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Structures

A structure is a set M equipped with relations Ri , i ∈ I , functions
fj , j ∈ J, and constants ck , k ∈ K .

Examples:

▶ graphs (R,E ),

▶ Boolean algebras (B,∧,∨,−, 0, 1),
▶ metric spaces (M, {dr}r∈R), R ⊆ R+.



The space of countable structures and the logic action

Let L be a relational signature L, with ni the arity of relational
symbol Ri , i ∈ I . Then Mod(L) =

∏
i∈I{0, 1}N

ni is the space of
codes of all countable L-structures with universe N.

The group S∞, acting on Mod(L) by permuting the universe,
induces the isomorphism equivalence relation ∼= on Mod(L). In
particular, Vaught transforms can be used:

For open U ⊆ S∞, and A ⊆ Mod(L)

M ∈ A∗U ⇔ ∀∗g ∈ U g .M ∈ A.
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Lω1ω and its fragments

We will work in the setting of infinitary logic Lω1ω, i.e., an
extension of the finitary logic Lωω allowing for countably infinite
conjunctions

∧
i ϕi , and disjunctions

∨
i ϕi .

A (countable) fragment F is a countable set of Lω1ω-formulas
containing all Lωω-formulas, and closed under ∧, ∨, ¬, and ∃. We
can talk about F -theories, F -types, type spaces Sn(T ), spaces
Mod(T ) ⊆ Mod(L) of models of a theory T , isomorphism
relations ∼=T on Mod(T ), etc.

The space Sn(T ) of all n-F -types is equipped with the logic
topology τn with basis consisting of sets [ϕ], defined by tp(ā) ∈ [ϕ]
iff ϕM(ā) = 1, where ϕ ∈ F , M ∈ Mod(T ), ā is a tuple in M.

In a similar fashion, we can define a topology tF on Mod(L).
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In a similar fashion, we can define a topology tF on Mod(L).



ℵ0-categorical and atomic structures

Theorem
Let F be a fragment, let T be an F -theory and let M ∈ Mod(T ).

1. M is F -ℵ0-categorical iff [M] is Π0
1(tF );

2. M is F -atomic iff [M] is Π0
2(tF ).



Complexity of equivalence relations

An equivalence relation E on a Polish space X is (Borel)
reducible to an equivalence relation F on a Polish space Y if there
is a Borel mapping f : X → Y such that, for any x1, x2 ∈ X ,

x1 E x2 ↔ f (x1) F f (x2).

Important types of equivalence relations:

▶ smooth, i.e., reducible to the identity,

▶ essentially countable, i.e., reducible to a relation with
countable classes,

▶ classifiable by countable structures, i.e., reducible to
isomorphism on a Borel class of countable structures
(equivalently: graphs).
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Lω1ω and equivalence relations

Theorem (Hjorth-Kechris)

Let T be a countable theory, and let ∼=T be isomorphism on
Mod(T ). TFAE:

1. ∼=T is smooth;

2. There exists a fragment F such that for every M ∈ Mod(T ),
the theory ThF (M) is ℵ0-categorical.

1’ ∼=T is essentially countable,

2’ there exists a fragment F such that for every M ∈ Mod(T ),
there is a tuple ā such that ThF (M, ā) is ℵ0-categorical.

Corollary

Isomorphism of finitely generated countable groups is essentially
countable.
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Metric structures

A metric structure is a complete metric space (M, d) with d ≤ 1,
equipped with uniformly continuous functions Ri : M

ni → [0, 1],
i ∈ I (relations), uniformly continuous functions fj : M

nj → M,
j ∈ J, and constants ck , k ∈ K .

A metric signature consists of relation (including the metric),
function, and constant symbols, as well as arities, and moduli of
continuity ∆ : [0, 1]n → [0, 1]. Each of the relations and functions
of a metric structure in a given signature must respect its modulus
of continuity.

Examples:

▶ Complete metric spaces (M, d) with d ≤ 1;

▶ Probability measure algebras (B, d ,∧,∨, 0, 1);
▶ Unit balls of Banach spaces, C ∗-algebras, etc.
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The space of Polish metric structures

Let L be a countable relational signature L, with ni the arity of
relation Ri , i ∈ I , where R0 = d . Then Mod(L) ⊆

∏
i∈I [0, 1]

N
ni is

the space of codes of all Polish metric structures with universe
containing N as a (tail-)dense subset of M.

