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Preliminaries: second-order arithmetic

This talk is about (weak) fragments of second-order arithmetic.

The language of second-order arithmetic has two sorts of variables:

▶ first-order: x, y, z, . . . , i, j, k . . . for natural numbers
(can be used to code rationals, finite sets and sequences etc.).

▶ second-order: X, Y,Z, . . . for sets of natural numbers
(can be used to code reals, continuous functions etc.).

Non-logical symbols: +, ·,2x,≤,0,1; ∈.

Σ0n: class of formulas with n first-order quantifier blocks,
beginning with ∃, then only bounded quantifiers ∃x≤ t, ∀x≤ t.
Arithmetical formulas have only first-order quantifiers.
Σ1n: class of formulas with n second-order quantifier blocks,
beginning with ∃, followed by an arithmetical formula.
Π0n, Π

1
n: dual classes to Σ0n, Π

0
n.
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Strong fragments of second-order arithmetic

Full second-order arithmetic, Z2, is axiomatized by:
▶ the axioms of the nonnegative part of a discrete ordered ring,
▶ comprehension for all formulas: ∃X∀k (k ∈ X⇔ φ(x)),
▶ induction: ∀X (0∈X ∧ ∀k (k∈X⇒ k+1∈X) ⇒ ∀k (k∈X)).

The intended model is (ω,P(ω)).

Strong fragments of Z2 have a set-theoretic feel to them.
They are, in fact, biinterpretable with various fragments of

ZF \ {Power Set} ∪ {every set is countable}
(with ZF axiomatized using Collection rather than Replacement).
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Weaker fragments of second-order arithmetic

ACA0 is weaker than Z2 in that it only allows comprehension
for arithmetically definable properties.
E.g.: given a tree T ⊆ ω<ω, {v ∈ T : T is infinite below v} will exist,
but {v ∈ T : T is well-founded below v} might not.

RCA0 is weaker still:
▶ comprehension only for ∆01-definable properties (i.e. definable
by both a Σ01 and a Π

0
1 formula),

▶ to compensate for that: induction for Σ01-definable properties
(not merely the ∆01 ones that correspond to sets).

Such fragments have a computability-theoretic feel to them:
▶ RCA0 says: “given sets X1, . . . , Xn, any property computable
with oracles for X1, . . . , Xn corresponds to a set”.

▶ ACA0 can be axiomatized as:
RCA0 + “for every set X, the Turing jump of X exists”.
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Reverse mathematics
RCA0 typically plays the role of the base theory
in a research programme called reverse mathematics.

The idea is to measure the strength of theorems from “everyday
mathematics” by proving equivalences and implications between
the theorems and some fragments of second-order arithmetic.
The equivalences/implications are usually proved over RCA0.
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Reverse mathematics: some examples for ACA0

Often, the theorems studied are Π12 statements (∀X∃Y . . .),
and their reverse-mathematical strength is connected to
how hard it is to compute Y given X.

ACA0 is equivalent over RCA0 to, among other things:
▶ the Bolzano-Weierstrass theorem: every sequence of reals
from [0,1] has a convergent subsequence,

▶ every countable ring has a maximal ideal,
▶ Ramsey’s theorem for 2-colourings of triples, RT32.

Intuitively, the reason why e.g. RT32 implies ACA0 is that there is
a computable 2-colouring of triples such that every infinite
homogeneous set can be used to compute the halting problem.
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Weak König’s Lemma

WKL says: “every infinite tree T ⊆ 2<ω has an infinite path”.
WKL0:= RCA0 +WKL.

WKL0 is strictly in between RCA0 and ACA0.

It is equivalent over RCA0 e.g. to:
▶ every open cover of [0,1] contains a finite subcover,
▶ every countable ring has a prime ideal,
▶ the completeness theorem for first-order logic,
▶ Peano’s existence theorem for ODEs.
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Π11-conservativity of WKL

Theorem (Harrington 1977, independently Ratajczyk 1980’s)
WKL0 is Π11-conservative over RCA0, i.e. every Π

1
1 sentence

provable in WKL0 is also provable in RCA0.

The usual proof is by showing that a countable (M,X ) |= RCA0
can be extended to some (M,Y) |= WKL0 (so M stays unchanged).
Adding a path through a single tree X ∋ T ⊆ 2<ω ⇝ forcing with
infinite subtrees of T. Main difficulty: preserving Σ01 induction.

It is always the case that (M,X ) can be extended to many different
(non-elementarily equivalent) (M,Y)’s.
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Other Π11-conservative statements

WKL is by no means the only Π12 statement that is Π
1
1-conservative

over RCA0. E.g., here is an incomparable one:

COH :=
“for every family {Rn : n ∈ ω} of subsets of ω, there exists infinite
C ⊆ ω s.t. for each n, either ∀∞k∈C (k ∈ Rn) or ∀∞k∈C (k /∈ Rn)”.

