List of citations
Note that self-citations and co-author self-citations are excluded.
-
[pdf,
doi]
Ideal convergence of bounded sequences,
J. Symbolic Logic 72 (2007), no. 2, 501--512
(with N. Mrożek, I. Recław and P. Szuca)
-
[arXiv]
J. Lopez-Abad, V. Olmos-Prieto, C. Uzcátegui-Aylwin,
Fσ-ideals, colorings, and representation in Banach spaces, arXiv:2501.15643
-
[arXiv]
H. Behmanush, M. Kucukaslan,
Some properties of I*-sequential topological space, arXiv:2305.19647.
-
[doi,
arXiv]
T. Żuchowski,
The Nikodym property and filters on ω, Arch. Math. Logic (2025)
-
[doi]
K. Kowitz, A. Kwela,
Ultrafilters and the Katětov order,
Topology Appl. 361 (2025), Paper No. 109191.
-
[doi,
arXiv]
M. Rincón-Villamizar, C. Uzcátegui Aylwin
Banach spaces of I-convergent sequences, J. Math. Anal. Appl. 536 (2024), no. 2, Paper No. 128271, 19 pp.
-
[doi]
M. Kwela, Some properties of the ideal of nowhere dense sets in the common division topology, Acta Math. Hungar. 174, 299–311 (2024)
-
[doi]
P. Klinga, A. Nowik, On some properties of Lévy vectors and their variations, Lith Math J 63, 181–189 (2023)
-
[arxiv,
doi]
A. Kwela, Unboring ideals, Fund. Math. 261 (2023), 235-272
-
[doi]
H. Zhang, J. He, S. Zhang,
Splitting positive sets, Sci. China Math. (2023)
-
[pdf,
doi]
M. Singha, U. K. Hom,
Variant of thin sets and their influence in convergence,
Filomat 37:17 (2023), 5847–5858
-
[doi,
pdf]
A. Kwela,
On extendability to 𝐹𝜎 ideals,
Arch. Math. Logic (2022).
-
[doi,
arXiv]
A. Kwela, P. Leonetti,
Density-like and generalized density ideals.
J. Symb. Log. 87 (2022), no. 1, 228–251.
-
[doi]
X. He, H. Zhang, S. Zhanga,
The Borel complexity of ideal limit points.
Topology Appl. 312 (2022), Paper No. 108061, 12 pp.
- [doi]
K. Kowitz,
Differentially compact spaces,
Topology and its Applications,
Volume 307,
2022,
107948,
- [doi]
V. Khan, S. Abdullah, K. Alshlool, A study of Nörlund ideal convergent sequence spaces. Yugoslav Journal of Operations Research, 2021 OnLine-First
- [doi]
J. Tryba, Different kinds of density ideals. J. Math. Anal. Appl. (2021), 124930.
- [doi]
S. Lin, On I-neighborhood spaces and I-quotient spaces.
Bull. Malays. Math. Sci. Soc. 44 (2021), no. 4, 1979–2004.
-
[doi,
pdf]
J. Yu, S. Zhang,
MAD Families, P+(I)-Ideals and Ideal Convergence,
Filomat 34:9 (2020), 3099–3108
- [doi]
K. Bose, P. Das, S. Sengupta,
On spliced sequences and the density of points with respect to a matrix constructed by using a weight function.
Ukraïn. Mat. Zh. 71 (2019), no. 9, 1192–1207; reprinted in
Ukrainian Math. J. 71 (2020), no. 9, 1359–1378
-
[doi]
C. Uzcátegui Aylwin, Ideals on countable sets: a survey with questions.
Rev. Integr. Temas Mat. 37 (2019), no. 1, 167–198.
-
[doi,
pdf]
J. Yu, S. Zhang,
Ideal Versions of the Bolzano-Weierstrass Property,
Filomat 33:10 (2019), 2963–2973
-
[doi]
P. Leonetti,
Limit points of subsequences.
Topology Appl. 263 (2019), 221–229.
-
[doi]
P. Leonetti, F. Maccheroni,
Characterizations of ideal cluster points.
Analysis (Berlin) 39 (2019), no. 1, 19–26.
-
[doi]
M. Balcerzak, P. Leonetti,
On the relationship between ideal cluster points and ideal limit points.
Topology Appl. 252 (2019), 178–190.
-
[doi]
M. Kwela, A. Nowik, Ideals of nowhere dense sets in some topologies on positive integers. Topology Appl. 248 (2018), 149–163.
-
[doi]
J. Tryba, Weighted uniform density ideals.
Math. Slovaca 68 (2018), no. 4, 717–726.
- [doi,
pdf]
P. Das, K. Bose, S. Sengupta, On IA-Density of Points and Some of its Consequences, Filomat 31 (2017), no. 20, 6585-6595.
- M. Balcerzak, M. Popławski, and A. Wachowicz, Ideal convergent subsequences and rearrangements for divergent sequences of functions, Math. Slovaca 67 (2017), no. 6, 1461–1468
- P. Klinga and A. Nowik, Extendability to summable ideals, Acta Math. Hungar. 152 (2017), no. 1, 150–160.
- M. Balcerzak, S. Głąb, and J. Swaczyna, Ideal invariant injections, J. Math. Anal. Appl. 445 (2017), no. 1, 423–442.
-
[pdf]
M. Balcerzak, M. Filipczak, Ideal convergence of sequences and some of its applications. Folia Math. 19 (2017), no. 1, 3–8.
- M. Balcerzak,S. Głąb, A. Wachowicz, Qualitative properties of ideal convergent subsequences and rearrangements, Acta Math. Hungar. 150 (2016), no. 2, 312–323.
- S. Głąb and M. Olczyk, Convergence of Series on Large Set of Indices, Math. Slovaca 65 (2015), no. 5, 1095-1106.
- A. Bartoszewicz, P. Das, and S. Głąb, On matrix summability of spliced sequences and A-density of points, Linear Algebra Appl. 487 (2015), 22-42.
- M. Balcerzak, P. Das, M. Filipczak, and J. Swaczyna, Generalized kinds of density and the associated ideals, Acta Math. Hungar. 147 (2015), no. 1, 97-115.
- P. Das, M. Sleziak, and V. Toma, IK-Cauchy functions, Topology Appl. 173 (2014), 9-27.
