Around Mycielski and Eggleston theorems

Marcin Michalski, Robert Rałowski, Szymon Żeberski Wrocław University of Science and Technology

First Logic Conference, Gdańsk, 5-7.05.2023

・ロト ・ 同ト ・ ヨト ・ ヨト

Mycielski theorem

Let X ⊆ [0,1] × [0,1] be comeager. Then there exists a perfect set P such that

 $P \times P \subseteq X \cup \Delta$.

Assume that X ⊆ [0,1] × [0,1] has measure 1. Then there exists a perfect set P such that

$$P \times P \subseteq X \cup \Delta$$
.

J. Mycielski, Algebraic independence and measure, Fundamenta Mathematicae 61 (1967), 165-169.

Solecki, Spinas

For every coanalytic set $X \subseteq (\omega^{\omega})^2$ with complement in the product ideal $\{\emptyset\} \otimes \mathcal{K}_{\sigma}$ there exists a superperfect set $P \subseteq \omega^{\omega}$ such that $P \times P \subseteq X \cup \Delta$.

Spinas

Assume that $X_0 \cup X_1 \cup ... \cup X_n = (\omega^{\omega})^2$ and X_k is symmetric and Borel for each $k \in \{0, 1, ..., n\}$. Then there exists a superperfect set $P \subseteq \omega^{\omega}$ such that $P \times P \subseteq X_k \cup \Delta$ for some $k \in \{0, 1, ..., n\}$.

 O. Spinas, Ramsey and freeness properties of Polish planes, Proceedings of the London Mathematical Society 82 (2001), 31-63.

Banakh, Zdomskyy

Let $X \subseteq (\omega^{\omega})^2$ be comeager. Then there exists nowhere meager set $Q \subseteq \omega^{\omega}$ such that $Q \times Q \subseteq X \cup \Delta$.

T. Banakh, L. Zdomskyy, Non-meager free sets for meager relations on Polish spaces, Proceedings of the American Mathematical Society 143 (2015), 2719-2724.

A tree $T \subseteq A^{<\omega}$ $(A \in \{2, \omega\})$ is called

• a Miller or superperfect tree, if

$$(\forall \sigma \in T)(\exists \tau \in \omega \text{-split}(T))(\sigma \subseteq \tau);$$

► a Laver tree, if

$$(\exists \sigma)(\forall \tau \in T)(\tau \subseteq \sigma \lor (\sigma \subseteq \tau \land \tau \in \omega \text{-split}(T))).$$

・ロト・日本・ヨト・ヨー うへの

A tree $T \subseteq A^{<\omega}$ $(A \in \{2, \omega\})$ is called

- ▶ a Miller or superperfect tree, if $(\forall \sigma \in T)(\exists \tau \in \omega \text{-split}(T))(\sigma \subseteq \tau);$
- ► a Laver tree, if $(\exists \sigma)(\forall \tau \in T)(\tau \subseteq \sigma \lor (\sigma \subseteq \tau \land \tau \in \omega \text{-split}(T))).$
- uniformly perfect, if for every n ∈ ω either Aⁿ ∩ T ⊆ split(T) or Aⁿ ∩ split(T) = ∅;
- ▶ a Silver tree, if $(\forall \sigma, \tau \in T)(|\sigma| = |\tau| \Rightarrow (\forall a \in A)(\sigma^{-}a \in T \Leftrightarrow \tau^{-}a \in T)).$

A D N A 目 N A E N A E N A B N A C N

Mycielski, category case

Laver tree

There exists a dense G_{δ} set $G \subseteq \omega^{\omega}$ such that $[T] \not\subseteq G$ for every Laver tree T.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Proof.

$$G = \{x \in \omega^{\omega} : (\exists^{\infty} n \in \omega)(x(n) = 0)\}.$$

Mycielski, category case

Laver tree

There exists a dense G_{δ} set $G \subseteq \omega^{\omega}$ such that $[T] \not\subseteq G$ for every Laver tree T.

Proof.

$$G = \{x \in \omega^{\omega} : (\exists^{\infty} n \in \omega)(x(n) = 0)\}.$$

Miller tree

(Solecki, Spinas) There exists an open dense set $U \subseteq \omega^{\omega} \times \omega^{\omega}$ such that $[T] \times [T] \not\subseteq U \cup \Delta$ for every Miller tree T.

S. Solecki, O. Spinas, Dominating and unbounded free sets, Journal of Symbolic Logic 64 (1999), 75-80.

Miller tree..

There exists a dense G_{δ} set $G \subseteq \omega^{\omega} \times \omega^{\omega}$ such that $[T_1] \times [T_2] \not\subseteq G \cup \Delta$ for any Miller trees T_1, T_2 .