In fact:

Theorem (Towsner 2015)
The set of Π12 sentences that are Π

1
1-conservative over RCA0

is a consistent theory that is not c.e. (it is Π02-complete).
In particular, it is not finitely nor even computably axiomatizable.
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A weaker base theory

Recall: RCA0 has comprehension for ∆01-definable properties
and induction for Σ01-definable properties.

RCA∗0 (Simpson-Smith 1986) is weaker than RCA0
in that we no longer allow induction for Σ01 properties.

We only have induction for those properties that correspond to sets
(i.e. the ∆01-definable ones.)

RCA∗0 is used e.g. to track essential applications of Σ
0
1 induction,

and because it is proof-theoretically more modest than RCA0.
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Π11-conservativity over WKL
∗
0

WKL∗0 := RCA
∗
0 +WKL.

Theorem (Simpson-Smith 1986)
WKL∗0 is Π

1
1-conservative over RCA

∗
0.

The proof is quite similar to the one over RCA0.

Question (essentially Towsner 2015)
Is the set of Π12 sentences that are Π

1
1-conservative over RCA

∗
0

also Π02-complete?
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Main results

Theorem
Let (M,X ) |= RCA∗0 + ¬RCA0, and let (M,Y), (M,W) |= WKL∗0
be countable with Y,W ⊇ X . Then (M,Y) ≃ (M,W).

(We may also require the iso to fix a given finite tuple pointwise.)

Corollaries:
▶ WKL∗0 + ¬RCA0 proves the collapse of the second-order
quantifier hierarchy to ∆11 (even a bit more).

▶ WKL∗0 is the strongest Π12 sentence
that is Π11-conservative over RCA

∗
0 + ¬RCA0.

Note: ¬RCA0 is a false Σ11 statement,
but the Π11 consequences of RCA

∗
0 + ¬RCA0 are a true theory.

In fact, they are contained in the Π11 consequences of ACA0.
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Plan for rest of talk

▶ Comment on how the isomorphism theorem is proved.

▶ Explain the already mentioned consequences.

▶ Explain what this has to do with Ramsey’s theorem for pairs.
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The isomorphism theorem: role of failure of induction

Theorem (Recalled)
Let (M,X ) |= RCA∗0 + ¬RCA0, and let (M,Y), (M,W) |= WKL∗0
be countable with Y,W ⊇ X . Then (M,Y) ≃ (M,W).

In the proof, the main reason why ¬RCA0 matters is as follows.
When Σ01-induction fails, ω behaves like a singular cardinal:
there is a Σ01-definable proper cut J and an infinite set A ∈ X
s.t. A = {ai : i ∈ J} enumerated in increasing order.

0 1 2 . . . i . . .

J

a0 a1 a2 . . . ai . . .

A M
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The isomorphism theorem: ideas behind proof

0 1 2 . . . i . . .

J

a0 a1 a2 . . . ai . . .

A M

▶ We use back-and-forth. At each step, we have finite tuples r̄, R̄
in the domain, s̄, S̄ in the range of the partial iso. The inductive
invariant is roughly: for each ∆0 formula δ, each i, k ∈ J,

(M,Y) |= δ(ai, k, r̄, R̄) iff (M,W) |= δ(ai, k, s̄, S̄).

To express this properly, one uses a truth definition
for ∆0 formulas.

▶ In the inductive step, we add say new set R∗ to domain
and need to find corresponding S∗ to add to range. Inductive
assumption gives a tree of finite approximations to S∗.
WKL gives a path, which can be used as S∗.
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Elimination of second-order quantifiers

(M,Y) |= WKL∗0 (M,W) |= WKL∗0

D

A
¬IΣ1(A)

R
α(D, R)

S
α(D, S)

This is (almost) the usual model-theoretic criterion for q.e.,
if we treat arithmetical formulas as quantifier-free!
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Elimination of second-order quantifiers (cont’d)

Corollary
For every formula ψ(X̄, x̄) there exists an arithmetical formula
α(X̄, x̄, Y) such that

WKL∗0 ⊢ ∀A [¬IΣ1(A) → (∀x̄ ∀X̄ (ψ(X̄, x̄) ↔ α(X̄, x̄,A)))].

(Using formalized forcing, this can be given a more informative proof than the
compactness argument hidden inside the model-theoretic criterion for q.e.)

Since WKL∗0 + ¬RCA0 is Π11-conservative over RCA∗0 + ¬RCA0 and
can eliminate (second-order) quantifiers, it is the model companion
of RCA∗0 + ¬RCA0, in a setting where we ignore first-order
quantification.
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Towsner’s problem

By general properties of model companions:
⇝ Any model of WKL∗0 + ¬RCA0 is Σ11-closed: extending the
second-order universe will not make new Σ11 formulas true.

