Note that selfcitations and coauthor selfcitations are excluded.

[pdf,
doi]
Ideal convergence of bounded sequences,
J. Symbolic Logic 72 (2007), no. 2, 501512
(with N. Mrożek, I. Recław and P. Szuca)

[arXiv]
M. RincónVillamizar, C. Uzcátegui Aylwin
Banach spaces of Iconvergent sequences, arXiv:2309.08076.

[arXiv]
W. Marciszewski, D. Sobota
The JosefsonNissenzweig theorem and filters on ω, arXiv:2204.01557.

[arXiv]
H. Behmanush, M. Kucukaslan,
Some properties of I*sequential topological space, arXiv:2305.19647.

[doi]
P. Klinga, A. Nowik, On some properties of Lévy vectors and their variations, to appear in Lith Math J (2023)

[arxiv,
doi]
A. Kwela, Unboring ideals, to appear in Fund. Math. (2023)

[doi]
H. Zhang, J. He, S. Zhang,
Splitting positive sets, Sci. China Math. (2023)

[pdf,
doi]
M. Singha, U. K. Hom,
Variant of thin sets and their influence in convergence,
Filomat 37:17 (2023), 5847–5858

[doi,
pdf]
A. Kwela,
On extendability to 𝐹_{𝜎} ideals,
Arch. Math. Logic (2022).

[doi,
arXiv]
A. Kwela, P. Leonetti,
Densitylike and generalized density ideals.
J. Symb. Log. 87 (2022), no. 1, 228–251.

[doi]
X. He, H. Zhang, S. Zhanga,
The Borel complexity of ideal limit points.
Topology Appl. 312 (2022), Paper No. 108061, 12 pp.
 [doi]
K. Kowitz,
Differentially compact spaces,
Topology and its Applications,
Volume 307,
2022,
107948,
 [doi]
V. Khan, S. Abdullah, K. Alshlool, A study of Nörlund ideal convergent sequence spaces. Yugoslav Journal of Operations Research, 2021 OnLineFirst
 [doi]
J. Tryba, Different kinds of density ideals. J. Math. Anal. Appl. (2021), 124930.
 [doi]
S. Lin, On Ineighborhood spaces and Iquotient spaces.
Bull. Malays. Math. Sci. Soc. 44 (2021), no. 4, 1979–2004.

[doi,
pdf]
J. Yu, S. Zhang,
MAD Families, P+(I)Ideals and Ideal Convergence,
Filomat 34:9 (2020), 3099–3108
 [doi]
K. Bose, P. Das, S. Sengupta,
On spliced sequences and the density of points with respect to a matrix constructed by using a weight function.
Ukraïn. Mat. Zh. 71 (2019), no. 9, 1192–1207; reprinted in
Ukrainian Math. J. 71 (2020), no. 9, 1359–1378

[doi]
C. Uzcátegui Aylwin, Ideals on countable sets: a survey with questions.
Rev. Integr. Temas Mat. 37 (2019), no. 1, 167–198.

[doi,
pdf]
J. Yu, S. Zhang,
Ideal Versions of the BolzanoWeierstrass Property,
Filomat 33:10 (2019), 2963–2973

[doi]
P. Leonetti,
Limit points of subsequences.
Topology Appl. 263 (2019), 221–229.

[doi]
P. Leonetti, F. Maccheroni,
Characterizations of ideal cluster points.
Analysis (Berlin) 39 (2019), no. 1, 19–26.

[doi]
M. Balcerzak, P. Leonetti,
On the relationship between ideal cluster points and ideal limit points.
Topology Appl. 252 (2019), 178–190.

[doi]
M. Kwela, A. Nowik, Ideals of nowhere dense sets in some topologies on positive integers. Topology Appl. 248 (2018), 149–163.

[doi]
J. Tryba, Weighted uniform density ideals.
Math. Slovaca 68 (2018), no. 4, 717–726.
 [doi,
pdf]
P. Das, K. Bose, S. Sengupta, On IADensity of Points and Some of its Consequences, Filomat 31 (2017), no. 20, 65856595.
 M. Balcerzak, M. Popławski, and A. Wachowicz, Ideal convergent subsequences and rearrangements for divergent sequences of functions, Math. Slovaca 67 (2017), no. 6, 1461–1468
 P. Klinga and A. Nowik, Extendability to summable ideals, Acta Math. Hungar. 152 (2017), no. 1, 150–160.
 M. Balcerzak, S. Głąb, and J. Swaczyna, Ideal invariant injections, J. Math. Anal. Appl. 445 (2017), no. 1, 423–442.