- M. Balcerzak and K. Musiał, A convergence theorem for the Birkhoff integral, Funct. Approx. Comment. Math. 50 (2014), no. 1, 161-168.
- A. Boccuto and X. Dimitriou, Modes of ideal continuity of l-group-valued measures, Int. Math. Forum 8 (2013), no. 17-20, 841-849.
-
[arXiv,
pdf]
J. L. Verner, Filter convergence in βω, AUC Philosophica et Historica, Miscellanea Logica IX 2 (2013), 87-90.
- B. Tsaban and L. Zdomskyy, Hereditarily Hurewicz spaces and Arhangelskii sheaf amalgamations, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 2, 353-372.
- M. Macaj and M. Sleziak, IK-convergence, Real Anal. Exchange 36 (2010/11), no. 1, 177-193.
- M. Hrusak, Combinatorics of filters and ideals, Set theory and its applications, Contemp. Math., vol. 533, Amer. Math. Soc., Providence, RI, 2011, pp. 29-69.
- L. Drewnowski and I. Labuda, Solid sequence F -spaces of L0-type over submeasures on N, Illinois J. Math. 53 (2009), no. 2, 623-678.
- L. Matejicka, Some remarks on I-faster convergent infinite series, Math. Bohem. 134 (2009), no. 3, 275-284.
- L. Drewnowski and T. Łuczak, On nonatomic submeasures on N. II, J. Math. Anal. Appl. 347 (2008), no. 2, 442-449.
- D. Holy, L. Matejicka, and L. Pinda, On faster convergent infinite series, Int. J. Math. Math. Sci. (2008), Art. ID 753632, 8.
-
[pdf, ps]
D. Fremlin, Filters of countable type, Miscellaneous research notes, 2007
-
[pdf,
doi]
Ideal convergence versus matrix summability,
Studia Math. 245 (2019), no. 2, 101-127
(with J. Tryba)
-
[arXiv]
J. Keith, P. Leonetti,
Completeness and additive property for submeasures, arXiv:2501.13615
-
[doi,
arXiv]
T. Żuchowski,
The Nikodym property and filters on ω, Arch. Math. Logic (2025)
-
[doi,
pdf]
M. Listán-García, Ö. Kişi, M. Gürdal, New Perspectives on Generalised Lacunary Statistical Convergence of Multiset Sequences,
Mathematics 2025, 13(1), 164
-
[pdf,
doi]
C. Orhana, M. Gulfirata,
Generalized limits and ideal convergence,
Filomat 38:32 (2024), 11259–11267
-
[doi,
arXiv]
W. Marciszewski, D. Sobota
The Josefson-Nissenzweig theorem and filters on ω, Arch. Math. Logic 63, 773–812 (2024).
-
[pdf]
V. A. Khan, M. Arshad , On Neutrosophic Normed Spaces of I-Convergence Diference Sequences Defned by Modulus Function,
Neutrosophic Sets and Systems, Vol. 73 (2024).
-
[pdf]
V. A. Khan, M. Arshad , On some properties of Nörlund ideal convergence of sequence in
neutrosophic normed spaces, Italian Journal of Pure and Applied Mathematics, N. 50, 2023 (352–373)
-
[arXiv,
pdf]
P. Leonetti, Core equality of real sequences, arXiv:2401.01136
-
[arXiv,
pdf]
P. Leonetti, Strong universality, recurrence, and analytic P-ideals in dynamical systems, arXiv:2401.01131
-
[arXiv,
pdf]
P. Das, A. Ghosh, When ideals properly extend the class of Arbault sets, arXiv:2401.02103
-
[doi,
pdf]
V. A. Khan, Z. Rahman, Riesz I-convergent sequence spaces, Proyecciones, vol. 42, no. 6, pp. 1467-1487, Nov. 2023.
-
[arXiv,
pdf]
S. Cerreia-Vioglio, P. Leonetti, F. Maccheroni, M. Marinacci, Capacities and Choquet Averages of Ultrafilters,
arXiv:2307.16823
-
[pdf]
V. Khan, E. Savas, I. Khan, Z. Rahman, A study on Riesz I-convergence in intuitionistic fuzzy normed spaces,
Ital. J. Pure Appl. Math., No. 49 (2023), 771-789
-
[doi]
P. Das, A. Ghosh, Eggleston’s dichotomy for characterized subgroups and the role of ideals,
Ann. Pure Appl. Logic (2023), 103289
-
[arxiv,
pdf]
P. Leonetti, Regular matrices of unbounded linear operators, arXiv:2201.13059.
-
[doi]
A.V. Khan, U. Tuba, Topological Properties of Jordan Intuitionistic Fuzzy Normed Spaces, Math. Slovaca 73 (2023), no. 2, 439–454
-
[pdf,
doi]
V.A. Khan, I.A. Khan, S.A.A. Abdullah, K.M.A. Sulaiman
Alshlool
On intuitionistic fuzzy hilbert ideal convergent sequence spaces , Acta Scientiarum. Technology Vol 44 (2022),
-
[doi]
V.A. Khan, I.A. Khan, Spaces of intuitionistic fuzzy Nörlund I-convergent sequences, Afr. Mat. 33 (2022), no. 1, 18.
-
[doi]
P. Das, Ideals, Nonnegative Summability Matrices and Corresponding Convergence Notions: A Short Survey of Recent Advancements, Axioms 2022, 11(1).
-
[doi]
V.A. Khan, I.A. Khan, SK Rahaman, A. Ahmad,
On Tribonacci I-convergent sequence spaces,
Journal of Mathematics and Computer Science (2022); 24(3):225-234
-
[pdf,
doi]
V.A. Khana, Z. Rahmana, K. Alshlool,
On I–Convergent Sequence Spaces Defined By Jordan Totient Operator.
Filomat 35:11 (2021), 3643–3652.
-
[doi]
V. Khan, U. Tuba,
On paranormed Ideal convergent sequence spaces defined by Jordan totient function,
J. Inequal. Appl.2021, 96.
-
[doi, arXiv]
J. Connor, P. Leonetti,
A characterization of (I,J)-regular matrices,
J. Math. Anal. Appl. 504 (2021), no. 1, Paper No. 125374, 10 pp.
-
[doi]
M. Balcerzak and P. Leonetti,
A Tauberian theorem for ideal statistical convergence, Indag. Math. (N.S.) 31 (2020), no. 1, 83–95.
