Around Mycielski and Eggleston theorems

Marcin Michalski, Robert Rałowski, Szymon Żeberski Wrocław University of Science and Technology

First Logic Conference, Gdańsk, 5-7.05.2023

Mycielski theorem

- Let $X \subseteq[0,1] \times[0,1]$ be comeager.

Then there exists a perfect set P such that

$$
P \times P \subseteq X \cup \Delta
$$

- Assume that $X \subseteq[0,1] \times[0,1]$ has measure 1 . Then there exists a perfect set P such that

$$
P \times P \subseteq X \cup \Delta
$$

囯 J. Mycielski, Algebraic independence and measure, Fundamenta Mathematicae 61 (1967), 165-169.

Solecki, Spinas
For every coanalytic set $X \subseteq\left(\omega^{\omega}\right)^{2}$ with complement in the product ideal $\{\emptyset\} \otimes \mathcal{K}_{\sigma}$ there exists a superperfect set $P \subseteq \omega^{\omega}$ such that $P \times P \subseteq X \cup \Delta$.

Spinas
Assume that $X_{0} \cup X_{1} \cup \ldots \cup X_{n}=\left(\omega^{\omega}\right)^{2}$ and X_{k} is symmetric and Borel for each $k \in\{0,1, \ldots, n\}$. Then there exists a superperfect set $P \subseteq \omega^{\omega}$ such that $P \times P \subseteq X_{k} \cup \Delta$ for some $k \in\{0,1, \ldots, n\}$.

圊 S. Solecki, O. Spinas, Dominating and unbounded free sets, Journal of Symbolic Logic 64 (1999), 75-80.

囯 O. Spinas, Ramsey and freeness properties of Polish planes, Proceedings of the London Mathematical Society 82 (2001), 31-63.

Banakh, Zdomskyy
Let $X \subseteq\left(\omega^{\omega}\right)^{2}$ be comeager. Then there exists nowhere meager set $Q \subseteq \omega^{\omega}$ such that $Q \times Q \subseteq X \cup \Delta$.
T. Banakh, L. Zdomskyy, Non-meager free sets for meager relations on Polish spaces, Proceedings of the American Mathematical Society 143 (2015), 2719-2724.

A tree $T \subseteq A^{<\omega}(A \in\{2, \omega\})$ is called

- a Miller or superperfect tree, if
$(\forall \sigma \in T)(\exists \tau \in \omega$-split $(T))(\sigma \subseteq \tau) ;$
- a Laver tree, if
$(\exists \sigma)(\forall \tau \in T)(\tau \subseteq \sigma \vee(\sigma \subseteq \tau \wedge \tau \in \omega$-split $(T)))$.

A tree $T \subseteq A^{<\omega}(A \in\{2, \omega\})$ is called

- a Miller or superperfect tree, if
$(\forall \sigma \in T)(\exists \tau \in \omega-\operatorname{split}(T))(\sigma \subseteq \tau) ;$
- a Laver tree, if
$(\exists \sigma)(\forall \tau \in T)(\tau \subseteq \sigma \vee(\sigma \subseteq \tau \wedge \tau \in \omega-\operatorname{split}(T)))$.
- uniformly perfect, if for every $n \in \omega$ either $A^{n} \cap T \subseteq \operatorname{split}(T)$ or $A^{n} \cap \operatorname{split}(T)=\emptyset$;
- a Silver tree, if
$(\forall \sigma, \tau \in T)\left(|\sigma|=|\tau| \Rightarrow(\forall a \in A)\left(\sigma \frown a \in T \Leftrightarrow \tau^{\frown} a \in T\right)\right)$.

Mycielski, category case

Laver tree
There exists a dense G_{δ} set $G \subseteq \omega^{\omega}$ such that $[T] \nsubseteq G$ for every Laver tree T.

Proof.
$G=\left\{x \in \omega^{\omega}:\left(\exists^{\infty} n \in \omega\right)(x(n)=0)\right\}$.

Mycielski, category case

Laver tree
There exists a dense G_{δ} set $G \subseteq \omega^{\omega}$ such that $[T] \nsubseteq G$ for every Laver tree T.