[pdf]
M. Balcerzak, M. Filipczak, Ideal convergence of sequences and some of its applications. Folia Math. 19 (2017), no. 1, 3–8.
 M. Balcerzak,S. Głąb, A. Wachowicz, Qualitative properties of ideal convergent subsequences and rearrangements, Acta Math. Hungar. 150 (2016), no. 2, 312–323.
 S. Głąb and M. Olczyk, Convergence of Series on Large Set of Indices, Math. Slovaca 65 (2015), no. 5, 10951106.
 A. Bartoszewicz, P. Das, and S. Głąb, On matrix summability of spliced sequences and Adensity of points, Linear Algebra Appl. 487 (2015), 2242.
 M. Balcerzak, P. Das, M. Filipczak, and J. Swaczyna, Generalized kinds of density and the associated ideals, Acta Math. Hungar. 147 (2015), no. 1, 97115.
 P. Das, M. Sleziak, and V. Toma, I^{K}Cauchy functions, Topology Appl. 173 (2014), 927.
 M. Balcerzak and K. Musiał, A convergence theorem for the Birkhoff integral, Funct. Approx. Comment. Math. 50 (2014), no. 1, 161168.
 A. Boccuto and X. Dimitriou, Modes of ideal continuity of lgroupvalued measures, Int. Math. Forum 8 (2013), no. 1720, 841849.

[arXiv,
pdf]
J. L. Verner, Filter convergence in βω, AUC Philosophica et Historica, Miscellanea Logica IX 2 (2013), 8790.
 B. Tsaban and L. Zdomskyy, Hereditarily Hurewicz spaces and Arhangelskii sheaf amalgamations, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 2, 353372.
 M. Macaj and M. Sleziak, I^{K}convergence, Real Anal. Exchange 36 (2010/11), no. 1, 177193.
 M. Hrusak, Combinatorics of filters and ideals, Set theory and its applications, Contemp. Math., vol. 533, Amer. Math. Soc., Providence, RI, 2011, pp. 2969.
 L. Drewnowski and I. Labuda, Solid sequence F spaces of L_{0}type over submeasures on N, Illinois J. Math. 53 (2009), no. 2, 623678.
 L. Matejicka, Some remarks on Ifaster convergent infinite series, Math. Bohem. 134 (2009), no. 3, 275284.
 L. Drewnowski and T. Łuczak, On nonatomic submeasures on N. II, J. Math. Anal. Appl. 347 (2008), no. 2, 442449.
 D. Holy, L. Matejicka, and L. Pinda, On faster convergent infinite series, Int. J. Math. Math. Sci. (2008), Art. ID 753632, 8.

[pdf, ps]
D. Fremlin, Filters of countable type, Miscellaneous research notes, 2007

[pdf,
doi]
Rearrangement of conditionally convergent series on a small set,
J. Math. Anal. Appl. 362 (2010), no. 1, 6471
(with P. Szuca)

[doi]
P. Klinga, A. Nowik, On some properties of Lévy vectors and their variations, to appear in Lith Math J (2023)
 [doi]
J. Tryba, Different kinds of density ideals. J. Math. Anal. Appl. (2021), 124930.

[doi,
arXiv,
pdf]
A. Bartoszewicz, W. Fechner, A. Świątczak, A. Widz, On the c0equivalence and permutations of series,
Ann. Funct. Anal. 12 (2021), no. 2, Paper No. 23, 10 pp.

[doi,
arXiv,
pdf]
M. Balcerzak, P. Leonetti, The Baire category of subsequences and permutations which preserve limit points.
Results Math. 75 (2020), no. 4, Paper No. 171, 14 pp.
 [doi]
C. Uzcátegui Aylwin, Ideals on countable sets: a survey with questions.
Rev. Integr. Temas Mat. 37 (2019), no. 1, 167–198.

[pdf,
html]
A. Losonczi, Points Accessible in average by rearrangement of sequences I,
Transnational Journal of Mathematical Analysis and Applications 7 (2019), no. 1, 127.

[pdf@WM, pdf@researchgate]
I. Jóźwik, M. Terepeta, Polskie spojrzenie na twierdzenie Riemanna o tasowaniu,
Wiad. Mat. 55 (2019), no. 1, 143157

[pdf]
J. Marchwicki,
Achievement sets and sum ranges with ideal supports.
Filomat 32 (2018), no. 14, 4911–4922.

[doi]
M. Kwela, A. Nowik, Ideals of nowhere dense sets in some topologies on positive integers. Topology Appl. 248 (2018), 149–163.
 P. Klinga and A. Nowik, Extendability to summable ideals, Acta Math. Hungar. 152 (2017), no. 1, 150–160.

