The definability of the nonstationary ideal

WWU MÜNSTER

Ralf Schindler

Gdansk, May 2023

The non-stationary ideal on ω_1

A set $S \subset \omega_1$ is non-stationary iff there is some club $C \subset \omega_1$ with $S \cap C = \emptyset$. Hence NS_{ω_1} is Σ_1 -definable in the parameter ω_1 . A paper by Hoffelner-Larson-Sch-Wu shows that in the presence of BPFA (the Bounded Proper Forcing Axiom) NS_{ω_1} may also be Π_1 -definable in the parameter ω_1 .

Theorem

(Hoffelner-Larson-Sch-Wu) In the presence of PFA (the Proper Forcing Axiom), NS_{ω_1} may be Π_1 -definable in some parameter $A \subset \omega_1$.

Theorem

(Larson-Sch-Sun) Martin's Maximum or (*) both imply that NS_{ω_1} cannot be Π_1 -definable in any parameter from H_{ω_2} .

Proof of the first theorem

Let us say that

$$\vec{A} = (A_i \colon i < \omega_1)$$

splits ω_1 into stationary sets iff

(i) each A_i is a stationary subset of ω_1 ,

(ii)
$$\omega_1 = \bigcup_{i < \omega_1} A_i$$
, and

(iii)
$$A_i \cap A_j = \emptyset$$
 for $i \neq j$.

Lemma

(Folklore) Let $g: \omega_1 \to \omega_1$ be $Col(\omega_1, \omega_1)$ -generic over V. For $i < \omega_1$ write $A_i = \{\alpha < \omega_1: g(\alpha) = i\}$. Then in V[g], $(A_i: i < \omega_1)$ splits ω_1 into stationary sets.

The definability of the nonstationary ideal

Let $\vec{A} = (A_i: i < \omega_1)$ split ω_1 into stationary sets. Let $S \subset \omega_1$, $S \neq \emptyset$, and let $\kappa \ge \omega_1$, $\kappa < \omega_2$, be an ordinal. We say that S is coded at κ (modulo \vec{A}) iff there is some

 $(X_i: i < \omega_1)$

such that

(a)
$$X_i \in [\kappa]^{\omega}$$
 for all i ,
(b) $X_i \subsetneq X_j$ for $i < j$,
(c) $X_{\lambda} = \bigcup_{i < \lambda} X_i$ for $\lambda < \omega_1$ a limit ordinal, and
(d) $\kappa = \bigcup_{i < \omega_1} X_i$.

Let $f_{\kappa}: \omega_1 \to \omega_1$ denote "the" canonical function associated with κ , i.e., $f_{\kappa}(i) = \mathsf{otp} f''i$, where $f: \omega_1 \to \kappa$ is bijective. We say that S is *honestly coded at* κ (modulo \vec{A}) iff for all $\alpha < \omega_1$,

$$\alpha \in S \iff \{i < \omega_1 \colon f_\kappa(i) \in A_\alpha\}$$
 is stationary.

Let $g: \omega_1 \to \omega_1$, and let $\vec{A} = (A_i: i < \omega_1)$ be *induced by* g, i.e., $A_i = \{\alpha < \omega_1: g(\alpha) = i\}$ for $i < \omega_1$. Let us assume $\vec{A} = (A_i: i < \omega_1)$ to split ω_1 into stationary sets. Let $S \subset \omega_1, S \neq \emptyset$, and let $\kappa \ge \omega_1$ (possibly, $\kappa \ge \omega_2$, in fact we will mostly assume κ to be a measurable cardinal). Let $\mathbb{P}_{S,\kappa}(g)$ denote the following forcing. $p \in \mathbb{P}_{S,\kappa}(g)$ iff there is some countable ordinal θ such that $p = (X_i: i \le \theta)$, where

(α) $X_i \in [\kappa]^{\omega}$ for all i,

(
$$\beta$$
) $X_i \subsetneq X_j$ for $i < j$,

(γ) $X_{\lambda} = \bigcup_{i < \lambda} X_i$ for $\lambda \leq \theta$ a limit ordinal, and

(
$$\delta$$
) otp(X_i) $\in \bigcup_{\alpha \in S} A_\alpha$ for all i .

We write $p \leq q$ iff p end-extends q.

Lemma

Let $g: \omega_1 \to \omega_1$, let $\vec{A} = (A_i: i < \omega_1)$ be induced by g. Let us assume that $\vec{A} = (A_i: i < \omega_1)$ splits ω_1 into stationary sets. Let $S \subset \omega_1$, $S \neq \emptyset$, and let κ be a measurable cardinal. Write $\mathbb{P} = \mathbb{P}_{S,\kappa}(g)$. Let g be \mathbb{P} -generic over V, and write $(X_i: i < \omega_1) = \bigcup g$. Then (1) \mathbb{P} is semi-proper, (2) in V[g], S is coded at κ , and (3) in V[g], S is honestly coded at κ as being witnessed by $f_{\kappa}(i) = \operatorname{otp}(X_i)$.

Definition

Let $(\mathbb{P}_{\eta}, \dot{\mathbb{Q}}_{\xi} : \eta \leq \beta, \xi < \beta)$ be a countable support iteration of forcings. We call this iteration *appropriate* iff the following hold true.