-
[doi]
F. León-Saavedra, M. del Pilar Romero de la Rosa, A. Sala,
Orlicz-Pettis Theorem through Summability Methods,
Mathematics 2019, 7(10), 895
-
[doi]
P. Leonetti,
Continuous projections onto ideal convergent sequences,
Results Math. 73 (2018), no. 3, Art. 114, 5 pp.
-
[pdf,
doi]
Rearrangement of conditionally convergent series on a small set,
J. Math. Anal. Appl. 362 (2010), no. 1, 64-71
(with P. Szuca)
-
[arXiv]
J. Lopez-Abad, V. Olmos-Prieto, C. Uzcátegui-Aylwin,
Fσ-ideals, colorings, and representation in Banach spaces, arXiv:2501.15643
-
[doi,
arXiv]
T. Żuchowski,
The Nikodym property and filters on ω, Arch. Math. Logic (2025)
-
[doi]
M. Kwela,
Rizza’s ideal and comparison of some known set-theoretic ideals from number theory and combinatorics,
Period Math Hung (2025).
-
[doi,
arXiv]
W. Marciszewski, D. Sobota
The Josefson-Nissenzweig theorem and filters on ω, Arch. Math. Logic 63, 773–812 (2024).
-
[doi]
M. Kwela, Some properties of the ideal of nowhere dense sets in the common division topology, Acta Math. Hungar. 174, 299–311 (2024)
-
[doi]
P. Klinga, A. Nowik, On some properties of Lévy vectors and their variations, Lith Math J 63, 181–189 (2023)
- [doi]
J. Tryba, Different kinds of density ideals. J. Math. Anal. Appl. (2021), 124930.
-
[doi,
arXiv,
pdf]
A. Bartoszewicz, W. Fechner, A. Świątczak, A. Widz, On the c0-equivalence and permutations of series,
Ann. Funct. Anal. 12 (2021), no. 2, Paper No. 23, 10 pp.
-
[doi,
arXiv,
pdf]
M. Balcerzak, P. Leonetti, The Baire category of subsequences and permutations which preserve limit points.
Results Math. 75 (2020), no. 4, Paper No. 171, 14 pp.
- [doi]
C. Uzcátegui Aylwin, Ideals on countable sets: a survey with questions.
Rev. Integr. Temas Mat. 37 (2019), no. 1, 167–198.
-
[pdf,
html]
A. Losonczi, Points Accessible in average by rearrangement of sequences I,
Transnational Journal of Mathematical Analysis and Applications 7 (2019), no. 1, 1-27.
-
[pdf@WM, pdf@researchgate]
I. Jóźwik, M. Terepeta, Polskie spojrzenie na twierdzenie Riemanna o tasowaniu,
Wiad. Mat. 55 (2019), no. 1, 143-157
-
[pdf]
J. Marchwicki,
Achievement sets and sum ranges with ideal supports.
Filomat 32 (2018), no. 14, 4911–4922.
-
[doi]
M. Kwela, A. Nowik, Ideals of nowhere dense sets in some topologies on positive integers. Topology Appl. 248 (2018), 149–163.
- P. Klinga and A. Nowik, Extendability to summable ideals, Acta Math. Hungar. 152 (2017), no. 1, 150–160.
-
[pdf]
M. Balcerzak, M. Filipczak, Ideal convergence of sequences and some of its applications. Folia Math. 19 (2017), no. 1, 3–8.
- R. Wituła, Permutations preserving the convergence or the sum of series-a survey, Monograph on the occasion of 100th birthday anniversary of Zygmunt Zahorski, Wydaw. Politech. Śl., Gliwice, 2015, pp. 169-190.
- P. Borodulin-Nadzieja, B. Farkas, and G. Plebanek, Representations of ideals in Polish groups and in Banach spaces, J. Symb. Log. 80 (2015), no. 4, 1268-1289.
- P. Klinga, Rearranging series of vectors on a small set, J. Math. Anal. Appl. 424 (2015), no. 2, 966-974.
- R. Wituła, Certain multiplier version of the Riemann derangement theorem, Demonstr. Math. 47 (2014), no. 1, 125-129.
- R. Wituła, The Riemann derangement theorem and divergent permutations, Tatra Mt. Math. Publ. 52 (2012), 75-82.
- T. Bermudez and A. Martinon, Changes of signs in conditionally convergent series on a small set, Appl. Math. Lett. 24 (2011), no. 11, 1831-1834.
-
[pdf,
doi]
Three kinds of convergence and the associated I-Baire classes,
J. Math. Anal. Appl. 391 (2012), no. 1, 1-9 (with P. Szuca)
-
[doi]
A. Marton,
P-Like Properties of Meager Ideals and Cardinal Invariants, Tatra Mountains Mathematical Publications, vol.85, no.3, 2023, pp.73-88
-
[doi,
pdf,
arxiv]
S. Bardyla, J. Šupina, L. Zdomskyy,
Ideal approach to convergence in functional spaces,
Trans. Amer. Math. Soc. 376 (2023), no. 12, 8495–8528.
-
[arxiv,
doi]
A. Kwela, Unboring ideals, Fund. Math. 261 (2023), 235-272
-
[doi,
arXiv,
pdf]
A. Marton, J. Šupina,
On P-like ideals induced by disjoint families, J. Math. Anal. Appl. 528 (2023), no. 2, Paper No. 127551, 23 pp.
-
[pdf,
doi]
M. Liu, J. Yu, S. Zhang,
More on Arhangel’skiı̌ Sheaf Amalgamations,
Filomat 34:10 (2020), 3369–3380
-
[arXiv,
pdf
]
P. Leonetti, Tauberian theorems for ordinary convergence, arXiv:2012.03311 [math.FA]
-
[pdf,
doi]
J. Yu, S. Zhang,
MAD Families, P+(I)-Ideals and Ideal Convergence,
Filomat 34:9 (2020), 3099–3108
-
[doi]
P. Das, S. Sengupta, J. Šupina,
IK-convergence of sequences of functions.
Math. Slovaca 69 (2019), no. 5, 1137–1148.