[pdf]
M. Balcerzak, M. Filipczak, Ideal convergence of sequences and some of its applications. Folia Math. 19 (2017), no. 1, 3–8.
 R. Wituła, Permutations preserving the convergence or the sum of seriesa survey, Monograph on the occasion of 100th birthday anniversary of Zygmunt Zahorski, Wydaw. Politech. Śl., Gliwice, 2015, pp. 169190.
 P. BorodulinNadzieja, B. Farkas, and G. Plebanek, Representations of ideals in Polish groups and in Banach spaces, J. Symb. Log. 80 (2015), no. 4, 12681289.
 P. Klinga, Rearranging series of vectors on a small set, J. Math. Anal. Appl. 424 (2015), no. 2, 966974.
 R. Wituła, Certain multiplier version of the Riemann derangement theorem, Demonstr. Math. 47 (2014), no. 1, 125129.
 R. Wituła, The Riemann derangement theorem and divergent permutations, Tatra Mt. Math. Publ. 52 (2012), 7582.
 T. Bermudez and A. Martinon, Changes of signs in conditionally convergent series on a small set, Appl. Math. Lett. 24 (2011), no. 11, 18311834.

[pdf,
doi]
Three kinds of convergence and the associated IBaire classes,
J. Math. Anal. Appl. 391 (2012), no. 1, 19 (with P. Szuca)

[arXiv,
pdf]
A. Marton, J. Supina,
On Plike ideals induced by disjoint families, arXiv:2212.07260 [math.GN]
 [pdf,
arxiv]
S. Bardyla, J. Supina, L. Zdomskyy,
Ideal approach to convergence in functional spaces, arXiv:2111.05049.

[arxiv,
doi]
A. Kwela, Unboring ideals, to appear in Fund. Math. (2023)

[pdf,
doi]
M. Liu, J. Yu, S. Zhang,
More on Arhangel’skiı̌ Sheaf Amalgamations,
Filomat 34:10 (2020), 3369–3380

[arXiv,
pdf
]
P. Leonetti, Tauberian theorems for ordinary convergence, arXiv:2012.03311 [math.FA]

[pdf,
doi]
J. Yu, S. Zhang,
MAD Families, P+(I)Ideals and Ideal Convergence,
Filomat 34:9 (2020), 3099–3108

[doi]
P. Das, S. Sengupta, J. Šupina,
I^{K}convergence of sequences of functions.
Math. Slovaca 69 (2019), no. 5, 1137–1148.

[doi]
T. Natkaniec, W. Sieg,
Some unpublished Recław theorems and their applications to Bairestarone functions.
Turkish J. Math. 43 (2019), no. 3, 1148–1160.

[doi]
V. Šottová, J. Šupina,
Principle S_{1}(P,R): ideals and functions.
Topology Appl. 258 (2019), 282–304.
 M. Staniszewski, On ideal equal convergence II, J. Math. Anal. Appl. 451 (2017), no. 2, 1179–1197
 A. Kwela and M. Staniszewski, Ideal equal Baire classes. J. Math. Anal. Appl. 451 (2017), no. 2, 1133–1153
 M. Balcerzak, S. Głąb, and J. Swaczyna, Ideal invariant injections, J. Math. Anal. Appl. 445 (2017), no. 1, 423–442.

[pdf]
M. Balcerzak, M. Filipczak, Ideal convergence of sequences and some of its applications. Folia Math. 19 (2017), no. 1, 3–8.

[doi]
J. Šupina, Ideal QNspaces, J. Math. Anal. Appl. 435 (2016), no. 1, 477491.
 M. Balcerzak, P. Das, M. Filipczak, and J. Swaczyna, Generalized kinds of density and the associated ideals, Acta Math. Hungar. 147 (2015), no. 1, 97115.
 [doi]
A. Kwela, A note on a new ideal, J. Math. Anal. Appl. 430 (2015), no. 2, 932949.

[pdf,
doi]
Ideal convergence versus matrix summability,
Studia Math. 245 (2019), no. 2, 101127
(with J. Tryba)

[arXiv,
pdf]
S. CerreiaVioglio, P. Leonetti, F. Maccheroni, M. Marinacci, Capacities and Choquet Averages of Ultrafilters,
arXiv:2307.16823

[pdf]
V. Khan, E. Savas, I. Khan, Z. Rahman, A study on Riesz Iconvergence in intuitionistic fuzzy normed spaces,
Ital. J. Pure Appl. Math., No. 49 (2023), 771789

[doi]
P. Das, A. Ghosh, Eggleston’s dichotomy for characterized subgroups and the role of ideals,
Ann. Pure Appl. Logic (2023), 103289

[arxiv,
pdf]
P. Leonetti, Regular matrices of unbounded linear operators, arXiv:2201.13059.

