^{0}-definable properties.

RCA ${ }_{0}^{*}$ (Simpson-Smith 1986) is weaker than RCA ${ }_{0}$ in that we no longer allow induction for Σ_{1}^{0} properties.

We only have induction for those properties that correspond to sets (i.e. the Δ_{1}^{0}-definable ones.)
$R C A_{0}^{*}$ is used e.g. to track essential applications of Σ_{1}^{0} induction, and because it is proof-theoretically more modest than $R C A_{0}$.

Π_{1}^{1}-conservativity over WKL ${ }_{0}^{*}$

$W K L_{0}^{*}:=$ RCA $_{0}^{*}+W K L$.
Theorem (Simpson-Smith 1986)
$W K L_{0}^{*}$ is Π_{1}^{1}-conservative over $R C A_{0}^{*}$.

The proof is quite similar to the one over RCA_{0}.

Π_{1}^{1}-conservativity over WKL.*

$W K L_{0}^{*}:=$ RCA $_{0}^{*}+W K L$.
Theorem (Simpson-Smith 1986)
WKL ${ }_{0}^{*}$ is Π_{1}^{1}-conservative over $R C A_{0}^{*}$.
The proof is quite similar to the one over $R C A_{0}$.

Question (essentially Towsner 2015)
Is the set of Π_{2}^{1} sentences that are Π_{1}^{1}-conservative over $R C A_{0}^{*}$ also Π_{2}^{0}-complete?

Main results

Theorem
Let $(M, \mathcal{X}) \models R C A_{0}^{*}+\neg R C A_{0}$, and let $(M, \mathcal{Y}),(M, \mathcal{W}) \models W K L_{0}^{*}$ be countable with $\mathcal{Y}, \mathcal{W} \supseteq \mathcal{X}$. Then $(M, \mathcal{Y}) \simeq(M, \mathcal{W})$.
(We may also require the iso to fix a given finite tuple pointwise.)

Main results

Theorem
Let $(M, \mathcal{X}) \models R C A_{0}^{*}+\neg R C A_{0}$, and let $(M, \mathcal{Y}),(M, \mathcal{W}) \models W_{L} L_{0}^{*}$ be countable with $\mathcal{Y}, \mathcal{W} \supseteq \mathcal{X}$. Then $(M, \mathcal{Y}) \simeq(M, \mathcal{W})$.
(We may also require the iso to fix a given finite tuple pointwise.)
Corollaries:

- $\mathrm{WKL}_{0}^{*}+\neg \mathrm{RCA}_{0}$ proves the collapse of the second-order quantifier hierarchy to Δ_{1}^{l} (even a bit more).
- WKL ${ }_{0}^{*}$ is the strongest Π_{2}^{1} sentence that is Π_{1}^{1}-conservative over $R C A_{0}^{*}+\neg R C A_{0}$.

Note: $\neg R C A_{0}$ is a false Σ_{1}^{1} statement, but the Π_{1}^{1} consequences of $R C A_{0}^{*}+\neg R C A_{0}$ are a true theory. In fact, they are contained in the Π_{1}^{1} consequences of $A C A_{0}$.

Plan for rest of talk

- Comment on how the isomorphism theorem is proved.
- Explain the already mentioned consequences.
- Explain what this has to do with Ramsey's theorem for pairs.

The isomorphism theorem: role of failure of induction

Theorem (Recalled)
Let $(M, \mathcal{X}) \models R C A_{0}^{*}+\neg R C A_{0}$, and let $(M, \mathcal{Y}),(M, \mathcal{W}) \models W K L_{0}^{*}$ be countable with $\mathcal{Y}, \mathcal{W} \supseteq \mathcal{X}$. Then $(M, \mathcal{Y}) \simeq(M, \mathcal{W})$.

In the proof, the main reason why $\neg R C A_{0}$ matters is as follows. When Σ_{1}^{0}-induction fails, ω behaves like a singular cardinal: there is a Σ_{1}^{0}-definable proper cut J and an infinite set $\mathrm{A} \in \mathcal{X}$ s.t. $A=\left\{a_{i}: i \in J\right\}$ enumerated in increasing order.