-
[doi]
T. Natkaniec, W. Sieg,
Some unpublished Recław theorems and their applications to Baire-star-one functions.
Turkish J. Math. 43 (2019), no. 3, 1148–1160.
-
[doi]
V. Šottová, J. Šupina,
Principle S1(P,R): ideals and functions.
Topology Appl. 258 (2019), 282–304.
- M. Staniszewski, On ideal equal convergence II, J. Math. Anal. Appl. 451 (2017), no. 2, 1179–1197
- A. Kwela and M. Staniszewski, Ideal equal Baire classes. J. Math. Anal. Appl. 451 (2017), no. 2, 1133–1153
- M. Balcerzak, S. Głąb, and J. Swaczyna, Ideal invariant injections, J. Math. Anal. Appl. 445 (2017), no. 1, 423–442.
-
[pdf]
M. Balcerzak, M. Filipczak, Ideal convergence of sequences and some of its applications. Folia Math. 19 (2017), no. 1, 3–8.
-
[doi]
J. Šupina, Ideal QN-spaces, J. Math. Anal. Appl. 435 (2016), no. 1, 477-491.
- M. Balcerzak, P. Das, M. Filipczak, and J. Swaczyna, Generalized kinds of density and the associated ideals, Acta Math. Hungar. 147 (2015), no. 1, 97-115.
- [doi]
A. Kwela, A note on a new ideal, J. Math. Anal. Appl. 430 (2015), no. 2, 932-949.
-
[pdf,
doi]
On ideal equal convergence,
Cent. Eur. J. Math., 12 (2014), no. 6, 896–910
(with M. Staniszewski)
-
[arXiv,
pdf]
A. Marton, M. Repický,
Relative cofinality of ideals, arXiv:2502.08506
-
[arXiv,
pdf]
A. K. Banerjee, N. Hossain,
On I and I∗-equal convergence in linear 2-normed spaces, arXiv:2112.06022
-
[doi,
arXiv,
pdf]
A. Marton, J. Šupina,
On P-like ideals induced by disjoint families, J. Math. Anal. Appl. 528 (2023), no. 2, Paper No. 127551, 23 pp.
-
[doi]
A. Marton,
P-Like Properties of Meager Ideals and Cardinal Invariants, Tatra Mountains Mathematical Publications, vol.85, no.3, 2023, pp.73-88
-
[doi,
pdf]
M. Repický,
Spaces not distinguishing ideal convergences of real-valued functions, II.
Real Anal. Exchange 46 (2021), no. 2, 395-422.
-
[doi,
pdf]
M. Repický,
Spaces not distinguishing ideal convergences of real-valued functions.
Real Anal. Exchange 46 (2021), no. 2, 367-394.
-
[doi]
P. Das, S. Sengupta, Sz. Gła̧b, M. Bienias,
Certain aspects of ideal convergence in topological spaces.
Topology Appl. 275 (2020), 107005, 12 pp.
-
[pdf, info]
S. Sengupta, Some remarks on ideal equal Baire classes.
Acta Math. Univ. Comenian. (N.S.) 89 (2020), no. 1, 9–18.
-
[pdf,
doi]
S. Mohiuddinea, B. Hazarikab, M. Alghamdi,
Ideal Relatively Uniform Convergence with Korovkin and Voronovskaya types Approximation Theorems.
Filomat 33:14 (2019), 4549–4560
-
[doi]
P. Das, S. Sengupta, J. Šupina,
IK-convergence of sequences of functions.
Math. Slovaca 69 (2019), no. 5, 1137–1148.
-
[doi]
V. Šottová, J. Šupina,
Principle S1(P,R): ideals and functions.
Topology Appl. 258 (2019), 282–304.
-
[doi]
A. Kwela, Ideal weak QN-spaces, Topology Appl. 240 (2018), 98–115
-
[doi]
L. Bukovsky, P. Das J. Šupina,
Ideal quasi-normal convergence and related notions.
Colloq. Math. 146 (2017), no. 2, 265–281.
-
[doi]
L. X. Cheng, L. H. Lin, and X. G. Zhou, Statistical convergence and measure convergence generated by a single statistical measure, Acta Math. Sin. (Engl. Ser.) 32 (2016), no. 6, 668-682.
-
[doi]
J. Šupina, Ideal QN-spaces, J. Math. Anal. Appl. 435 (2016), no. 1, 477-491
-
[pdf,
doi]
When does the Katětov order imply that one ideal extends the other?,
Colloq. Math. 130 (2013), no. 1, 91-102
(with P. Barbarski, N. Mrożek and P. Szuca)
-
[doi]
K. Kowitz, A. Kwela,
Ultrafilters and the Katětov order,
Topology Appl. 361 (2025), Paper No. 109191.
-
[doi]
M. Kwela, Some properties of the ideal of nowhere dense sets in the common division topology, Acta Math. Hungar. 174, 299–311 (2024)
-
[arXiv]
M. Balcerzak, Sz. Głąb, P. Leonetti
Topological complexity of ideal limit points, arXiv:2407.12160.
-
[arXiv]
A. Kwela
More on yet another ideal version of the bounding number, arXiv:2406.15949.
-
[doi,
arXiv]
M. Rincón-Villamizar, C. Uzcátegui Aylwin
Banach spaces of I-convergent sequences, J. Math. Anal. Appl. 536 (2024), no. 2, Paper No. 128271, 19 pp.
-
[doi]
J. He, J. Luo, S. Zhang
On the extendability to Π03 ideals and Katětov order,
Arch. Math. Logic (2024).
-
[doi,
pdf,
arxiv]
S. Bardyla, J. Šupina, L. Zdomskyy,
Ideal approach to convergence in functional spaces,
Trans. Amer. Math. Soc. 376 (2023), no. 12, 8495–8528.
-
[doi,
arXiv,
pdf]
A. Marton, J. Šupina,
On P-like ideals induced by disjoint families, J. Math. Anal. Appl. 528 (2023), no. 2, Paper No. 127551, 23 pp.
-
[arxiv,
doi]
A. Kwela, Unboring ideals, Fund. Math. 261 (2023), 235-272
- [doi,
pdf,
arxiv]
A. Kwela, Inductive limits of ideals, Topology Appl. 300 (2021), Paper No. 107798, 13 pp.
- [doi]
C. Uzcátegui Aylwin, Ideals on countable sets: a survey with questions.
Rev. Integr. Temas Mat. 37 (2019), no. 1, 167–198.