[doi]
A.V. Khan, U. Tuba, Topological Properties of Jordan Intuitionistic Fuzzy Normed Spaces, Math. Slovaca 73 (2023), no. 2, 439–454

[pdf,
doi]
V.A. Khan, I.A. Khan, S.A.A. Abdullah, K.M.A. Sulaiman
Alshlool
On intuitionistic fuzzy hilbert ideal convergent sequence spaces , Acta Scientiarum. Technology Vol 44 (2022),

[doi]
V.A. Khan, I.A. Khan, Spaces of intuitionistic fuzzy Nörlund Iconvergent sequences, Afr. Mat. 33 (2022), no. 1, 18.

[doi]
P. Das, Ideals, Nonnegative Summability Matrices and Corresponding Convergence Notions: A Short Survey of Recent Advancements, Axioms 2022, 11(1).

[doi]
V.A. Khan, I.A. Khan, SK Rahaman, A. Ahmad,
On Tribonacci Iconvergent sequence spaces,
Journal of Mathematics and Computer Science (2022); 24(3):225234

[pdf,
doi]
V.A. Khana, Z. Rahmana, K. Alshlool,
On I–Convergent Sequence Spaces Defined By Jordan Totient Operator.
Filomat 35:11 (2021), 3643–3652.

[doi]
V. Khan, U. Tuba,
On paranormed Ideal convergent sequence spaces defined by Jordan totient function,
J. Inequal. Appl.2021, 96.

[doi, arXiv]
J. Connor, P. Leonetti,
A characterization of (I,J)regular matrices,
J. Math. Anal. Appl. 504 (2021), no. 1, Paper No. 125374, 10 pp.

[doi]
M. Balcerzak and P. Leonetti,
A Tauberian theorem for ideal statistical convergence, Indag. Math. (N.S.) 31 (2020), no. 1, 83–95.

[doi]
F. LeónSaavedra, M. del Pilar Romero de la Rosa, A. Sala,
OrliczPettis Theorem through Summability Methods,
Mathematics 2019, 7(10), 895

[doi]
P. Leonetti,
Continuous projections onto ideal convergent sequences,
Results Math. 73 (2018), no. 3, Art. 114, 5 pp.

[pdf,
doi]
On ideal equal convergence,
Cent. Eur. J. Math., 12 (2014), no. 6, 896–910
(with M. Staniszewski)

[arXiv,
pdf]
A. Marton, J. Supina,
On Plike ideals induced by disjoint families, arXiv:2212.07260 [math.GN]

[arXiv,
pdf]
A. K. Banerjee, N. Hossain,
On I and I^{∗}equal convergence in linear 2normed spaces

[doi,
pdf]
M. Repický,
Spaces not distinguishing ideal convergences of realvalued functions, II.
Real Anal. Exchange 46 (2021), no. 2, 395422.

[doi,
pdf]
M. Repický,
Spaces not distinguishing ideal convergences of realvalued functions.
Real Anal. Exchange 46 (2021), no. 2, 367394.

[doi]
P. Das, S. Sengupta, Sz. Gła̧b, M. Bienias,
Certain aspects of ideal convergence in topological spaces.
Topology Appl. 275 (2020), 107005, 12 pp.

[pdf, info]
S. Sengupta, Some remarks on ideal equal Baire classes.
Acta Math. Univ. Comenian. (N.S.) 89 (2020), no. 1, 9–18.

[pdf,
doi]
S. Mohiuddinea, B. Hazarikab, M. Alghamdi,
Ideal Relatively Uniform Convergence with Korovkin and Voronovskaya types Approximation Theorems.
Filomat 33:14 (2019), 4549–4560

[doi]
P. Das, S. Sengupta, J. Šupina,
I^{K}convergence of sequences of functions.
Math. Slovaca 69 (2019), no. 5, 1137–1148.

[doi]
V. Šottová, J. Šupina,
Principle S_{1}(P,R): ideals and functions.
Topology Appl. 258 (2019), 282–304.

[doi]
A. Kwela, Ideal weak QNspaces, Topology Appl. 240 (2018), 98–115

[doi]
L. Bukovsky, P. Das J. Šupina,
Ideal quasinormal convergence and related notions.
Colloq. Math. 146 (2017), no. 2, 265–281.