The isomorphism theorem: ideas behind proof

- We use back-and-forth. At each step, we have finite tuples \bar{r}, \bar{R} in the domain, $\overline{\mathrm{s}}, \overline{\mathrm{S}}$ in the range of the partial iso. The inductive invariant is roughly: for each Δ_{0} formula δ, each $\mathrm{i}, \mathrm{k} \in \mathrm{J}$,

$$
(M, \mathcal{Y}) \models \delta\left(\mathrm{a}_{\mathrm{i}}, \mathrm{k}, \overline{\mathrm{r}}, \overline{\mathrm{R}}\right) \text { iff }(M, \mathcal{W}) \models \delta\left(\mathrm{a}_{\mathrm{i}}, \mathrm{k}, \overline{\mathrm{~s}}, \overline{\mathrm{~S}}\right)
$$

To express this properly, one uses a truth definition for Δ_{0} formulas.

- In the inductive step, we add say new set R^{*} to domain and need to find corresponding S^{*} to add to range. Inductive assumption gives a tree of finite approximations to S^{*}. WKL gives a path, which can be used as S^{*}.

Elimination of second-order quantifiers

Elimination of second-order quantifiers

Elimination of second-order quantifiers

This is (almost) the usual model-theoretic criterion for q.e., if we treat arithmetical formulas as quantifier-free!

Elimination of second-order quantifiers (cont'd)

Corollary

For every formula $\psi(\overline{\mathrm{X}}, \overline{\mathrm{x}})$ there exists an arithmetical formula $\alpha(\overline{\mathrm{X}}, \overline{\mathrm{x}}, \mathrm{Y})$ such that

$$
\mathrm{WK}_{0}^{*} \vdash \forall \mathrm{~A}\left[\neg \mid \Sigma_{1}(\mathrm{~A}) \rightarrow(\forall \overline{\mathrm{x}} \forall \overline{\mathrm{X}}(\psi(\overline{\mathrm{X}}, \overline{\mathrm{x}}) \leftrightarrow \alpha(\overline{\mathrm{x}}, \overline{\mathrm{x}}, \mathrm{~A})))\right] .
$$

(Using formalized forcing, this can be given a more informative proof than the compactness argument hidden inside the model-theoretic criterion for q.e.)

Since WKL $_{0}^{*}+\neg R C A_{0}$ is Π_{1}^{1}-conservative over $R C A_{0}^{*}+\neg R C A_{0}$ and can eliminate (second-order) quantifiers, it is the model companion of $R C A_{0}^{*}+\neg R C A_{0}$, in a setting where we ignore first-order quantification.

Towsner's problem

By general properties of model companions:
\rightsquigarrow Any model of $\mathrm{WKL}_{0}^{*}+\neg R C A_{0}$ is Σ_{1}^{1}-closed: extending the second-order universe will not make new Σ_{1}^{l} formulas true.
$\rightsquigarrow W K L_{0}^{*}+\neg R C A_{0}$ is the strongest Π_{2}^{1}-axiomatized theory that is Π_{1}^{1}-conservative over $\mathrm{RCA}_{0}^{*}+\neg R C A_{0}$.

Towsner's problem

By general properties of model companions:
\rightsquigarrow Any model of $W K L_{0}^{*}+\neg R C A_{0}$ is Σ_{1}^{1}-closed: extending the second-order universe will not make new Σ_{1}^{l} formulas true.
$\rightsquigarrow \mathrm{WKL}_{0}^{*}+\neg R C A_{0}$ is the strongest Π_{2}^{1}-axiomatized theory that is Π_{1}^{1}-conservative over $R C A_{0}^{*}+\neg R C A_{0}$.