Proof.

Let $Q = \{q^n : n \in \omega\}$ and $K(q) = \max\{q_1(n), q_2(n) : n \in \omega\}$

$$G = igcap_{n \in \omega} igcup_{k > n} [q^k \upharpoonright (\operatorname{supp}(q^k) + K(q^k))],$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Silver tree

There exists an open dense set $U \subseteq \omega^{\omega} \times \omega^{\omega}$ such that $[T] \times [T] \not\subseteq U \cup \Delta$ for any Silver tree T.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Silver tree

There exists an open dense set $U \subseteq \omega^{\omega} \times \omega^{\omega}$ such that $[T] \times [T] \not\subseteq U \cup \Delta$ for any Silver tree T.

Proof.

Set

$$U = \bigcup_{n \in \omega} \left[\left(q_1^n \upharpoonright \left(\mathsf{supp}(q^n) \right) \right)^\frown (0,0) \right] \times \left[\left(q_2^n \upharpoonright \left(\mathsf{supp}(q^n) \right) \right)^\frown (1,1) \right].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Mycielski, category case, positive result!

For every comeager set G of $\omega^{\omega} \times \omega^{\omega}$ there exists a Miller tree $T_M \subseteq \omega^{<\omega}$ and a uniformly perfect tree $T_P \subseteq T_M$ such that

 $[T_P] \times [T_M] \subseteq G \cup \Delta.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Mycielski, category case, positive result!

For every comeager set G of $\omega^{\omega} \times \omega^{\omega}$ there exists a Miller tree $T_M \subseteq \omega^{<\omega}$ and a uniformly perfect tree $T_P \subseteq T_M$ such that

 $[T_P] \times [T_M] \subseteq G \cup \Delta.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

but..

There exists a dense G_{δ} set G such that $[T] \not\subseteq G$ for every uniformly perfect Miller tree T.

Miller tree

Let μ be a strictly positive probabilistic measure on ω^{ω} . Then there exists an F_{σ} set F of measure 1 such that $[T] \not\subseteq F$ for every Miller tree T.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Small set

 $A \subseteq 2^{\omega}$ is a small set if there is a partition \mathcal{A} of ω into finite sets and a collection $(J_a)_{a \in \mathcal{A}}$ such that $J_a \subseteq 2^a$, $\sum_{a \in \mathcal{A}} \frac{|J_a|}{2^{|a|}} < \infty$ and

$$A = \{ x \in 2^{\omega} : \ (\exists^{\infty} a \in \mathcal{A})(x \upharpoonright a \in J_a) \}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Small set

 $A \subseteq 2^{\omega}$ is a small set if there is a partition \mathcal{A} of ω into finite sets and a collection $(J_a)_{a \in \mathcal{A}}$ such that $J_a \subseteq 2^a$, $\sum_{a \in \mathcal{A}} \frac{|J_a|}{2^{|a|}} < \infty$ and

$$A = \{ x \in 2^{\omega} : \ (\exists^{\infty} a \in \mathcal{A})(x \upharpoonright a \in J_a) \}.$$

Silver tree

There exist a small set $A \subseteq 2^{\omega} \times 2^{\omega}$ such that $(A \cap [T] \times [T]) \setminus \Delta \neq \emptyset$ for any Silver tree $T \subseteq 2^{<\omega}$.

Proof.

Let $\{I_n\}_{n\in\omega}$ be a partition of ω , $|I_n| \ge n$. Clearly, $\{I_n \times I_m\}_{n,m\in\omega}$ forms a partition of $\omega \times \omega$.

$$J_{n,m} = \begin{cases} \emptyset & \text{if } n \neq m \\ \{(x,x) : x \in 2^{l_n}\} & \text{if } n = m \end{cases}$$

 $A = \{(x, y) \in 2^{\omega} \times 2^{\omega} : \ (\exists^{\infty} n \in \omega)(x \upharpoonright I_n = y \upharpoonright I_n)\}$

Silver tree There exist a small set $A \subseteq 2^{\omega} \times 2^{\omega}$ such that $(A \cap [T] \times [T]) \setminus \Delta \neq \emptyset$ for any Silver tree $T \subseteq 2^{<\omega}$.

Silver tree..

Every closed subset of 2^ω of positive Lebesgue measure contains a Silver tree.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Measure case, positive result

Let *F* be a subset of $2^{\omega} \times 2^{\omega}$ of full measure. Then there exists a uniformly perfect tree $T \subseteq 2^{<\omega}$ satisfying $[T] \times [T] \subseteq F \cup \Delta$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Sketch of the proof.