Proof.
$G=\left\{x \in \omega^{\omega}:\left(\exists^{\infty} n \in \omega\right)(x(n)=0)\right\}$.
Miller tree
(Solecki, Spinas) There exists an open dense set $U \subseteq \omega^{\omega} \times \omega^{\omega}$ such that $[T] \times[T] \nsubseteq U \cup \Delta$ for every Miller tree T.

围 S. Solecki, O. Spinas, Dominating and unbounded free sets, Journal of Symbolic Logic 64 (1999), 75-80.

Miller tree..
There exists a dense G_{δ} set $G \subseteq \omega^{\omega} \times \omega^{\omega}$ such that $\left[T_{1}\right] \times\left[T_{2}\right] \nsubseteq G \cup \Delta$ for any Miller trees T_{1}, T_{2}.
Proof.
Let $Q=\left\{q^{n}: n \in \omega\right\}$ and $K(q)=\max \left\{q_{1}(n), q_{2}(n): n \in \omega\right\}$

$$
G=\bigcap_{n \in \omega} \bigcup_{k>n}\left[q^{k} \upharpoonright\left(\operatorname{supp}\left(q^{k}\right)+K\left(q^{k}\right)\right)\right]
$$

Silver tree

There exists an open dense set $U \subseteq \omega^{\omega} \times \omega^{\omega}$ such that $[T] \times[T] \nsubseteq U \cup \Delta$ for any Silver tree T.

Silver tree

There exists an open dense set $U \subseteq \omega^{\omega} \times \omega^{\omega}$ such that $[T] \times[T] \nsubseteq U \cup \Delta$ for any Silver tree T.

Proof.

Set
$U=\bigcup_{n \in \omega}\left[\left(q_{1}^{n} \upharpoonright\left(\operatorname{supp}\left(q^{n}\right)\right)\right)^{\frown}(0,0)\right] \times\left[\left(q_{2}^{n} \upharpoonright\left(\operatorname{supp}\left(q^{n}\right)\right)\right)^{\frown}(1,1)\right]$.

Mycielski, category case, positive result!
For every comeager set G of $\omega^{\omega} \times \omega^{\omega}$ there exists a Miller tree $T_{M} \subseteq \omega^{<\omega}$ and a uniformly perfect tree $T_{P} \subseteq T_{M}$ such that

$$
\left[T_{P}\right] \times\left[T_{M}\right] \subseteq G \cup \Delta .
$$

Mycielski, category case, positive result!
For every comeager set G of $\omega^{\omega} \times \omega^{\omega}$ there exists a Miller tree $T_{M} \subseteq \omega^{<\omega}$ and a uniformly perfect tree $T_{P} \subseteq T_{M}$ such that

$$
\left[T_{P}\right] \times\left[T_{M}\right] \subseteq G \cup \Delta
$$

but..
There exists a dense G_{δ} set G such that $[T] \nsubseteq G$ for every uniformly perfect Miller tree T.

Measure case

Miller tree
Let μ be a strictly positive probabilistic measure on ω^{ω}. Then there exists an F_{σ} set F of measure 1 such that $[T] \nsubseteq F$ for every Miller tree T.

Small set

$A \subseteq 2^{\omega}$ is a small set if there is a partition \mathcal{A} of ω into finite sets and a collection $\left(J_{a}\right)_{a \in \mathcal{A}}$ such that $J_{a} \subseteq 2^{a}, \sum_{a \in \mathcal{A}} \frac{\left|J_{a}\right|}{2^{\mid a} \mid}<\infty$ and

$$
A=\left\{x \in 2^{\omega}:\left(\exists^{\infty} a \in \mathcal{A}\right)\left(x \upharpoonright a \in J_{a}\right)\right\} .
$$

Small set

$A \subseteq 2^{\omega}$ is a small set if there is a partition \mathcal{A} of ω into finite sets and a collection $\left(J_{a}\right)_{a \in \mathcal{A}}$ such that $J_{a} \subseteq 2^{a}, \sum_{a \in \mathcal{A}} \frac{\left|J_{a}\right|}{2^{a \mid} \mid}<\infty$ and

$$
A=\left\{x \in 2^{\omega}:\left(\exists^{\infty} a \in \mathcal{A}\right)\left(x \upharpoonright a \in J_{a}\right)\right\} .
$$