So, we get the following in answer to Towsner's problem:
Corollary

- The set of Π_{2}^{1} sentences that are Π_{1}^{1}-conservative over $R C A_{0}^{*}$ is Π_{2}^{0}-complete. [By a rather boring proof.]
- But, the set of Π_{2}^{1} sentences that are Π_{1}^{1}-conservative over $R C A_{0}^{*}+\neg R C A_{0}$ is axiomatized by WKL. So, it is c.e.
(Fine print: what Towsner really asked about was conservativity over $I \Delta_{n}^{0}$ for $\mathrm{n} \geq 2$.
The answers are similar except that we seem to lose finite axiomatizability.)

Reverse mathematics of combinatorial statements

A major problem in reverse mathematics: describe the Π_{1}^{1} consequences of $R C A_{0}+\mathrm{RT}_{2}^{2}$. (Here RT_{2}^{2} is Ramsey's Thm for 2-colourings of pairs.
There are some other combinatorial statements of apparently similar Π_{1}^{1} strength.)
$R C A_{0}+R T_{2}^{2}$ proves $I \Delta_{2}^{0}$, and it is plausible that its Π_{1}^{1} consequences coincide with $I \Delta_{2}^{0}$.

It is also known (Cholak-Jockusch-Slaman 2001) that it suffices to understand RT_{2}^{2} over $R C A_{0}+I \Delta_{2}^{0}+\neg I \Sigma_{2}^{0}$.

But if $(M, \mathcal{X}) \models R C A_{0}+I \Delta_{2}^{0}+\neg \mid \Sigma_{2}^{0}$,
then $\left(M, \Delta_{2}^{0}-\operatorname{Def}(M, \mathcal{X})\right) \models R C A_{0}^{*}+\neg R C A_{0}$!
Is there a simple way to tell when this is also a model of WKL?

The cohesive set principle COH

Recall $\mathrm{COH}:=$ "for every family $\left\{\mathrm{R}_{\mathrm{n}}: \mathrm{n} \in \omega\right\}$ of subsets of ω, there exists infinite $C \subseteq \omega$ s.t. for each n, either $\forall^{\infty} k \in C\left(k \in R_{n}\right)$ or $\forall^{\infty} k \in C\left(k \notin R_{n}\right)^{\prime \prime}$.

- Every countable $(M, \mathcal{X}) \models \mathrm{RCA}_{0}+I \Delta_{2}^{0}$ can be extended to $(M, \mathcal{Y}) \models \mathrm{RCA}_{0}+I \Delta_{2}^{0}+\mathrm{COH}$ (Chong-Slaman-Yang 2012).
- For $(M, \mathcal{X})=R C A_{0}+I \Delta_{2}^{0}$, we have ($\left.\mathrm{M}, \Delta_{2}^{0}-\operatorname{Def}(\mathrm{M}, \mathcal{X})\right) \models$ WKL iff $(\mathrm{M}, \mathcal{X}) \models \mathrm{COH}$ (Belanger).

Corollary (of the isomorphism theorem for $\mathrm{WKL}_{0}^{*}+\neg R C A_{0}$) Let (M, \mathcal{X}) be a countable model of $R C A_{0}+I \Delta_{2}^{0}+\neg \mid \Sigma_{2}^{0}$. If $\mathcal{Y}, \mathcal{W} \supseteq \mathcal{X}$ countable s.t. $(M, \mathcal{Y}),(M, \mathcal{W}) \models R C A_{0}+I \Delta_{2}^{0}+\mathrm{COH}$, then $\left(M, \Delta_{2}^{0}-\operatorname{Def}(M, \mathcal{Y})\right) \simeq\left(M, \Delta_{2}^{0}-\operatorname{Def}(M, \mathcal{W})\right)$.

The isomorphism theorem for COH , pictured

In general, $(M, \mathcal{Y}) \not \equiv(M, \mathcal{W})$.

Π_{1}^{1}-conservation over RCA $0+I \Delta_{2}^{0}+\neg \mid \Sigma_{2}^{0}$

Given a model of $R C A_{0}^{*}+\neg R C A_{0}$, we could witness new Σ_{1}^{1} formulas by extending to a model of WKL, and nothing more could be done.