[doi]
L. X. Cheng, L. H. Lin, and X. G. Zhou, Statistical convergence and measure convergence generated by a single statistical measure, Acta Math. Sin. (Engl. Ser.) 32 (2016), no. 6, 668682.

[doi]
J. Šupina, Ideal QNspaces, J. Math. Anal. Appl. 435 (2016), no. 1, 477491

[pdf,
doi]
Ideal version of Ramsey's theorem,
Czechoslovak Math. J., 61 (2011), no. 2, 289308
(with N. Mrożek, I. Recław and P. Szuca)

[doi]
X. He, H. Zhang, S. Zhanga,
The Borel complexity of ideal limit points.
Topology Appl. 312 (2022), Paper No. 108061, 12 pp.

[doi,
pdf,
arXiv]
B. De Bondt, H. Vernaeve,
Filterdependent versions of the uniform boundedness principle,
J. Math. Anal. Appl. 495 (2021), no. 1, Paper No. 124705, 23 pp.

[pdf,
doi]
J. Yu, S. Zhang,
MAD Families, P+(I)Ideals and Ideal Convergence,
Filomat 34:9 (2020), 3099–3108

[pdf,
doi]
J. Yu, S. Zhang,
Ideal Versions of the BolzanoWeierstrass Property,
Filomat 33:10 (2019), 2963–2973
 [doi]
C. Uzcátegui Aylwin, Ideals on countable sets: a survey with questions.
Rev. Integr. Temas Mat. 37 (2019), no. 1, 167–198.

[pdf,
doi]
J. Marchwicki,
Achievement sets and sum ranges with ideal supports.
Filomat 32 (2018), no. 14, 4911–4922.

[doi]
J. Camargo, C. Uzcátegui, Selective separability on spaces with an analytic topology. Topology Appl. 248 (2018), 176–191
 M. Hrušák, D. MezaAlcántara, E. Thümmel, C. Uzcátegui, Ramsey type properties of ideals, Ann. Pure Appl. Logic 168 (2017), no. 11, 2022–2049.

[doi]
A. Kamiński, S. Sorek,
On the MikusińskiAntosik diagonal theorem and the equivalence of two types of convergence in Köthe spaces,
Publ. Inst. Math. (Beograd) (N.S.) 101(115) (2017), 151–160.

[doi]
A. Kwela, A note on a new ideal, J. Math. Anal. Appl. 430 (2015), no. 2, 932949.
 M. Hrusak, Combinatorics of filters and ideals, Set theory and its applications, Contemp. Math.,vol. 533, Amer. Math. Soc., Providence, RI, 2011, pp. 2969.
 N. Samet and B. Tsaban, Superfilters, Ramsey theory, and van der Waerden’s theorem, Topology Appl. 156 (2009), no. 16, 26592669.

[pdf,
doi]
Uniform density u and I_{u}convergence on a big set,
Math. Commun. 16 (2011), no. 1, 125130
(with P. Barbarski, N. Mrożek and P. Szuca)

[doi]
P. Klinga, A. Nowik, On some properties of Lévy vectors and their variations, to appear in Lith Math J (2023)

[pdf,
doi]
M. Singha, U. K. Hom,
Variant of thin sets and their influence in convergence,
Filomat 37:17 (2023), 5847–5858

[doi, arXiv]
J. Connor, P. Leonetti,
A characterization of (I,J)regular matrices,
J. Math. Anal. Appl. 504 (2021), no. 1, Paper No. 125374, 10 pp.

[doi]
P. Leonetti, F. Maccheroni,
Characterizations of ideal cluster points.
Analysis (Berlin) 39 (2019), no. 1, 19–26.

[arXiv,
doi]
J. Brendle, B. Farkas, J. Verner,
Towers in Filters, Cardinal Invariants, and Luzin Type Families,
J. Symb. Log. 83 (2018), no. 3, 1013–1062.

[doi]
M. Kwela, A. Nowik, Ideals of nowhere dense sets in some topologies on positive integers. Topology Appl. 248 (2018), 149–163.

[doi]
J. Tryba, Weighted uniform density ideals.
Math. Slovaca 68 (2018), no. 4, 717–726.
 P. Klinga and A. Nowik, Extendability to summable ideals, Acta Math. Hungar. 152 (2017), no. 1, 150–160.
 T. Yurdakadim, L. MillerVan Wieren, Subsequential results on uniform statistical convergence, Sarajevo J. Math. 12(25) (2016), no. 2, 251–259.
 S. A. Mohiuddine, C. Belen, Restricted uniform density and corresponding convergence methods, