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Structures

A structure is a set M equipped with relations R;, i € I, functions
fi, j € J, and constants ¢, k € K.
Examples:

» graphs (R, E),

» Boolean algebras (B, A, V,—,0,1),

» metric spaces (M, {d,},cr), RC R™.



The space of countable structures and the logic action

Let L be a relational signature L, with n; the arity of relational
symbol R;, i € I. Then Mod(L) = [];,{0,1}N" is the space of
codes of all countable L-structures with universe IN.



The space of countable structures and the logic action

Let L be a relational signature L, with n; the arity of relational
symbol R;, i € I. Then Mod(L) = [];,{0,1}N" is the space of
codes of all countable L-structures with universe IN.

The group S., acting on Mod(L) by permuting the universe,
induces the isomorphism equivalence relation = on Mod(L). In
particular, Vaught transforms can be used:

For open U C S, and A C Mod(L)
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We will work in the setting of infinitary logic L, i.e., an
extension of the finitary logic L, allowing for countably infinite
conjunctions A\; ¢;, and disjunctions \/; ¢;.

A (countable) fragment F is a countable set of £, .-formulas
containing all L, -formulas, and closed under A, Vv, -, and 4. We
can talk about F-theories, F-types, type spaces S,(T), spaces
Mod(T) € Mod(L) of models of a theory T, isomorphism
relations =71 on Mod(T), etc.

The space S,(T) of all n-F-types is equipped with the logic
topology 7, with basis consisting of sets [¢], defined by tp(3) € [¢]
iff oM(3) = 1, where ¢ € F, M € Mod(T), 3 is a tuple in M.

In a similar fashion, we can define a topology tr on Mod(L).



No-categorical and atomic structures

Theorem
Let F be a fragment, let T be an F-theory and let M € Mod(T).

1. M is F-Ng-categorical iff [M] is TI3(tr);
2. M is F-atomic iff [M] is TIS(tF).



Complexity of equivalence relations

An equivalence relation E on a Polish space X is (Borel)
reducible to an equivalence relation F on a Polish space Y if there
is a Borel mapping f : X — Y such that, for any xi,x € X,

X1 E X2 <> f(Xl) F f(Xg).



Complexity of equivalence relations

An equivalence relation E on a Polish space X is (Borel)
reducible to an equivalence relation F on a Polish space Y if there
is a Borel mapping f : X — Y such that, for any xi,x € X,

X1 E X2 <> f(Xl) F f(Xg).

Important types of equivalence relations:
» smooth, i.e., reducible to the identity,

> essentially countable, i.e., reducible to a relation with
countable classes,

> classifiable by countable structures, i.e., reducible to
isomorphism on a Borel class of countable structures
(equivalently: graphs).
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Theorem (Hjorth-Kechris)

Let T be a countable theory, and let =+ be isomorphism on
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1. =71 is smooth;

2. There exists a fragment F such that for every M € Mod(T),
the theory The(M) is Ro-categorical.
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Theorem (Hjorth-Kechris)

Let T be a countable theory, and let =+ be isomorphism on
Mod(T). TFAE:

1. =71 is smooth;

2. There exists a fragment F such that for every M € Mod(T),
the theory The(M) is Ro-categorical.

1" 27 is essentially countable,

2' there exists a fragment F such that for every M € Mod(T),
there is a tuple 3 such that Thg(M, 3) is Rp-categorical.

Corollary

Isomorphism of finitely generated countable groups is essentially
countable.



Metric structures

A metric structure is a complete metric space (M, d) with d <1,
equipped with uniformly continuous functions R; : M" — [0, 1],

i € I (relations), uniformly continuous functions f; : M" — M,

j € J, and constants ¢, k € K.

A metric signature consists of relation (including the metric),
function, and constant symbols, as well as arities, and moduli of
continuity A : [0,1]” — [0,1]. Each of the relations and functions
of a metric structure in a given signature must respect its modulus
of continuity.



Metric structures

A metric structure is a complete metric space (M, d) with d <1,
equipped with uniformly continuous functions R; : M" — [0, 1],

i € I (relations), uniformly continuous functions f; : M" — M,

j € J, and constants ¢, k € K.

A metric signature consists of relation (including the metric),
function, and constant symbols, as well as arities, and moduli of
continuity A : [0,1]” — [0,1]. Each of the relations and functions
of a metric structure in a given signature must respect its modulus
of continuity.

Examples:
» Complete metric spaces (M, d) with d < 1;
» Probability measure algebras (B, d, A, V,0,1);
» Unit balls of Banach spaces, C*-algebras, etc.



The space of Polish metric structures

Let L be a countable relational signature L, with n; the arity of
relation R;, i € I, where Ry = d. Then Mod(L) C IT;,[0,1]N" is
the space of codes of all Polish metric structures with universe
containing IN as a (tail-)dense subset of M.



The space of Polish metric structures

Let L be a countable relational signature L, with n; the arity of
relation R;, i € I, where Ry = d. Then Mod(L) C IT;,[0,1]N" is
the space of codes of all Polish metric structures with universe
containing IN as a (tail-)dense subset of M.

Remark: No Vaught transforms. However, for M € Mod(L), let
D C M™ be the Polish space of all tail-dense sequences in M, and
7 : D — [M] a natural projection from D onto the isomorphism
class [M] of M. For AC Mod(L), 3€ N<N, and v € QF, put

M e A3 o vty € BZM(3)(n(y) € A).
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Formulas of continuous finitary logic L, are defined using
» continuous functions s : [0,1]” — [0, 1] as connectives.
Alternatively: polynomials or just {0,1,%,+, —},

» inf and sup as quantifiers.



Continuous L, and L,

Formulas of continuous finitary logic L, are defined using
» continuous functions s : [0,1]” — [0, 1] as connectives.
Alternatively: polynomials or just {0,1,%,+, —},

» inf and sup as quantifiers.

Analogs of infinite conjunctions and disjunctions in the continuous
infinitary logic L., are defined with inf; ¢;, sup; ¢; as infinitary
connectives, provided that all ¢; respect a single modulus of
continuity.
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analogously to the classical setting.
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Type spaces

Topologies 7, and t, on S,(T) and Mod(L) can be defined
analogously to the classical setting.

Main difference:

a (possibly non-separable) complete metric 9 on S,(T); for
F = L., it can be defined by

3(p.q) = inf{d"(3,5) : M = T, 3.5 € M", tp(3) = p, tp(B) =

in general,

a(p,q) = ;g,g 1p(6) — a(#)],

where F; are 1-Lipschitz formulas.



Atomic models

Theorem (Hallback, M., Tsankov)

Let F be a fragment, let T be an F-theory and let M € Mod(T).
1. M is F-Xo-categorical iff [M] is TIS(tF);
2. M is F-atomic iff [M] is TI3(tF).



Atomic models

Theorem (Hallback, M., Tsankov)

Let F be a fragment, let T be an F-theory and let M € Mod(T).
1. M is F-Xo-categorical iff [M] is TIS(tF);
2. M is F-atomic iff [M] is TI3(tF).

Theorem (Cuth, DoleZal, Doucha, Kurka)

The isometry classes of the Gurarij space and LP for p > 1 are Gg
sets in (Mod(To), tyr), where Tq is the theory of Banach spaces.



Continuous L, and equivalence relations

Theorem (Hallback, M., Tsankov)

Let T be a countable theory, and let =1 be the isomorphism
relation on Mod(T). TFAE:

1. =+ is smooth;

2. There exists a fragment F such that for every M € Mod(T),
the theory The(M) is Ro-categorical.



Continuous L, and equivalence relations

Definition: A type p is No-rigid if whenever (M, 3) and (N, b) are
two realizations of p with M and N separable, then M = N.
Theorem (Hallback, M., Tsankov)

Let T be a theory with locally compact models. TFAE:
1. =7 is essentially countable,

2. there exists a fragment F such that for every M € Mod(T),
there is k € IN such that the set

{3 € M*: Thp(M, 3) is Ro-rigid}

has non-empty interior in M¥.