 $F = \bigcup_{n \in \omega} F_n$, where $(F_n : n \in \omega)$ is an ascending sequence of closed sets. Fix $\varepsilon_n = \frac{1}{2^{2n+3}}$, $n \in \omega$. Construct:

▶ a collection of clopen sets $\{[\tau_{\sigma}] : \sigma \in 2^{<\omega}\};$

▶ two sequences $(k_n : n \in \omega)$ and $(N_n : n \in \omega \setminus \{0\})$;

- ▶ a sequence of pairs $((x_n, y_n) : n \in \omega \setminus \{0\})$ from $2^{\omega} \times 2^{\omega}$;
- a collection of points $\{t_{\sigma} : \sigma \in 2^{<\omega}\}$ from 2^{ω} ;
- ▶ a sequence $(B_n : n \in \omega)$ of subsets of $2^{\omega} \times 2^{\omega}$;

satisfying the following conditions for all $\sigma, \eta \in 2^{<\omega}$ and $n \in \omega$:

1.
$$\tau_{\sigma} \subseteq \tau_{\eta} \Leftrightarrow \sigma \subseteq \eta$$
;
2. $|\sigma| = |\eta| \to [\tau_{\sigma}] \times [\tau_{\eta}] \cap F_{k_{|\sigma \cap \eta|}} \neq \emptyset$;
3. $|\sigma| = |\eta| \Rightarrow |\tau_{\sigma}| = |\tau_{\eta}|$;
4. $B_n = \bigcap_{\sigma,\eta \in \{0,1\}^n} \left(\left(([\tau_{\sigma}] \times [\tau_{\eta}]) \cap F_{k_{|\sigma \cap \eta|}} \right) - (t_{\sigma}, t_{\eta}) \right)^s$ has a positive measure.

Eggleston theorem

Assume that $A \subseteq [0,1] \times [0,1]$ has measure 1. Then there exists a perfect set P and a perfect set Q, $\lambda(Q) > 0$ such that

$$P \times Q \subseteq A$$
.

H. G. Eggleston, Two measure properties of Cartesian product sets, The Quarterly Journal of Mathematics 5 (1954), 108–115.

Eggleston like

$\mathsf{ideal}\ \mathcal{N}$

- ▶ If $G \in Bor([0,1]^2)$ and $G^c \in \mathcal{N}$ then there are $P \in Perf([0,1])$ and $B \in Bor([0,1])$ such that $B^c \in \mathcal{N}$ and $P \times B \subseteq G$.
- ▶ If $G \in Bor([0,1]^2)$ and $G \notin \mathcal{N}$ then there are $P \in Perf([0,1])$ and $B \in Bor([0,1])$ such that $B \notin \mathcal{N}$ and $P \times B \subseteq G$.

Eggleston like

$\mathsf{ideal}\ \mathcal{N}$

- ▶ If $G \in Bor([0,1]^2)$ and $G^c \in \mathcal{N}$ then there are $P \in Perf([0,1])$ and $B \in Bor([0,1])$ such that $B^c \in \mathcal{N}$ and $P \times B \subseteq G$.
- ▶ If $G \in Bor([0,1]^2)$ and $G \notin \mathcal{N}$ then there are $P \in Perf([0,1])$ and $B \in Bor([0,1])$ such that $B \notin \mathcal{N}$ and $P \times B \subseteq G$.

$\mathsf{ideal}\ \mathcal{M}$

- ▶ If $G \in Bor(\mathbb{R}^2)$ and $G^c \in \mathcal{M}$ then there are $P \in Perf(\mathbb{R})$ and $B \in Bor(\mathbb{R})$ such that $B^c \in \mathcal{M}$ and $P \times B \subseteq G$.
- ▶ If $G \in Bor(\mathbb{R}^2)$ and $G \notin M$ then there are $P \in Perf(\mathbb{R})$ and $B \in Bor(\mathbb{R})$ such that $B \notin M$ and $P \times B \subseteq G$.
- Sz. Żeberski, Nonstandard proofs of Eggleston like theorems, Proceedings of the Ninth Topological Symposium (2001), 353–357.

Fubini product

 $A \in \mathcal{I} \otimes \mathcal{J} \Leftrightarrow \{x : A_x \notin \mathcal{J}\} \in \mathcal{I}$

$\mathsf{ideal}\ \mathcal{N}\cap \mathcal{M}$

For every set $G \in Bor(\mathbb{R}^2) \setminus (ctbl \otimes (\mathcal{N} \cap \mathcal{M}))$ there are $P \in Perf(\mathbb{R})$ and $B \in Bor(\mathbb{R}) \setminus (\mathcal{N} \cap \mathcal{M})$ such that $P \times B \subseteq G$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Fubini product

 $A \in \mathcal{I} \otimes \mathcal{J} \Leftrightarrow \{x : A_x \notin \mathcal{J}\} \in \mathcal{I}$

ideal $\mathcal{N}\cap\mathcal{M}$

For every set $G \in Bor(\mathbb{R}^2) \setminus (ctbl \otimes (\mathcal{N} \cap \mathcal{M}))$ there are $P \in Perf(\mathbb{R})$ and $B \in Bor(\mathbb{R}) \setminus (\mathcal{N} \cap \mathcal{M})$ such that $P \times B \subseteq G$.