- A. Kwela and M. Staniszewski, Ideal equal Baire classes. J. Math. Anal. Appl. 451 (2017), no. 2, 1133–1153
- A. Kwela and J. Tryba, Homogeneous ideals on countable sets, Acta Math. Hungar. 151 (2017), no. 1, 139–161.
- O. Guzman-Gonzalez and D. Meza-Alcantara, Some Structural Aspects of the Katetov Order on Borel Ideals,
Order 33 (2016), no. 2, 189-194.
- [doi]
A. Kwela, A note on a new ideal, J. Math. Anal. Appl. 430 (2015), no. 2, 932-949.
-
[pdf,
doi]
Ideal version of Ramsey's theorem,
Czechoslovak Math. J., 61 (2011), no. 2, 289-308
(with N. Mrożek, I. Recław and P. Szuca)
-
[doi]
K. Kowitz, A. Kwela,
Ultrafilters and the Katětov order,
Topology Appl. 361 (2025), Paper No. 109191.
-
[doi]
X. He, H. Zhang, S. Zhanga,
The Borel complexity of ideal limit points.
Topology Appl. 312 (2022), Paper No. 108061, 12 pp.
-
[doi,
pdf,
arXiv]
B. De Bondt, H. Vernaeve,
Filter-dependent versions of the uniform boundedness principle,
J. Math. Anal. Appl. 495 (2021), no. 1, Paper No. 124705, 23 pp.
-
[pdf,
doi]
J. Yu, S. Zhang,
MAD Families, P+(I)-Ideals and Ideal Convergence,
Filomat 34:9 (2020), 3099–3108
-
[pdf,
doi]
J. Yu, S. Zhang,
Ideal Versions of the Bolzano-Weierstrass Property,
Filomat 33:10 (2019), 2963–2973
- [doi]
C. Uzcátegui Aylwin, Ideals on countable sets: a survey with questions.
Rev. Integr. Temas Mat. 37 (2019), no. 1, 167–198.
-
[pdf,
doi]
J. Marchwicki,
Achievement sets and sum ranges with ideal supports.
Filomat 32 (2018), no. 14, 4911–4922.
-
[doi]
J. Camargo, C. Uzcátegui, Selective separability on spaces with an analytic topology. Topology Appl. 248 (2018), 176–191
- M. Hrušák, D. Meza-Alcántara, E. Thümmel, C. Uzcátegui, Ramsey type properties of ideals, Ann. Pure Appl. Logic 168 (2017), no. 11, 2022–2049.
-
[doi]
A. Kamiński, S. Sorek,
On the Mikusiński-Antosik diagonal theorem and the equivalence of two types of convergence in Köthe spaces,
Publ. Inst. Math. (Beograd) (N.S.) 101(115) (2017), 151–160.
-
[doi]
A. Kwela, A note on a new ideal, J. Math. Anal. Appl. 430 (2015), no. 2, 932-949.
- M. Hrusak, Combinatorics of filters and ideals, Set theory and its applications, Contemp. Math.,vol. 533, Amer. Math. Soc., Providence, RI, 2011, pp. 29-69.
- N. Samet and B. Tsaban, Superfilters, Ramsey theory, and van der Waerden’s theorem, Topology Appl. 156 (2009), no. 16, 2659-2669.
-
[pdf,
doi]
Uniform density u and Iu-convergence on a big set,
Math. Commun. 16 (2011), no. 1, 125-130
(with P. Barbarski, N. Mrożek and P. Szuca)
-
[doi]
P. Klinga, A. Nowik, On some properties of Lévy vectors and their variations, Lith Math J 63, 181–189 (2023)
-
[pdf,
doi]
M. Singha, U. K. Hom,
Variant of thin sets and their influence in convergence,
Filomat 37:17 (2023), 5847–5858
-
[doi, arXiv]
J. Connor, P. Leonetti,
A characterization of (I,J)-regular matrices,
J. Math. Anal. Appl. 504 (2021), no. 1, Paper No. 125374, 10 pp.
-
[doi]
P. Leonetti, F. Maccheroni,
Characterizations of ideal cluster points.
Analysis (Berlin) 39 (2019), no. 1, 19–26.
-
[arXiv,
doi]
J. Brendle, B. Farkas, J. Verner,
Towers in Filters, Cardinal Invariants, and Luzin Type Families,
J. Symb. Log. 83 (2018), no. 3, 1013–1062.
-
[doi]
M. Kwela, A. Nowik, Ideals of nowhere dense sets in some topologies on positive integers. Topology Appl. 248 (2018), 149–163.
-
[doi]
J. Tryba, Weighted uniform density ideals.
Math. Slovaca 68 (2018), no. 4, 717–726.
- P. Klinga and A. Nowik, Extendability to summable ideals, Acta Math. Hungar. 152 (2017), no. 1, 150–160.
- T. Yurdakadim, L. Miller-Van Wieren, Subsequential results on uniform statistical convergence, Sarajevo J. Math. 12(25) (2016), no. 2, 251–259.
- S. A. Mohiuddine, C. Belen, Restricted uniform density and corresponding convergence methods, Filomat 30 (2016), no. 12, 3209–3216.
- S. Głąb and M. Olczyk, Convergence of Series on Large Set of Indices, Math. Slovaca 65 (2015), no. 5, 1095-1106.
- M. Balcerzak, B. Farkas, and S. Głąb, Covering properties of ideals, Arch. Math. Logic 52 (2013), no. 3-4, 279-294.
-
[pdf,
doi]
Pointwise versus equal (quasi-normal) convergence via ideals,
J. Math. Anal. Appl. 422 (2015), no. 2, 995-1006
(with M. Staniszewski)
-
[arXiv,
pdf]
A. Marton, M. Repický,
Relative cofinality of ideals, arXiv:2502.08506
-
[arXiv]
A. Kwela
More on yet another ideal version of the bounding number, arXiv:2406.15949.
-
[doi,
arXiv,
pdf]
A. Marton, J. Šupina,
On P-like ideals induced by disjoint families, J. Math. Anal. Appl. 528 (2023), no. 2, Paper No. 127551, 23 pp.
-
[doi]
A. Marton,
P-Like Properties of Meager Ideals and Cardinal Invariants, Tatra Mountains Mathematical Publications, vol.85, no.3, 2023, pp.73-88
-
[doi]
J. Supina,
Pseudointersection numbers, ideal slaloms, topological spaces, and cardinal inequalities,
Arch. Math. Logic 62 (2023), no. 1-2, 87–112.
-
[doi,
pdf]
M. Repický,
Spaces not distinguishing ideal convergences of real-valued functions.
Real Anal. Exchange 46 (2021), no. 2, 367–394.
-
[doi]
S. Singh, B. Tyagi, M. Bhardwaj,
Sequence selection properties in Cp(X) with the double ideals.
Math. Slovaca 71 (2021), no. 1, 147–154.
-
[doi]
P. Das, S. Sengupta, J. Šupina,
IK-convergence of sequences of functions.
Math. Slovaca 69 (2019), no. 5, 1137–1148.
-
[doi]
P. Das, U. Samanta, D. Chandra,
Some observations on Hurewicz and I-Hurewicz property.
Topology Appl. 258 (2019), 202–214.
-
[doi]
V. Šottová, J. Šupina,
Principle S1(P,R): ideals and functions.
Topology Appl. 258 (2019), 282–304.
-
[doi]
A. Kwela, Ideal weak QN-spaces, Topology Appl. 240 (2018), 98–115
- [doi]
J. Šupina, Ideal QN-spaces, J. Math. Anal. Appl. 435 (2016), no. 1, 477-491.
-
[pdf,
doi]
I-selection principles for sequences of functions,
J. Math. Anal. Appl. 396 (2012), no. 2, 680-688
(with N. Mrożek, I. Recław and P. Szuca)
-
[arxiv,
doi]
A. Kwela, Unboring ideals, Fund. Math. 261 (2023), 235-272
-
[pdf,
doi]
J. Yu, S. Zhang,
MAD Families, P+(I)-Ideals and Ideal Convergence,
Filomat 34:9 (2020), 3099–3108
- [doi]
G. García, A quantitative version of Helly’s selection principle in Banach spaces and its applications.
Ann. Funct. Anal. 11 (2020), no. 4, 1220–1235.
- [doi]
C. Uzcátegui Aylwin, Ideals on countable sets: a survey with questions.
Rev. Integr. Temas Mat. 37 (2019), no. 1, 167–198.
- H. Feng and D. Hobson, Gambling in contests with random initial law, Ann. Appl. Probab. 26 (2016), no. 1, 186-215.
- [doi]
A. Kwela, A note on a new ideal, J. Math. Anal. Appl. 430 (2015), no. 2, 932-949.
- E. Athanassiadou, A. Boccuto, X. Dimitriou, and N. Papanastassiou, Ascoli-type theorems and ideal (α)-convergence, Filomat 26 (2012), no. 2, 397-405.
-
[pdf,
doi]
Density versions of Schur's theorem for ideals generated by submeasures,
J. Combin. Theory Ser. A 117 (2010), no. 7, 943-956
(with P. Szuca)
- [doi]
J. Tryba, Different kinds of density ideals. J. Math. Anal. Appl. (2021), 124930.
- [doi]
K. Bose, P. Das, S. Sengupta,
On spliced sequences and the density of points with respect to a matrix constructed by using a weight function.
Ukraïn. Mat. Zh. 71 (2019), no. 9, 1192–1207; reprinted in
Ukrainian Math. J. 71 (2020), no. 9, 1359–1378
- [doi,
pdf]
P. Das, K. Bose, S. Sengupta, On IA-Density of Points and Some of its Consequences, Filomat 31 (2017), no. 20, 6585-6595.
- S. Głąb and M. Olczyk, Convergence of Series on Large Set of Indices, Math. Slovaca 65 (2015), no. 5, 1095-1106.
- A. Bartoszewicz, P. Das, and S. Głąb, On matrix summability of spliced sequences and A-density of points, Linear Algebra Appl. 487 (2015), 22-42.
- P. Das, S. Dutta, S. A. Mohiuddine, and A. Alotaibi, A-statistical cluster points in finite dimensional spaces and application to turnpike theorem, Abstr. Appl. Anal. (2014), Art. ID 354846, 7.
- A. Boccuto, X. Dimitriou, and N. Papanastassiou, Schur lemma and limit theorems in lattice groups with respect to filters, Math. Slovaca 62 (2012), no. 6, 1145-1166.
-
[pdf, doi]
Representation of ideal convergence as a union and intersection of matrix summability methods,
J. Math. Anal. Appl. 484 (2020), no. 2, 123760 (with J. Tryba)
-
[arXiv]
J. Keith, P. Leonetti,
Completeness and additive property for submeasures, arXiv:2501.13615
-
[arXiv,
pdf]
P. Leonetti, Core equality of real sequences, arXiv:2401.01136
-
[arXiv,
pdf]
P. Leonetti, Strong universality, recurrence, and analytic P-ideals in dynamical systems, arXiv:2401.01131
-
[pdf, arXiv]
P. Leonetti, C. Orhan, On some locally convex FK spaces, arXiv:2205.15048 .
-
[pdf,
doi]
C. Orhana, M. Gulfirata,
Generalized limits and ideal convergence,
Filomat 38:32 (2024), 11259–11267
-
[doi,
arXiv,
pdf]
A. Marton, J. Šupina,
On P-like ideals induced by disjoint families, J. Math. Anal. Appl. 528 (2023), no. 2, Paper No. 127551, 23 pp.
-
[doi]
P. Das, Ideals, Nonnegative Summability Matrices and Corresponding Convergence Notions: A Short Survey of Recent Advancements, Axioms 2022, 11(1).
-
[pdf,
doi]
On some questions of Drewnowski and Łuczak concerning submeasures on N,
J. Math. Anal. Appl. 371 (2010), no. 2, 655-660
(with P. Szuca)
- [arXiv]
L. Drewnowski, Nonatomic submeasures on N and the Banach space l_1 (2021)
- [doi]
K. Bose, P. Das, S. Sengupta,
On spliced sequences and the density of points with respect to a matrix constructed by using a weight function.