Silver tree

There exist a small set $A \subseteq 2^{\omega} \times 2^{\omega}$ such that
$(A \cap[T] \times[T]) \backslash \Delta \neq \emptyset$ for any Silver tree $T \subseteq 2^{<\omega}$.
Proof.
Let $\left\{I_{n}\right\}_{n \in \omega}$ be a partition of $\omega,\left|I_{n}\right| \geq n$.
Clearly, $\left\{I_{n} \times I_{m}\right\}_{n, m \in \omega}$ forms a partition of $\omega \times \omega$.

$$
\begin{gathered}
J_{n, m}= \begin{cases}\emptyset & \text { if } n \neq m \\
\left\{(x, x): x \in 2^{\left.I_{n}\right\}}\right\} & \text { if } n=m\end{cases} \\
A=\left\{(x, y) \in 2^{\omega} \times 2^{\omega}:\left(\exists^{\infty} n \in \omega\right)\left(x \upharpoonright I_{n}=y \upharpoonright I_{n}\right)\right\}
\end{gathered}
$$

Silver tree
There exist a small set $A \subseteq 2^{\omega} \times 2^{\omega}$ such that $(A \cap[T] \times[T]) \backslash \Delta \neq \emptyset$ for any Silver tree $T \subseteq 2^{<\omega}$.

Silver tree..
Every closed subset of 2^{ω} of positive Lebesgue measure contains a Silver tree.

Measure case, positive result
Let F be a subset of $2^{\omega} \times 2^{\omega}$ of full measure. Then there exists a uniformly perfect tree $T \subseteq 2^{<\omega}$ satisfying $[T] \times[T] \subseteq F \cup \Delta$.

Sketch of the proof.

$F=\bigcup_{n \in \omega} F_{n}$, where ($F_{n}: n \in \omega$) is an ascending sequence of closed sets. Fix $\varepsilon_{n}=\frac{1}{2^{2 n+3}}, n \in \omega$. Construct:

- a collection of clopen sets $\left\{\left[\tau_{\sigma}\right]: \sigma \in 2^{<\omega}\right\}$;
- two sequences ($k_{n}: n \in \omega$) and ($N_{n}: n \in \omega \backslash\{0\}$);
- a sequence of pairs $\left(\left(x_{n}, y_{n}\right): n \in \omega \backslash\{0\}\right)$ from $2^{\omega} \times 2^{\omega}$;
- a collection of points $\left\{t_{\sigma}: \sigma \in 2^{<\omega}\right\}$ from 2^{ω};
- a sequence ($B_{n}: n \in \omega$) of subsets of $2^{\omega} \times 2^{\omega}$;
satisfying the following conditions for all $\sigma, \eta \in 2^{<\omega}$ and $n \in \omega$:

1. $\tau_{\sigma} \subseteq \tau_{\eta} \Leftrightarrow \sigma \subseteq \eta$;
2. $|\sigma|=|\eta| \rightarrow\left[\tau_{\sigma}\right] \times\left[\tau_{\eta}\right] \cap F_{k_{|\sigma \cap \eta|}} \neq \emptyset$;
3. $|\sigma|=|\eta| \Rightarrow\left|\tau_{\sigma}\right|=\left|\tau_{\eta}\right|$;
4. $B_{n}=\bigcap_{\sigma, \eta \in\{0,1\}^{n}}\left(\left(\left(\left[\tau_{\sigma}\right] \times\left[\tau_{\eta}\right]\right) \cap F_{k_{|\sigma \cap \eta|}}\right)-\left(t_{\sigma}, t_{\eta}\right)\right)^{s}$ has a positive measure.

Eggleston theorem
Assume that $A \subseteq[0,1] \times[0,1]$ has measure 1 .
Then there exists a perfect set P and a perfect set $Q, \lambda(Q)>0$ such that

$$
P \times Q \subseteq A
$$

围 H. G. Eggleston, Two measure properties of Cartesian product sets, The Quarterly Journal of Mathematics 5 (1954), 108-115.

Eggleston like

ideal \mathcal{N}

- If $G \in \operatorname{Bor}\left([0,1]^{2}\right)$ and $G^{c} \in \mathcal{N}$ then there are $P \in \operatorname{Perf}([0,1])$ and $B \in \operatorname{Bor}([0,1])$ such that $B^{c} \in \mathcal{N}$ and $P \times B \subseteq G$.
- If $G \in \operatorname{Bor}\left([0,1]^{2}\right)$ and $G \notin \mathcal{N}$ then there are $P \in \operatorname{Perf}([0,1])$ and $B \in \operatorname{Bor}([0,1])$ such that $B \notin \mathcal{N}$ and $P \times B \subseteq G$.

Eggleston like

ideal \mathcal{N}

- If $G \in \operatorname{Bor}\left([0,1]^{2}\right)$ and $G^{c} \in \mathcal{N}$ then there are $P \in \operatorname{Perf}([0,1])$ and $B \in \operatorname{Bor}([0,1])$ such that $B^{c} \in \mathcal{N}$ and $P \times B \subseteq G$.
- If $G \in \operatorname{Bor}\left([0,1]^{2}\right)$ and $G \notin \mathcal{N}$ then there are $P \in \operatorname{Perf}([0,1])$ and $B \in \operatorname{Bor}([0,1])$ such that $B \notin \mathcal{N}$ and $P \times B \subseteq G$.

ideal \mathcal{M}

- If $G \in \operatorname{Bor}\left(\mathbb{R}^{2}\right)$ and $G^{c} \in \mathcal{M}$ then there are $P \in \operatorname{Perf}(\mathbb{R})$ and $B \in \operatorname{Bor}(\mathbb{R})$ such that $B^{c} \in \mathcal{M}$ and $P \times B \subseteq G$.
- If $G \in \operatorname{Bor}\left(\mathbb{R}^{2}\right)$ and $G \notin \mathcal{M}$ then there are $P \in \operatorname{Perf}(\mathbb{R})$ and $B \in \operatorname{Bor}(\mathbb{R})$ such that $B \notin \mathcal{M}$ and $P \times B \subseteq G$.

國 Sz. Żeberski, Nonstandard proofs of Eggleston like theorems, Proceedings of the Ninth Topological Symposium (2001), 353-357.

Fubini product
$A \in \mathcal{I} \otimes \mathcal{J} \Leftrightarrow\left\{x: A_{x} \notin \mathcal{J}\right\} \in \mathcal{I}$
ideal $\mathcal{N} \cap \mathcal{M}$
For every set $G \in \operatorname{Bor}\left(\mathbb{R}^{2}\right) \backslash(c t b / \otimes(\mathcal{N} \cap \mathcal{M}))$ there are
$P \in \operatorname{Perf}(\mathbb{R})$ and $B \in \operatorname{Bor}(\mathbb{R}) \backslash(\mathcal{N} \cap \mathcal{M})$ such that $P \times B \subseteq G$.

Fubini product
$A \in \mathcal{I} \otimes \mathcal{J} \Leftrightarrow\left\{x: A_{x} \notin \mathcal{J}\right\} \in \mathcal{I}$
ideal $\mathcal{N} \cap \mathcal{M}$
For every set $G \in \operatorname{Bor}\left(\mathbb{R}^{2}\right) \backslash(c t b / \otimes(\mathcal{N} \cap \mathcal{M}))$ there are $P \in \operatorname{Perf}(\mathbb{R})$ and $B \in \operatorname{Bor}(\mathbb{R}) \backslash(\mathcal{N} \cap \mathcal{M})$ such that $P \times B \subseteq G$.
ideal \mathcal{E}
If $G \subseteq \mathbb{R}^{2}$ is a Borel subset such that $G^{c} \in \mathcal{E} \otimes \mathcal{E}$ then there are $P \in \operatorname{Perf}(\mathbb{R})$ and $B \in \operatorname{Bor}(\mathbb{R})$ such that $B^{c} \in \mathcal{E}$ and $P \times B \subseteq G$.

