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The non-stationary ideal on w,

A set S C w; is non-stationary iff there is some club C C wy with SN C = (. Hence NS, is
Y1-definable in the parameter wy. A paper by Hoffelner-Larson-Sch-Wu shows that in the
presence of BPFA (the Bounded Proper Forcing Axiom) NS,,, may also be II;-definable in the
parameter w.

Theorem

(Hoffelner-Larson-Sch-Wu) In the presence of PFA (the Proper Forcing Axiom), NS,,, may
be I1;-definable in some parameter A C wy.

Theorem

(Larson-Sch-Sun) Martin's Maximum or (*) both imply that NS, cannot be I1,-definable in
any parameter from H,,.
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Proof of the first theorem

Let us say that B
A= (Airi<w)
splits wy into stationary sets iff
(i) each A; is a stationary subset of wy,
(i) w1 = Uy, A, and
(i) AiNA; =0 for i #j.

Lemma

(Folklore) Let g: w; — wy be Col(wy, wy)-generic over V. For i < wy write
Ai={a<wi: gla) =i}. Thenin V[g], (Ai: i < wi) splits wy into stationary sets.
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Proof of the first theorem, cont’d

Let A= (Aj: i <wi) split wy into stationary sets. Let S C wy, S # (), and let kK > w1,
Kk < wa, be an ordinal. We say that S is coded at k (modulo A) iff there is some

(X,'I i< wl)

such that

(a) X; € [k]“ for all i,

(b) Xi € X; for i <],

(c) Xx = Ujep Xi for A < wy a limit ordinal, and
(d)

d) K= U/<w1 Xi'
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Proof of the first theorem, cont’d

Let f;: w1 — wy denote “the” canonical function associated with k, i.e., (i) = otpf"i, where
f:w; — Kk is bijective. We say that S is honestly coded at . (modulo A) iff for all & < wy,

a €S < {i<wi: (i) € Ay} is stationary.
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Proof of the first theorem, cont’d

Let g: w; — w1, and let A= (Ai: i <wi) be induced by g, i.e., Ai = {a < wi: g(a) = i} for
i <wp. Let us assume A = (A;: i < wi) to split wy into stationary sets. Let S C wy, S # 0,
and let k > wy (possibly, K > wo, in fact we will mostly assume « to be a measurable cardinal).
Let Ps .(g) denote the following forcing. p € Ps ,.(g) iff there is some countable ordinal ¢
such that p = (X;: i < 0), where

() X € [r]¥ for all i,

(B) Xi € Xj for i<},

(7) Xa = Uy Xi for X < 0 a limit ordinal, and
(0) otp(X;) € Upes Aa for all i.
We write p < q iff p end-extends q.
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Proof of the first theorem, cont’d

Let g: wy — wq, let A= (Aj: i <wyp) beinduced by g. Let us assume that A= (Ai: i <w)
splits wy into stationary sets. Let S C wy, S # (), and let k be a measurable cardinal. Write
P =TPs .(g). Let g be P-generic over V, and write (Xj: i <wi) =Jg. Then

(1) P is semi-proper,

(2) in V[g], S is coded at k, and

(3) in V|g|, S is honestly coded at r as being witnessed by f.(i) = otp(X;).
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Proof of the first theorem, cont’d

Definition
Let (Pn,(@gz n < 3, < B) be a countable support iteration of forcings. We call this iteration
appropriate iff the following hold true.

(i) PO = C0|(W1,W1)
and if £ > 0, then either

(i) IFp, Qg is proper
or else there are S and  such that

(iii) IFp, S+ () is a stationary subset of wy, & is a measurable cardinal, and

Qe = P .(&0)-
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Proof of the first theorem, cont’d

Let us now fix a supercompact cardinal . By a Laver function for 6 we mean some F: § — Vj
such that for all X € V there are § < 6 < § and 6 > § together with an elementary embedding

Jj: Hg — Hp
such that
(i) crit(j) =4,
(i) j(0) =
(iii) X € Hg and
(iv) J(f(0) =
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Proof of the first theorem, cont’d

As every supercompact cardinal has a Laver function, let us fix a Laver function f for §. Let us
then define an appropriate iteration

(P, Q: m < 6,6 < 6)

of length § + 1 as follows.
(i) Py = Col(wy,wr),
if £ > 0is a limit ordinal, £ < J, then
(ii) Qg = f(€), provided that I-p, f() is a proper forcing; and Qg is trivial otherwise,

and if £ is a successor, £ < 4, and k is the least measurable cardinal strictly above Card(P¢),
then

(iii) @5 = Pr(e_1),x(80), provided that f({) = S for some S € VFe-1 such that for some 7,
II—I[»&1 Sis a stationary subset of wy with v € S.
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Proof of the first theorem, cont’d

Theorem
If (P, @5: n < 6,& < 0) is the iteration as being defined above, and if g is Ps-generic over V,
then the following hold true.

(1) Every Py, n <6, is proper.

(2) In Vg], if S C w1, then there is some Kk < wy such that S is coded at « if and only if S is
stationary.

(3) In V[g|, PFA holds true and NS,,, is I1,-definable in some parameter A C w.
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Proof of the second theorem

We give the proof under MM.

Let F: R — R be universally Baire. Let 2 be an uncountable cardinal, and let G be

Col(w, €2)—generic over V. Let A € V[G] be a transitive model of ZFC™ which is countable in
V[G]. We say that 2 is closed under F (or, F—closed) iff for all posets P € 2( and for all

g € V[G] which are P-generic over 2, 2[g] is closed under F€, i.e., F¢(x) € A[g] for all

x € RN 2Ag] in the domain of FC.
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Proof of the second theorem, cont’d

Definition

Let X be a set, and let ¢(x) be a ¥; formula in the language of set theory equipped with a
predicate for NS,,,. We say that ¢(X) is honestly consistent iff for every F: R — R which is
universally Baire there is an F—closed transitive model 2l such that

(a) A € Vel for some large enough Q,

(b) (M. )VU{X}CQl

(c) if Tcw), T €V, VET is stationary, then 2 E T is stationary, and
(d) AEZFCT + ¢(X).
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Proof of the second theorem, cont’d

Now suppose that ¢(—) is X; in a parameter from H,, such that for all S C wy,

S is stationary <= 9(S).
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Proof of the second theorem, cont’d

The conjunction of the following statements is honestly consistent.

(1) There is some S with 1)(S) such that T \ S is stationary for all T € V such that V E T is
a stationary subset of wy .

(2) cf(wd) = w.
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Proof of the second theorem, cont’d

Given this lemma, we may use a variant of my “(x)-forcing” with D. Asperé to force the
existence of some S with ¢(S) such that T \ S is stationary for all T € V such that V T is
a stationary subset of wy by a stationary set preserving forcing.

In a second step we may then shoot a club through the complement of S in the usual fashion.

The definability of the nonstationary ideal rds@wwu.de 15



Proof of the second theorem, cont’d =

Now look at the statement “There is some non-stationary S with ¢(S)." It is true in a
stationary set preserving forcing extension of V, hence by MM it is true in V.
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Open questions

» Under PFA, can NS, be II; in the parameter w;?
» Can NS,,, be II; in a parameter from H,, under PFA plus “NS,, is saturated”?
» Under MM, is NS, a complete X; set? (And in which sense of the word “complete”?)
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