Ukraïn. Mat. Zh. 71 (2019), no. 9, 1192–1207; reprinted in
Ukrainian Math. J. 71 (2020), no. 9, 1359–1378
- [doi,
pdf]
P. Das, K. Bose, S. Sengupta, On IA-Density of Points and Some of its Consequences, Filomat 31 (2017), no. 20, 6585-6595.
- S. Głąb and M. Olczyk, Convergence of Series on Large Set of Indices, Math. Slovaca 65 (2015), no. 5, 1095-1106.
- A. Bartoszewicz, P. Das, and S. Głąb, On matrix summability of spliced sequences and A-density of points, Linear Algebra Appl. 487 (2015), 22-42.
- T. Natkaniec and J. Wesołowska, Sets of ideal convergence of sequences of quasi-continuous functions, J. Math. Anal. Appl. 423 (2015), no. 2, 924-939.
-
[pdf,
doi]
On the difference property of Borel measurable and (s)-measurable functions,
Acta Math. Hungar. 96 (2002), no. 1-2, 21-25
(with I. Recław)
-
[doi]
M. Adam, Stability of Fréchet Functional Equation in Class of Differentiable Functions, Symmetry. 2025; 17(2):152.
- H. Fujita and T. Matrai, On the difference property of Borel measurable functions, Fund. Math. 208
(2010), no. 1, 57-73.
-
H. Fujita, Remarks on two problems by M. Laczkovich on functions with Borel measurable differences,
Acta Math. Hungar. 117 (2007), no. 1-2, 153-160.
-
K. Ciesielski and J. Pawlikowski, Nice Hamel bases under the covering property axiom, Acta Math.
Hungar. 105 (2004), no. 3, 197-213.
-
K. Ciesielski and J. Pawlikowski, The covering property axiom, CPA, Cambridge Tracts in Mathematics, vol. 164, Cambridge University Press, Cambridge, 2004.
-
M. Laczkovich, The difference property, Paul Erdos and his mathematics, I (Budapest, 1999), Bolyai
Soc. Math. Stud., vol. 11, Janos Bolyai Math. Soc., Budapest, 2002, pp. 363-410.
-
[pdf]
Ideal convergence,
a chapter in the monograph
Traditional and present-day topics in real analysis,
Łódź University Press, 2013,
Editors: M. Filipczak, E. Wagner-Bojakowska
(with T. Natkaniec and P. Szuca)
[Cover and table of contents of the book]
-
[arXiv,
pdf]
P. Das, A. Ghosh, When ideals properly extend the class of Arbault sets, arXiv:2401.02103
-
[doi]
P. Das, A. Ghosh, Eggleston’s dichotomy for characterized subgroups and the role of ideals,
Ann. Pure Appl. Logic (2023), 103289
-
[doi]
P. Das, Ideals, Nonnegative Summability Matrices and Corresponding Convergence Notions: A Short Survey of Recent Advancements, Axioms 2022, 11(1).
-
[doi]
M. Staniszewski, On ideal equal convergence II, J. Math. Anal. Appl. 451 (2017), no. 2, 1179–1197
-
[pdf]
M. Balcerzak, M. Filipczak, Ideal convergence of sequences and some of its applications. Folia Math. 19 (2017), no. 1, 3–8.
-
[pdf,
doi]
On Hindman spaces and the Bolzano-Weierstrass property,
Topology Appl. 160 (2013), no. 15, 2003-2011
-
[doi]
M. Kwela,
Rizza’s ideal and comparison of some known set-theoretic ideals from number theory and combinatorics,
Period Math Hung (2025).
-
[doi]
K. Kowitz, A. Kwela,
Ultrafilters and the Katětov order,
Topology Appl. 361 (2025), Paper No. 109191.
-
[pdf,
doi]
M. Singha, U. K. Hom,
Variant of thin sets and their influence in convergence,
Filomat 37:17 (2023), 5847–5858
- [doi]
K. Kowitz,
Differentially compact spaces,
Topology and its Applications,
Volume 307,
2022,
107948,
-
[pdf,
doi]
On some properties of Hamel bases and their applications to Marczewski measurable functions,
Cent. Eur. J. Math. 11 (2013), no. 3, 487-508
(with F. Dorais and T. Natkaniec)
-
[doi]
N.H. Bingham, E. Jabłońska, W. Jabłoński, A. Ostaszewski On Subadditive Functions Bounded Above on a “Large” Set, Results Math 75, 58 (2020)
- A. B. Kharazishvili, Set Theoretical Aspects of Real Analysis, Monographs and Research Notes in Mathematics, Taylor & Francis, 2014.
- N. H. Bingham and A. J. Ostaszewski, The Steinhaus theorem and regular variation: de Bruijn and after, Indag. Math. (N.S.) 24 (2013), no. 4, 679-692.
-
[pdf,
doi]
Coincidence of PTPN22 c.1858CC and FCRL3 -169CC genotypes as a biomarker of preserved residual β-cell function in children with type 1 diabetes,
Pediatric Diabetes 18 (2017), no. 8, 696-705
(with M. Pawłowicz, G. Krzykowski, A. Stanisławska-Sachadyn, L. Morzuch, J. Kulczycka, A. Balcerska, J. Limon)
-
[doi]
R. Žak, L. Navasardyan, J. Hunák, J. Martinů, P. Heneberg,
PTPN22 intron polymorphism rs1310182 (c.2054-852T>C) is associated with type 1 diabetes mellitus in patients of Armenian descent
-
[doi]
G. Huraib, F. Harthi, M. Arfin, A. Al-Asmari,
The Protein Tyrosine Phosphatase Non-Receptor Type 22 (PTPN22) Gene Polymorphism and Susceptibility to Autoimmune Diseases, a chapter in The Recent Topics in Genetic Polymorphisms, (2020).