ideal \mathcal{E}

If $G \subseteq \mathbb{R}^{2}$ is a Borel subset such that $G^{c} \in \mathcal{E} \otimes \mathcal{E}$ then there are $P \in \operatorname{Perf}(\mathbb{R})$ and $B \in \operatorname{Bor}(\mathbb{R})$ such that $B^{c} \in \mathcal{E}$ and $P \times B \subseteq G$.
Proof.
We start in V. Extend it to $V^{\prime} \models \operatorname{add}(\mathcal{E}) \geq \omega_{3}$
Denote $A=\left\{x: \mathbb{R} \backslash G_{x} \in \mathcal{E}\right\}$
$X \subseteq A,|X|=\omega_{2}$. Let $B \subseteq \bigcap_{x \in X} G_{x}$.
$X \times B \in G,\left\{x: B \subseteq G_{x}\right\}$ is Π_{1}^{1} and has cardinality $\geq \omega_{2}$
$V^{\prime} \models \exists P \exists B P \times B \subseteq G$
By Shoenfield absoluteness theorem it is also true in V.

Silver tree
For every dense G_{δ}-set $G \subseteq\left(2^{\omega} \times 2^{\omega}\right)$ there are a body of a Silver tree $P \subseteq 2^{\omega}$ and dense G_{δ}-set $B \subseteq 2^{\omega}$ such that $P \times B \subseteq G$.

Silver tree

For every dense G_{δ}-set $G \subseteq\left(2^{\omega} \times 2^{\omega}\right)$ there are a body of a Silver tree $P \subseteq 2^{\omega}$ and dense G_{δ}-set $B \subseteq 2^{\omega}$ such that $P \times B \subseteq G$.

Spinas tree
For every dense G_{δ}-set $G \subseteq\left(2^{\omega} \times 2^{\omega}\right)$ there are a body of a Spinas tree $P \subseteq 2^{\omega}$ and dense G_{δ}-set $B \subseteq 2^{\omega}$ such that $P \times B \subseteq G$.
$T \subseteq 2^{<\omega}$ is a Spinas tree iff

$$
(\forall \sigma \in T)(\exists N)(\forall n \geq N)(\forall i)(\exists \tau \in T)(\sigma \subseteq \tau \wedge \tau(n)=i)
$$

Mycielski + Eggleston

Uniformly perfect, category case
Let $G \subseteq 2^{\omega} \times 2^{\omega}$ be comeager. Then there exist a uniformly perfect set $P \subseteq 2^{\omega}$ and a dense G_{δ} set $D \subseteq 2^{\omega}$ such that $P \subseteq D$ and $P \times D \subseteq G \cup \Delta$.

Sketch of the proof.
$G=\bigcap_{n \in \omega} U_{n}$, where $\left(U_{n}\right)_{n \in \omega}$ - descending sequence of open dense sets
(i) $\sigma_{\tau} \frown i \subseteq \sigma_{\tau \sim i}$ for $i \in\{0,1\}$;
(ii) $|\tau|=\left|\tau^{\prime}\right| \Rightarrow\left|\sigma_{\tau}\right|=\left|\sigma_{\tau^{\prime}}\right|$;
(iii) $|\tau|=\left|\tau^{\prime}\right|=n \wedge \tau \neq \tau^{\prime} \Rightarrow\left[\sigma_{\tau}\right] \times\left[\sigma_{\tau^{\prime}}\right] \subseteq U_{n}$;
(iv) $V_{n} \subseteq B_{n}$;
(v) $|\tau|=n \Rightarrow\left[\sigma_{\tau}\right] \times V_{n} \subseteq U_{n}$.

$$
\begin{aligned}
P & =\bigcap_{n \in \omega} \bigcup_{\tau \in 2^{n}}\left[\sigma_{\tau}\right] \\
D & =\bigcap_{n \in \omega} \bigcup_{k \geq n}\left(V_{k} \cup \bigcup_{\tau \in 2^{k}}\left[\sigma_{\tau}\right]\right)
\end{aligned}
$$

Thank you for your attention!

围 M. Michalski, R. Rałowski and Sz. Żeberski, Mycielski among trees, Mathematical Logic Quarterly, 67 (2021), 271-281

國 M. Michalski, R. Rałowski and Sz. Żeberski, Around the Eggleston theorem, still in preparation :)