⇝ WKL∗0 + ¬RCA0 is the strongest Π12-axiomatized theory
that is Π11-conservative over RCA

∗
0 + ¬RCA0.

So, we get the following in answer to Towsner’s problem:

Corollary
▶ The set of Π12 sentences that are Π11-conservative over RCA∗0
is Π02-complete. [By a rather boring proof.]

▶ But, the set of Π12 sentences that are Π11-conservative over
RCA∗0 + ¬RCA0 is axiomatized by WKL. So, it is c.e.

(Fine print: what Towsner really asked about was conservativity over I∆0
n for n ≥ 2.

The answers are similar except that we seem to lose finite axiomatizability.)
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Reverse mathematics of combinatorial statements

A major problem in reverse mathematics:
describe the Π11 consequences of RCA0 + RT

2
2.

(Here RT22 is Ramsey’s Thm for 2-colourings of pairs.
There are some other combinatorial statements of apparently similar Π11 strength.)

RCA0 + RT22 proves I∆
0
2, and it is plausible

that its Π11 consequences coincide with I∆
0
2.

It is also known (Cholak-Jockusch-Slaman 2001)
that it suffices to understand RT22 over RCA0 + I∆

0
2 + ¬IΣ02.

But if (M,X ) |= RCA0 + I∆02 + ¬IΣ02,
then (M,∆02-Def(M,X )) |= RCA∗0 + ¬RCA0!
Is there a simple way to tell when this is also a model of WKL?
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The cohesive set principle COH

Recall COH := “for every family {Rn : n ∈ ω} of subsets of ω, there exists infinite
C ⊆ ω s.t. for each n, either ∀∞k∈C (k ∈ Rn) or ∀∞k∈C (k /∈ Rn)”.

▶ Every countable (M,X ) |= RCA0 + I∆02 can be extended to
(M,Y) |= RCA0 + I∆02 + COH (Chong-Slaman-Yang 2012).

▶ For (M,X ) |= RCA0 + I∆02, we have
(M,∆02-Def(M,X )) |= WKL iff (M,X ) |= COH (Belanger).

Corollary (of the isomorphism theorem for WKL∗0 + ¬RCA0)
Let (M,X ) be a countable model of RCA0 + I∆02 + ¬IΣ02. If
Y,W ⊇ X countable s.t. (M,Y), (M,W) |= RCA0 + I∆02 + COH,
then (M,∆02-Def(M,Y)) ≃ (M,∆02-Def(M,W)).
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The isomorphism theorem for COH, pictured

(M,X ) |= COH

|= COH

Y

W

≃

∆02(Y)

∆02(W)

In general, (M,Y) ̸≡ (M,W).
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Π11-conservation over RCA0 + I∆
0
2 + ¬IΣ02

Given a model of RCA∗0 + ¬RCA0, we could witness new Σ11
formulas by extending to a model of WKL, and nothing more could
be done.

Given a model of RCA0 + I∆02 + ¬IΣ02, we can extend to a model
of COH. And then we can do a bit more, by turning ∆02-sets
that are “kind-of-low” – their jumps are themselves ∆02 – into sets.

Corollary
A Π12 statement ψ := ∀X∃Yα(X, Y) is Π11-conservative over
RCA0 + I∆02 +¬IΣ02 iff RCA0 + I∆

0
2 proves the following statement:

∀A [¬IΣ2(A) → ∀X∀W (W solution to appropriate instance of COH→

there is low-in-(W⊕ A) ∆0
2-set Υ s.t. α(X,Υ))].

[The statement above roughly says that in any extension of the ground model

to a model of COH, we can witness the ∃Y by turning properties “very close to
sets” into sets. It is a consequence of RCA0 + I∆0

2 + ψ.]
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The case of RT22

Corollary
RCA0 + RT22 is Π

1
1-conservative over RCA0 + I∆

0
2 iff

it is ∀Π05-conservative over RCA0 + I∆
0
2.

Note:
▶ RCA0 + RT22 is ∀Π03-conservative over RCA0 + I∆02.
[Patey-Yokoyama 2018]

▶ We have a slightly better “upper bound” for the ∀Π04-
than for the ∀Π05-consequences of RT

2
2.

(By analyzing [Chong-Slaman-Yang 2017].)

▶ RCA∗0 + RT22 is ∀Π03- but not ∀Π04-conservative over RCA∗0.
[K-Kowalik-Yokoyama 202X]
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Questions for further work

▶ Are there analogues in other settings?
Say, elimination of class quantifiers over some weak set theory?

▶ What are the Π11 consequences of RCA0 + RT22?

▶ Are the Π11 consequences of RCA0 + I∆02 + ¬IΣ02
finitely axiomatizable?
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