-
[doi] M. Z. Haider, M. A. Rasoul, M. Al-Mahdi, H. Al-Kandari, G. S. Dhaunsi,
Association of protein tyrosine phosphatase non-receptor type 22 gene functional variant C1858T, HLA-DQ/DR genotypes and autoantibodies with susceptibility to type-1 diabetes mellitus in Kuwaiti Arabs,
PLoS ONE 13(6): e0198652, (2018)
-
[pdf,
doi]
Extending the ideal of nowhere dense subsets of rationals to a P-ideal,
Comment. Math. Univ. Carolin. 54 (2013), no. 3, 429-435
(with N. Mrożek, I. Recław and P. Szuca)
- [doi]
M. Kwela, J. Tryba,
Extendability to Marczewski-Burstin countably representable ideals,
Topology Appl. 359 (2025), No. 109134,
-
[arXiv,
pdf]
P. Leonetti, Tauberian theorems for ordinary convergence, arXiv:2012.03311 [math.FA]
-
[doi,
arXiv,
pdf]
M. Balcerzak, P. Leonetti, The Baire category of subsequences and permutations which preserve limit points.
Results Math. 75 (2020), no. 4, Paper No. 171, 14 pp.
-
[pdf,
doi]
Algebraic sums of sets in Marczewski-Burstin algebras,
Real Anal. Exchange 31 (2005/2006), no. 1, 133-142
(with F. Dorais)
-
[doi]
M. Kwela,
Rizza’s ideal and comparison of some known set-theoretic ideals from number theory and combinatorics,
Period Math Hung (2025).
- A. B. Kharazishvili, Set Theoretical Aspects of Real Analysis, Monographs and Research Notes in Mathematics, Taylor & Francis, 2014.
- M. Kysiak, Nonmeasurable algebraic sums of sets of reals, Colloq. Math. 102 (2005), no. 1, 113-122.
-
[pdf,
doi]
On the difference property of the family of functions with the Baire property,
Acta Math. Hungar. 100 (2003), no. 1-2, 97-104
-
[doi]
M. Adam, Stability of Fréchet Functional Equation in Class of Differentiable Functions, Symmetry. 2025; 17(2):152.
-
T. Matrai, Weak difference property of functions with the Baire property, Fund. Math. 177 (2003),
no. 1, 1-17.
-
M. Laczkovich, The difference property, Paul Erdos and his mathematics, I (Budapest, 1999), Bolyai
Soc. Math. Stud., vol. 11, Janos Bolyai Math. Soc., Budapest, 2002, pp. 363-410.
-
[pdf,
doi]
Convergence in van der Waerden and Hindman spaces,
Topology Appl. 178 (2014), 438-452
(with J. Tryba)
-
[doi]
M. Kwela,
Rizza’s ideal and comparison of some known set-theoretic ideals from number theory and combinatorics,
Period Math Hung (2025).
-
[doi]
K. Kowitz, A. Kwela,
Ultrafilters and the Katětov order,
Topology Appl. 361 (2025), Paper No. 109191.
-
[arxiv,
doi]
A. Kwela, Unboring ideals, Fund. Math. 261 (2023), 235-272
-
[pdf,
doi]
There are measurable Hamel functions,
Real Anal. Exchange 36 (2010/2011), no. 1, 223-230
(with A. Nowik and P. Szuca)
- T. Natkaniec, An example of a quasi-continuous Hamel function, Real Anal. Exchange 36 (2010/11), no. 1, 231-236.
- G. Matusik and T. Natkaniec, Algebraic properties of Hamel functions, Acta Math. Hungar. 126 (2010), no. 3, 209-229.
-
[pdf,
doi]
The reaping and splitting numbers of nice ideals,
Colloq. Math. 134 (2014), no. 2, 179-192
-
[doi]
H. Zhang, J. He, S. Zhang,
Splitting positive sets, Sci. China Math. (2023)
- [pdf]
P. Das, U. Samanta, D. Chandra,
A more balanced approach to ideal variation of γ-covers,
Houston J. Math. 46 (2020), no. 2, 519–535.
-
[DOI,
arXiv,
PDF]
Characterizing existence of certain ultrafilters, Ann. Pure Appl. Logic 173 (2022), no. 9, Paper No. 103157
(with K. Kowitz and A. Kwela)
-
[arXiv]
T. Fujita,
Various Properties of Various Ultrafilters, Various Graph Width Parameters, and Various Connectivity Systems (with Survey), arXiv:2408.02299.
-
[arXiv]
M. Balcerzak, Sz. Głąb, P. Leonetti,
Topological complexity of ideal limit points, arXiv:2407.12160.
-
[pdf, doi]
Densities for sets of natural numbers vanishing on a given family,
J. of Number Theory 211 (2020), 371-382 (with J. Tryba)
-
[arXiv]
J. Keith, P. Leonetti,
Completeness and additive property for submeasures, arXiv:2501.13615
-
[arXiv,
pdf]
P. Leonetti, M. Caprio,
Turnpike in infinite dimension, arXiv:2012.06808 [math.FA]
-
[pdf,
doi]
A note on nonregular matrices and ideals associated with them,
Colloq. Math. 159 (2020), no. 1, 29-45
(with P. Das and J. Tryba)
-
[doi]
M. Balcerzak and P. Leonetti, A Tauberian theorem for ideal statistical convergence, Indag. Math. (N.S.) 31 (2020), no. 1, 83–95.
-
[arXiv,
PDF]
A unified approach to Hindman, Ramsey and van der Waerden spaces,
(with K. Kowitz and A. Kwela)
-
[arxiv]
C. Corral, O. Guzmán, C. López-Callejas, P. Memarpanahi, P. Szeptycki, S. Todorčevic,
Infinite dimensional sequential compactness: Sequential compactness based on barriers,
arXiv:2309.04397
-
[DOI,
arXiv,
PDF]
Yet another ideal version of the bounding number,
J. Symb. Log. 87 (2022), no. 3, 1065–1092
(with A. Kwela)
-
[arXiv]
M. A. Cardona, V. Gavalova, D. A. Mejia, M. Repicky, J. Supina
Slalom numbers, arXiv:2406.19901.
-
[PDF,
DOI]
On the difference property of families of measurable functions,
Colloq. Math. 97 (2003), no. 2, 169-180
-
[doi]
M. Adam, Stability of Fréchet Functional Equation in Class of Differentiable Functions, Symmetry. 2025; 17(2):152.
-
[arXiv,
PDF]
Path of pathology,
submitted (with J. Tryba)
-
[arXiv]
J. Lopez-Abad, V. Olmos-Prieto, C. Uzcátegui-Aylwin,
Fσ-ideals, colorings, and representation in Banach spaces, arXiv:2501.15643