$\mathsf{ideal}\ \mathcal{E}$

If $G \subseteq \mathbb{R}^2$ is a Borel subset such that $G^c \in \mathcal{E} \otimes \mathcal{E}$ then there are $P \in Perf(\mathbb{R})$ and $B \in Bor(\mathbb{R})$ such that $B^c \in \mathcal{E}$ and $P \times B \subseteq G$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

ideal \mathcal{E} If $G \subseteq \mathbb{R}^2$ is a Borel subset such that $G^c \in \mathcal{E} \otimes \mathcal{E}$ then there are $P \in Perf(\mathbb{R})$ and $B \in Bor(\mathbb{R})$ such that $B^c \in \mathcal{E}$ and $P \times B \subseteq G$.

Proof.

We start in V. Extend it to $V' \models \operatorname{add}(\mathcal{E}) \ge \omega_3$ Denote $A = \{x : \mathbb{R} \setminus G_x \in \mathcal{E}\}$ $X \subseteq A, |X| = \omega_2$. Let $B \subseteq \bigcap_{x \in X} G_x$. $X \times B \in G, \{x : B \subseteq G_x\}$ is Π_1^1 and has cardinality $\ge \omega_2$ $V' \models \exists P \exists B \ P \times B \subseteq G$

By Shoenfield absoluteness theorem it is also true in V.

Silver tree

For every dense G_{δ} -set $G \subseteq (2^{\omega} \times 2^{\omega})$ there are a body of a Silver tree $P \subseteq 2^{\omega}$ and dense G_{δ} -set $B \subseteq 2^{\omega}$ such that $P \times B \subseteq G$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Silver tree

For every dense G_{δ} -set $G \subseteq (2^{\omega} \times 2^{\omega})$ there are a body of a Silver tree $P \subseteq 2^{\omega}$ and dense G_{δ} -set $B \subseteq 2^{\omega}$ such that $P \times B \subseteq G$.

Spinas tree

For every dense G_{δ} -set $G \subseteq (2^{\omega} \times 2^{\omega})$ there are a body of a Spinas tree $P \subseteq 2^{\omega}$ and dense G_{δ} -set $B \subseteq 2^{\omega}$ such that $P \times B \subseteq G$.

 $T \subseteq 2^{<\omega}$ is a Spinas tree iff

 $(\forall \sigma \in T)(\exists N)(\forall n \geq N)(\forall i)(\exists \tau \in T)(\sigma \subseteq \tau \land \tau(n) = i)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Mycielski + Eggleston

Uniformly perfect, category case

Let $G \subseteq 2^{\omega} \times 2^{\omega}$ be comeager. Then there exist a uniformly perfect set $P \subseteq 2^{\omega}$ and a dense G_{δ} set $D \subseteq 2^{\omega}$ such that $P \subseteq D$ and $P \times D \subseteq G \cup \Delta$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Sketch of the proof.

 $G=\bigcap_{n\in\omega}U_n,$ where $(U_n)_{n\in\omega}$ - descending sequence of open dense sets

(i)
$$\sigma_{\tau} \cap i \subseteq \sigma_{\tau} \cap i$$
 for $i \in \{0, 1\}$;
(ii) $|\tau| = |\tau'| \Rightarrow |\sigma_{\tau}| = |\sigma_{\tau'}|$;
(iii) $|\tau| = |\tau'| = n \land \tau \neq \tau' \Rightarrow [\sigma_{\tau}] \times [\sigma_{\tau'}] \subseteq U_n$;
(iv) $V_n \subseteq B_n$;
(v) $|\tau| = n \Rightarrow [\sigma_{\tau}] \times V_n \subseteq U_n$.

$$P = \bigcap_{n \in \omega} \bigcup_{\tau \in 2^n} [\sigma_{\tau}]$$
$$D = \bigcap_{n \in \omega} \bigcup_{k \ge n} (V_k \cup \bigcup_{\tau \in 2^k} [\sigma_{\tau}])$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Thank you for your attention!

- M. Michalski, R. Rałowski and Sz. Żeberski, Mycielski among trees, Mathematical Logic Quarterly,67 (2021), 271–281
- M. Michalski, R. Rałowski and Sz. Żeberski, Around the Eggleston theorem, still in preparation :)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00