(i) $\mathbb{P}_0 = \operatorname{Col}(\omega_1, \omega_1)$

and if $\xi > 0$, then either

(ii) $\Vdash_{\mathbb{P}_{\varepsilon}} \dot{\mathbb{Q}}_{\xi}$ is proper

or else there are \dot{S} and κ such that

(iii) $\Vdash_{\mathbb{P}_{\mathcal{E}}} \dot{S} \neq \emptyset$ is a stationary subset of ω_1 , κ is a measurable cardinal, and

$$\dot{\mathbb{Q}}_{\xi} = \mathbb{P}_{\dot{S},\kappa}(\dot{g}_0).$$

The definability of the nonstationary ideal

Let us now fix a supercompact cardinal δ . By a *Laver function* for δ we mean some $F : \delta \to V_{\delta}$ such that for all $X \in V$ there are $\overline{\delta} < \overline{\theta} < \delta$ and $\theta > \delta$ together with an elementary embedding

$$j\colon H_{\bar{\theta}} \to H_{\theta}$$

such that

(i) $\operatorname{crit}(j) = \overline{\delta}$, (ii) $j(\overline{\delta}) = \delta$, (iii) $X \in H_{\theta}$, and (iv) $j(f(\overline{\delta}) = X$.

As every supercompact cardinal has a Laver function, let us fix a Laver function f for δ . Let us then define an appropriate iteration

$$(\mathbb{P}_{\eta}, \dot{\mathbb{Q}}_{\xi} \colon \eta \le \delta, \xi < \delta)$$

of length $\delta+1$ as follows.

(i) $\mathbb{P}_0 = \operatorname{Col}(\omega_1, \omega_1)$,

if $\xi > 0$ is a limit ordinal, $\xi < \delta$, then

(ii) $\dot{\mathbb{Q}}_{\xi} = f(\xi)$, provided that $\Vdash_{\mathbb{P}_{\xi}} f(\xi)$ is a proper forcing; and $\dot{\mathbb{Q}}_{\xi}$ is trivial otherwise,

and if ξ is a successor, $\xi < \delta$, and κ is the least measurable cardinal strictly above $Card(\mathbb{P}_{\xi})$, then

(iii) $\dot{\mathbb{Q}}_{\xi} = \mathbb{P}_{f(\xi-1),\kappa}(\dot{g}_0)$, provided that $f(\xi) = \dot{S}$ for some $\dot{S} \in V^{\mathbb{P}_{\xi-1}}$ such that for some γ , $\Vdash_{\mathbb{P}_{\xi-1}} \dot{S}$ is a stationary subset of ω_1 with $\gamma \in \dot{S}$.

The definability of the nonstationary ideal

Theorem

If $(\mathbb{P}_{\eta}, \dot{\mathbb{Q}}_{\xi}: \eta \leq \delta, \xi < \delta)$ is the iteration as being defined above, and if g is \mathbb{P}_{δ} -generic over V, then the following hold true.

(1) Every \mathbb{P}_{η} , $\eta \leq \delta$, is proper.

(2) In V[g], if $S \subset \omega_1$, then there is some $\kappa < \omega_2$ such that S is coded at κ if and only if S is stationary.

(3) In V[g], PFA holds true and NS_{ω_1} is Π_1 -definable in some parameter $A \subset \omega_1$.

We give the proof under MM.

Definition

Let $F : \mathbb{R} \to \mathbb{R}$ be universally Baire. Let Ω be an uncountable cardinal, and let G be $\operatorname{Col}(\omega, \Omega)$ -generic over V. Let $\mathfrak{A} \in V[G]$ be a transitive model of ZFC⁻ which is countable in V[G]. We say that \mathfrak{A} is *closed under* F (or, *F*-*closed*) iff for all posets $\mathbb{P} \in \mathfrak{A}$ and for all $g \in V[G]$ which are \mathbb{P} -generic over \mathfrak{A} , $\mathfrak{A}[g]$ is closed under F^G , i.e., $F^G(x) \in \mathfrak{A}[g]$ for all $x \in \mathbb{R} \cap \mathfrak{A}[g]$ in the domain of F^G .

Definition

Let X be a set, and let $\varphi(x)$ be a Σ_1 formula in the language of set theory equipped with a predicate for NS $_{\omega_1}$. We say that $\varphi(X)$ is *honestly consistent* iff for every $F \colon \mathbb{R} \to \mathbb{R}$ which is universally Baire there is an F-closed transitive model \mathfrak{A} such that (a) $\mathfrak{A} \in V^{\operatorname{Col}(\omega,\Omega)}$ for some large enough Ω , (b) $(H_{\omega_2})^V \cup \{X\} \subset \mathfrak{A}$, (c) if $T \subset \omega_1^V$, $T \in V$, $V \models T$ is stationary, then $\mathfrak{A} \models T$ is stationary, and (d) $\mathfrak{A} \models \mathsf{ZFC}^- + \varphi(X)$.

Now suppose that $\psi(-)$ is Σ_1 in a parameter from H_{ω_2} such that for all $S \subset \omega_1$,

S is stationary $\iff \psi(S)$.

Proof of the second theorem, cont'd

Lemma

The conjunction of the following statements is honestly consistent. (1) There is some S with $\psi(S)$ such that $T \setminus S$ is stationary for all $T \in V$ such that $V \models T$ is a stationary subset of ω_1 . (2) $cf(\omega_2^V) = \omega$.

Given this lemma, we may use a variant of my "(*)-forcing" with D. Asperó to force the existence of some S with $\psi(S)$ such that $T \setminus S$ is stationary for all $T \in V$ such that $V \models T$ is a stationary subset of ω_1 by a stationary set preserving forcing.

In a second step we may then shoot a club through the complement of S in the usual fashion.

Now look at the statement "There is some non-stationary S with $\psi(S)$." It is true in a stationary set preserving forcing extension of V, hence by MM it is true in V.

- Under PFA, can NS $_{\omega_1}$ be Π_1 in the parameter ω_1 ?
- ► Can NS_{ω_1} be Π_1 in a parameter from H_{ω_2} under PFA plus "NS_{ω_1} is saturated"?
- Under MM, is NS_{ω_1} a complete Σ_1 set? (And in which sense of the word "complete"?)