Remark: No Vaught transforms. However, for M ∈ Mod(L), let
D ⊆ MN be the Polish space of all tail-dense sequences in M, and
π : D → [M] a natural projection from D onto the isomorphism
class [M] of M. For A ⊆ Mod(L), ā ∈ N<N, and u ∈ Q+, put

M ∈ A∗ā,u ⇔ ∀∗y ∈ B
D(M)
<u (ā)(π(y) ∈ A).
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Continuous Lωω and Lω1ω

Formulas of continuous finitary logic Lωω are defined using

▶ continuous functions s : [0, 1]n → [0, 1] as connectives.
Alternatively: polynomials or just {0, 1, x2 , +̇, −̇},

▶ inf and sup as quantifiers.

Analogs of infinite conjunctions and disjunctions in the continuous
infinitary logic Lω1ω are defined with inf i ϕi , supi ϕi as infinitary
connectives, provided that all ϕi respect a single modulus of
continuity.
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Type spaces

Topologies τn and tn on Sn(T ) and Mod(L) can be defined
analogously to the classical setting.

Main difference:

a (possibly non-separable) complete metric ∂ on Sn(T ); for
F = Lωω, it can be defined by

∂(p, q) = inf{dM(ā, b̄) : M |= T , ā, b̄ ∈ Mn, tp(ā) = p, tp(b̄) = q };

in general,
∂(p, q) = sup

ϕ∈F1

|p(ϕ)− q(ϕ)| ,

where F1 are 1-Lipschitz formulas.
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Atomic models

Theorem (Hallbäck, M., Tsankov)

Let F be a fragment, let T be an F -theory and let M ∈ Mod(T ).

1. M is F -ℵ0-categorical iff [M] is Π0
1(tF );

2. M is F -atomic iff [M] is Π0
2(tF ).

Theorem (Cúth, Doležal, Doucha, Kurka)

The isometry classes of the Gurarij space and Lp for p ≥ 1 are Gδ

sets in (Mod(T0), tqf ), where T0 is the theory of Banach spaces.
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Continuous Lω1ω and equivalence relations

Theorem (Hallbäck, M., Tsankov)
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Continuous Lω1ω and equivalence relations

Definition: A type p is ℵ0-rigid if whenever (M, ā) and (N, b̄) are
two realizations of p with M and N separable, then M ∼= N.

Theorem (Hallbäck, M., Tsankov)

Let T be a theory with locally compact models. TFAE:

1. ∼=T is essentially countable,

2. there exists a fragment F such that for every M ∈ Mod(T ),
there is k ∈ N such that the set

{ā ∈ Mk : ThF (M, ā) is ℵ0-rigid}

has non-empty interior in Mk .

Corollary (Kechris)

Every orbit equivalence relation induced by a locally compact
Polish group is essentially countable.
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Coding actions of locally compact Polish metric groups

Assume that

▶ X is a compact space with compatible metric d bounded by 1;

▶ {ai}i∈N is a dense sequence in X ;

▶ G ≤ Homeo(X ) is a locally compact group with a proper
right-invariant metric dR .

For x ∈ X , let A(x) be a structure with universe (G , dR), and
unary predicates

Px
i (h) = d(h.x , ai ).

Note that because {ai} is dense, Px
i code x uniquely:

x = y iff Px
i (1G ) = Py

i (1G ) for all i .



Coding actions of locally compact Polish metric groups

Proposition

The map x 7→ A(x) is a reduction from the orbit equivalence
relation of the evaluation action of G on X to the isomorphism
relation.

Proposition

Let A be a proper metric structure. Then (A, a) is ℵ0-categorical
(in Lωω) for every a ∈ A; in particular, tp(a) is ℵ0-rigid.
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Isomorphism of locally compact Polish metric structures

Question [Gao, Kechris]: Is isometry of locally compact Polish
metric spaces reducible to graph isomorphism?

Theorem (M.)

Let T be a countable theory with locally compact models. Then
∼=T is classifiable by countable structures.

Corollary (M.)

Isometry of locally compact Polish metric spaces is reducible to
graph isomorphism.

A locally compact Polish metric space (K , d), regarded as an
element K(U) of the hyperspace of the Urysohn space, can be
coded in a Borel way as MK ∈ Mod(L) with the trivial signature,
and metric bounded by 1: using the Kuratowski–Ryll-Nardzewski
theorem, pick a countable tail-dense subset of K , and replace d
with d/(1 + d).
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Countable structures

For a countable M, and ā ∈ N<N, put

tp0(ā) = tp(ā), tpα(ā) = {tpβ(b̄) : β < α, b̄ ∈ N<N, ā ⊆ b̄},

Thα(M) = tpα(∅).

Theorem
Suppose that, for a fragment F , F -theory T , and M ∈ Mod(T ),
we have that [M] ∈ Π0

1+α(tF ), α ≥ 1. Then

[M] = {N ∈ Mod(T ) : Thα(N) = Thα(M)}.
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α-AE families

Let β = 0 or a limit ordinal.

▶ An (−1)-AE family P(x̄) is a formula ϕ(x̄) in F .

▶ a β-AE family P(x̄) is a collection of γ-AE families pk(x̄),
k ∈ N, γ < β.

▶ a (β + 1)-AE family P(x̄) is a collection of γ-AE families
pk,l(x̄k,l), γ < β, k , l ∈ N, x̄ ⊆ x̄k,l ,

▶ a (β + n)-AE family P(x̄), 2 ≤ n < ω, is a collection of
(β + n − 2)-AE families pk,l(x̄k,l), k , l ∈ N, x̄ ⊆ x̄k,l .

An α-AE family P(x̄) = {pk,l(x̄k,l)}, α ≥ 1, comes equipped with
a fixed uP ≥ 0 such that uP ≥ upk,l , k , l ∈ N.



α-AE families

For β = 0 or a limit ordinal, a tuple ā in M ∈ Mod(L) realizes a

▶ (−1)-AE family P(x̄) = ϕ(ā) if ϕM(ā) = 0,

▶ β-AE family P(x̄) if it realizes every p(x̄) ∈ P(x̄),

▶ (β + n)-AE family P(x̄) = {pk,l(x̄k,l)}, 1 ≤ n < ω, if it holds
in M that

∀b̄ ∈ BM<ω

uP
(ā)∀v > 0∀k∃c̄ ∈ BM<ω

v (b̄)∃l (c̄ realizes pk,l(x̄k,l) in M).

If ∅ in M realizes P(∅), we say that M models P.

Remark: A countable M models P if

∀b̄∀k∃c̄ ⊇ b̄∃l(c̄ realizes pk,l(x̄k,l) in M).



AE families and Borel complexity

Let F be fragment in signature L, and let 1 ≤ α < ω1.

Theorem (M.)

Suppose that A ∈ Π0
1+α(tF ) for some A ⊆ Mod(L). For every

ā ∈ N<N, and u ∈ Q+, there exists an α-AE family P(x̄) such that

A∗ā,u = {N ∈ Mod(L) : ā realizes P(x̄) in N}.

Corollary

Suppose that [M] ∈ Π0
1+α(tF ) for some M ∈ Mod(L), α ≥ 1.

There exists an α-AE family PM such that

[M] = {N ∈ Mod(L) : N models PM}.



Locally compact structures

Fix a countable basis Un for each τn. For ā ∈ Nn, U ∈ Un, and
ϵ ∈ Q+, define

T 0
U,ϵ(ā) = B<ϵ(tp(ā)) ∩ U

τ ⊆ Sn(T ),

if (U, ϵ) is ā-good, T 0
U,ϵ(ā) = ∅, otherwise, and

Tα
U,ϵ(ā) = {T β

U′,ϵ′(ā
′) : β < α, |ā′| ≥ |ā|,U ′ ∈ U|ā′|,U

′ ↾ |ā| ⊆ U, ϵ′ ≤ ϵ}

for α > 0. Also, for u > 0, put

Tα
u (ā) = {T β

U,v (b̄) : β < α, b̄ ∈ BM<ω

u (ā), |b̄| ≥ |ā|,U ∈ U|b̄|, v > 0},

Tα(M) = Tα
1 (∅).



Locally compact structures

For a theory T , locally compact M ∈ Mod(T ), n ∈ N, and n-tuple
ā in M, let

ρ(ā) = sup{r ∈ R : BMn

<r (ā) is compact},

Θn(M) = {tp(b̄) : b̄ ∈ Mn}.

Put U =
⋃

n Un. For U ∈ Un, and ϵ > 0, (U, ϵ) is ā-good in M if

▶ tp(ā) ∈ U,

▶ 2ϵ < ρ(ā),

▶ there is δ > 0 such that U ∩ B<2ϵ(tp(ā)) ⊆ B<ϵ−δ(tp(ā)).
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Locally compact structures

▶ For every δ > 0 there exist U ∈ U and 0 < ϵ < δ such that
(U, ϵ) is ā-good,

▶ if (U, ϵ) is ā-good, then

B<ϵ(tp(ā)) ∩ U
τ ⊆ Θ|ā|(M),

▶ if (U, ϵ) is ā-good, there is δ > 0 such that d(ā, ā′) < δ
implies that (U, ϵ) is ā′-good, and

U ∩ B<ϵ(tp(ā)) = U ∩ B<ϵ(tp(ā
′)).



Locally compact structures

Theorem (M.)

Let F be a fragment, and let T be an F -theory. Suppose that
M,N ∈ Mod(T ) are locally compact, and Tα

u (ā) = Tα
u′(ā

′) for
some tuples ā, ā′ in M, N, respectively. Then every α-AE family
P(x̄) with uP ≤ u realized by ā′, is also realized by ā.

Theorem (M.)

Let F be a fragment, and let T be an F -theory with locally
compact models. Suppose that [M] ∈ Π0

1+α(tF ), α ≥ 1, for some
M ∈ Mod(T ). Then

[M] = {N ∈ Mod(T ) : Tα(N) = Tα(M)}.
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Coding T α(M) with countable models

For M ∈ Mod(T ), CM consists of elements

x = (Bϵ(tp(ā)) ∩ U
τ
, |ā|,U, ϵ),

where ā ∈ N<N, U ∈ U|ā|, ϵ ∈ Q+, and (U, ϵ) is ā-good, and
relations Ol , Rk,l ,δ, k , l ∈ N, δ ∈ Q+, and E , defined as follows:

▶ Ol(x) iff Ul ,|ā| ∩ Bϵ(tp(ā)) ∩ U
τ
= ∅,

▶ Rk,l ,δ(x) iff k = |ā|, U = Ul ,n, δ = ϵ,

▶ xEx ′ iff |ā′| ≥ |ā|, U ′ ↾ |ā| ⊆ U, ϵ′ ≤ ϵ.

Proposition

CM
∼= CN iff Tα(M)=Tα(N) for every α < ω1.



Borel isomorphism relations

A relation E on a standard Borel space X is potentially Π0
α if

there is a Polish topology t inducing the Borel structure of X , and
such that E ∈ Π0

α(t × t).

For α < ω1, P0(N) = N, Pα(N) = all countable subsets of
P<α(N) ∪N, where P<α(N) =

⋃
β<α Pβ(N), and =α is the

equality on Pα(N).

Theorem (Hjort, Kechris, Louveau)

Let F be a fragment in the classical Lω1ω, and let T be an
F -theory. If ∼=T is potentially Π0

α+2, where α ≥ 1, then ∼=T is
Borel reducible to =α+1.

Theorem (M.)

Let F be a fragment in the continuous Lω1ω, and let T be an
F -theory with locally compact models. If ∼=T is potentially Π0

α+2,
where α ≥ 1, then ∼=T is Borel reducible to =α+1.
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Borel isomorphism relations

Theorem
Let L be a signature, let t be a Polish topology on Mod(L)
consisting of Borel subsets of the standard topology, and let
α < ω1. There exists a fragment F such that A∗ā,1/k ∈ Π0

α(tF ) for
every A ∈ Π0

α(t), ā ∈ N<N, and k > 0.

Corollary

Let L be a signature, and let T be a theory such that ∼=T is
potentially Π0

α. There exists a fragment F such that
[M] ∈ Π0

α(tF ) for every M ∈ Mod(T ).



Borel isomorphism relations

For a fragments F , F ′, and a formula ϕ,

▶ rkF (ϕ) = 0 if ϕ ∈ F ,

▶ rkF (ϕ) = sup{rkF (ϕi ) + 1} if ϕ =
∨

i ϕi or ϕ =
∧

i ϕi ,

▶ rkF (ϕ) = rkF (ψ) if ϕ is in the fragment gen. by F and ψ,

▶ rkF (F
′) = sup{rkF (ϕ) : ϕ ∈ F ′}.

Remark: ϕ can be coded as an element of Pα(N) if rkF (ϕ) ≤ α.

Theorem (M.)

Let F be a fragment, and let T be an F -theory with locally
compact models. Suppose that [M] ∈ Π0

α+2(tF ) for some
M ∈ Mod(T ), α ≥ 1. There is a fragment FM ⊇ F such that
[M] ∈ Π0

2(tFM
), and rkF (FM) = α.
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Borel isomorphism relations

Theorem (Hallbäck, M., Tsankov)

Let F be a fragment and let T be an F -theory. For any
M ∈ Mod(T ), [M] is Gδ in the topology tF iff M is an atomic
model of ThF (M).

Lemma (Tsankov)

Let L be a signature. For every fragment F , there exists a
fragment F ′ ⊇ F such that if M ∈ Mod(L) is F -atomic, then
ThF ′(M) is ℵ0-categorical.



Thank You!