Continuous L, and equivalence relations

Definition: A type p is No-rigid if whenever (M, 3) and (N, b) are
two realizations of p with M and N separable, then M = N.

Theorem (Hallback, M., Tsankov)
Let T be a theory with locally compact models. TFAE:
1. =7 is essentially countable,

2. there exists a fragment F such that for every M € Mod(T),
there is k € IN such that the set

{3 € M*: Thp(M, 3) is Ro-rigid}
has non-empty interior in M¥.

Corollary (Kechris)

Every orbit equivalence relation induced by a locally compact
Polish group is essentially countable.



Coding actions of locally compact Polish metric groups

Assume that
> X is a compact space with compatible metric d bounded by 1;
» {a;}ien is a dense sequence in X;

» G < Homeo(X) is a locally compact group with a proper
right-invariant metric dg.

For x € X, let A(x) be a structure with universe (G, dgr), and

unary predicates
PX(h) = d(h.x, a;).

1

Note that because {a;} is dense, P¥ code x uniquely:

x =y iff P¥(1g) = PY(1g) for all i.



Coding actions of locally compact Polish metric groups

Proposition

The map x — A(x) is a reduction from the orbit equivalence
relation of the evaluation action of G on X to the isomorphism
relation.



Coding actions of locally compact Polish metric groups

Proposition

The map x — A(x) is a reduction from the orbit equivalence
relation of the evaluation action of G on X to the isomorphism
relation.

Proposition
Let A be a proper metric structure. Then (A, a) is No-categorical
(in L., ) for every a € A; in particular, tp(a) is No-rigid.



Isomorphism of locally compact Polish metric structures

Question [Gao, Kechris]: Is isometry of locally compact Polish
metric spaces reducible to graph isomorphism?
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Isomorphism of locally compact Polish metric structures

Question [Gao, Kechris]: Is isometry of locally compact Polish
metric spaces reducible to graph isomorphism?

Theorem (M.)

Let T be a countable theory with locally compact models. Then
1 js classifiable by countable structures.

Corollary (M.)

Isometry of locally compact Polish metric spaces is reducible to
graph isomorphism.

A locally compact Polish metric space (K, d), regarded as an
element KC(U) of the hyperspace of the Urysohn space, can be
coded in a Borel way as Mk € Mod(L) with the trivial signature,
and metric bounded by 1: using the Kuratowski—Ryll-Nardzewski
theorem, pick a countable tail-dense subset of K, and replace d
with d/(1 + d).



Countable structures

For a countable M, and 3 € N<N put
6p%(3) = tp(3), tp°(3) = {tp”(B) : B < @, be N, 5C B},

The(M) = tp® ().



Countable structures

For a countable M, and 3 € N<N put
6p%(3) = tp(3), tp°(3) = {tp”(B) : B < @, be N, 5C B},
Th*(M) = tp“(0).

Theorem
Suppose that, for a fragment F, F-theory T, and M € Mod(T),
we have that [M] € T13,, (tF), o > 1. Then

[M] = {N € Mod(T) : Th®(N) = Th®(M)}.



a-AE families

Let 8 =0 or a limit ordinal.

» An (—1)-AE family P(x) is a formula ¢(x) in F.

> a (B-AE family P(x) is a collection of v-AE families px(X),
keN, v <p.