Given a model of $R C A_{0}+I \Delta_{2}^{0}+\neg \mid \Sigma_{2}^{0}$, we can extend to a model of COH . And then we can do a bit more, by turning Δ_{2}^{0}-sets that are "kind-of-low" - their jumps are themselves Δ_{2}^{0} - into sets.

Corollary

A Π_{2}^{1} statement $\psi:=\forall \mathrm{X} \exists \mathrm{Y} \alpha(\mathrm{X}, \mathrm{Y})$ is Π_{1}^{1}-conservative over $R C A_{0}+I \Delta_{2}^{0}+\neg \mid \Sigma_{2}^{0}$ iff $R C A_{0}+I \Delta_{2}^{0}$ proves the following statement:
$\forall A\left[\neg \mid \Sigma_{2}(\mathrm{~A}) \rightarrow \forall \mathrm{X} \forall \mathrm{W}\right.$ (W solution to appropriate instance of $\mathrm{COH} \rightarrow$ there is low-in- $(\mathrm{W} \oplus \mathrm{A}) \Delta_{2}^{0}$-set Υ s.t. $\left.\left.\alpha(\mathrm{X}, \Upsilon)\right)\right]$.
[The statement above roughly says that in any extension of the ground model to a model of COH , we can witness the $\exists \mathrm{Y}$ by turning properties "very close to sets" into sets. It is a consequence of $\mathrm{RCA}_{0}+I \Delta_{2}^{0}+\psi$.]

The case of $R T_{2}^{2}$

Corollary

$R C A_{0}+R T_{2}^{2}$ is Π_{1}^{1}-conservative over $R C A_{0}+I \Delta_{2}^{0}$ iff it is $\forall \Pi_{5}^{0}$-conservative over $R C A_{0}+I \Delta_{2}^{0}$.

Note:
$-R C A_{0}+R T_{2}^{2}$ is $\forall \Pi_{3}^{0}$-conservative over $R C A_{0}+I \Delta_{2}^{0}$.
[Patey-Yokoyama 2018]

- We have a slightly better "upper bound" for the $\forall \Pi_{4}^{0}$ than for the $\forall \Pi_{5}^{0}$-consequences of RT_{2}^{2}.
(By analyzing [Chong-Slaman-Yang 2017].)
- $R C A_{0}^{*}+\mathrm{RT}_{2}^{2}$ is $\forall \Pi_{3}^{0}$ - but not $\forall \Pi_{4}^{0}$-conservative over $R C A_{0}^{*}$. [K-Kowalik-Yokoyama 202X]

Questions for further work

- Are there analogues in other settings?

Say, elimination of class quantifiers over some weak set theory?

- What are the Π_{1}^{1} consequences of $R C A_{0}+\mathrm{RT}_{2}^{2}$?
- Are the Π_{1}^{1} consequences of $\mathrm{RCA}_{0}+\left|\Delta_{2}^{0}+\neg\right| \Sigma_{2}^{0}$ finitely axiomatizable?

References

Talk was based on the paper:
Fiori Carones, K, Wong, Yokoyama, An isomorphism theorem for models of Weak König's Lemma without primitive recursion. Accepted to J. Eur. Math. Soc.; arXiv:2112.10876.

Other 21 st-century papers referenced:
Belanger, Conservation theorems for the cohesiveness principle, preprint, arXiv: 2212.13011 (earlier version 2015).

Chong, Slaman, Yang, The inductive strength of Ramsey's Theorem for pairs, Adv. Math. 308 (2017), 121-141.

K, Kowalik, Yokoyama, How strong is Ramsey's theorem if infinity can be weak?, J. Symb. Log., to appear. DOI: 10.1017/isl.2022.46.
Patey, Yokoyama, The proof-theoretic strength of Ramsey's theorem for pairs and two colors, Adv. Math. 330 (2018), 1034-1070.

Towsner, On maximum conservative extensions, Computability 4(1) (2015), 57-68.