» a (B + 1)-AE family P(x) is a collection of v-AE families
Pr,i(Xi,), v < B, k1 € N, X C X,

» a (8 + n)-AE family P(x), 2 < n < w, is a collection of
(6 +n— 2)—AE families Pk,l(;(k,l). k,leN, x C >_<k,l-

An a-AE family P(X) = {pk,i(Xk,)}, a > 1, comes equipped with
a fixed up > 0 such that up > Upy s k,l € N.



a-AE families

For § =0 or a limit ordinal, a tuple 3in M € Mod(L) realizes a

> (—1)-AE family P(%) = #(3) if $M(3) = 0,

> (B-AE family P(x) if it realizes every p(x) € P(x),

» (84 n)-AE family P(X) = {pk./(Xk)}, 1 < n < w, if it holds
in M that

Vb € BY™"(3)vv > 0Vk3c € BY™(b)31 (C realizes pii(%x) in M).

If @ in M realizes P(()), we say that M models P.
Remark: A countable M models P if

VbVk3E D b3I(C realizes py (X«) in M).



AE families and Borel complexity

Let F be fragment in signature L, and let 1 < a < wj.

Theorem (M.)

Suppose that A € TI3., (tF) for some A C Mod(L). For every
3 € NN and u € Q7, there exists an a-AE family P(X) such that

AU = IN € Mod(L) : 3 realizes P(X) in N}.

Corollary

Suppose that [M] € I (t¢) for some M € Mod(L), o > 1.
There exists an a-AE family Py, such that

[M] = {N € Mod(L) : N models Py }.



Locally compact structures

Fix a countable basis U, for each 7,. For ae€ N", U € U,, and
e € QT, define

T0,.(3) = B<(tp(3)) N U" C Sp(T),
if (U, ¢) is 3-good, T&e(é) = (), otherwise, and
T5.3) ={T0(3): B <,|d| >3, U €Uy, U ]3] C U, < ¢}
for a > 0. Also, for u > 0, put
T2(3) ={T,,,(b): B <a,be BY™"(3).|b| > |a], U € U, v > 0},

TYM) = T{(0).



Locally compact structures

For a theory T, locally compact M € Mod(T), n € N, and n-tuple
ain M, let

p(3) = sup{r € R : BM'(3) is compact},

©,(M) = {tp(b) : b M"}.



Locally compact structures

For a theory T, locally compact M € Mod(T), n € N, and n-tuple
ain M, let

p(3) = sup{r € R : BM'(3) is compact},

©,(M) = {tp(b) : b M"}.

Put Y =, Us. For U € U,, and € > 0, (U, €) is 3-good in M if
> tp(a) € U,
> 2e < p(a),
> there is § > 0 such that U N B (tp(3)) € Bee—s(tp(3)).



Locally compact structures

» For every 6 > 0 there exist U € U and 0 < € < § such that
(U,¢) is a-good,
> if (U,e€) is 3-good, then

B«(tp(3)NU < ©y5(M),

> if (U,e€) is 3-good, there is § > 0 such that d(3,3') <
implies that (U, €) is &-good, and

un B<e(tp(‘§)) =Uun B<e(tp(‘§/))'



Locally compact structures

Theorem (M.)

Let F be a fragment, and let T be an F-theory. Suppose that
M, N € Mod(T) are locally compact, and T§(a) = T$(a) for
some tuples 3, 3 in M, N, respectively. Then every a-AE family
P(x) with up < u realized by @, is also realized by a.



Locally compact structures

Theorem (M.)

Let F be a fragment, and let T be an F-theory. Suppose that
M, N € Mod(T) are locally compact, and T§(a) = T$(a) for
some tuples 3, 3 in M, N, respectively. Then every a-AE family
P(x) with up < u realized by @, is also realized by a.

Theorem (M.)

Let F be a fragment, and let T be an F-theory with locally
compact models. Suppose that [M] € II3, (tF), o > 1, for some
M € Mod(T). Then

[M] ={N € Mod(T) : T¥N) = T*M)}.



Coding T*(M) with countable models

For M € Mod(T), Cp consists of elements
x = (B(tp(3)) N U", ]3], U,e),
where 3¢ N<N (¢ Us), €€ Q™", and (U, ¢) is 3-good, and
relations Oy, Ry s, k, 1 € N, § € QT, and E, defined as follows:
> O)(x) iff U5 N Be(tp(a)) N U =10,
> Rk,/,(g(x) iff k = ’5‘, U= U/7,,, 0= €,
> xExX' iff |7 > |3, U' ]3] C U, € <e.

Proposition
Cm = Cy iff T*(M)=T*(N) for every a < ws.



Borel isomorphism relations

A relation E on a standard Borel space X is potentially I1? if
there is a Polish topology t inducing the Borel structure of X, and
such that £ € TIO(t x t).

For a < wy, PO(N) = N, P%(N) = all countable subsets of
P<*(N)UN, where P<%(N) = ;_,, PA(N), and =, is the
equality on P*(N).

Theorem (Hjort, Kechris, Louveau)

Let F be a fragment in the classical L., .,, and let T be an
F-theory. If =21 is potentially Hg+2, where o > 1, then =1 is
Borel reducible to =41.



Borel isomorphism relations

A relation E on a standard Borel space X is potentially I1? if
there is a Polish topology t inducing the Borel structure of X, and
such that £ € TIO(t x t).

For a < wy, PO(N) = N, P%(N) = all countable subsets of
P<*(N)UN, where P<%(N) = ;_,, PA(N), and =, is the
equality on P*(N).

Theorem (Hjort, Kechris, Louveau)

Let F be a fragment in the classical L., .,, and let T be an
F-theory. If =21 is potentially Hg+2, where o > 1, then =1 is
Borel reducible to =41.

Theorem (M.)

Let F be a fragment in the continuous L, .,, and let T be an
F-theory with locally compact models. If =1 is potentially Hg+2,
where o > 1, then =1 is Borel reducible to =,1.



Borel isomorphism relations

Theorem

Let L be a signature, let t be a Polish topology on Mod(L)
consisting of Borel subsets of the standard topology, and let

o < wy. There exists a fragment F such that A*@1/k ¢ TI® (t¢) for
every Ac TI0(t), 3€ N<N, and k > 0.

Corollary

Let L be a signature, and let T be a theory such that =1 is
potentially TI. There exists a fragment F such that
[M] € TI(tF) for every M € Mod(T).



Borel isomorphism relations

For a fragments F, F/, and a formula ¢,
> tkr(¢) =0if ¢ € F,
> 1kp(¢) = sup{rkr(¢;) + 1} if o =\, ¢; or & = \; ¢i,
» rkr(¢) = rke()) if ¢ is in the fragment gen. by F and ¥,
» rke(F') = sup{rkp(¢) : ¢ € F'}.

Remark: ¢ can be coded as an element of P*(IN) if rkr(¢) < .



Borel isomorphism relations

For a fragments F, F/, and a formula ¢,
> tkr(¢) =0if ¢ € F,
> 1kr(¢) = SUP{TkF(¢i) +1}tifo=V,;9ior o = \; ¢i,
» rkr(¢) = rke()) if ¢ is in the fragment gen. by F and ¥,
> rke(F') = sup{rk,:( )€ F'}

Remark: ¢ can be coded as an element of P*(IN) if rkr(¢) < .

Theorem (M.)

Let F be a fragment, and let T be an F-theory with locally
compact models. Suppose that [M] € TI , ,(tg) for some

M € Mod(T), a > 1. There is a fragment Fp; O F such that
[M] € TI(tF,,), and tke(Fum) = a.



Borel isomorphism relations

Theorem (Hallback, M., Tsankov)

Let F be a fragment and let T be an F-theory. For any
M € Mod(T), [M] is Gs in the topology tr iff M is an atomic
model of Thg(M).

Lemma (Tsankov)

Let L be a signature. For every fragment F, there exists a
fragment F' O F such that if M € Mod(L) is F-atomic, then
Thr/(M) is No-categorical.



Thank You!



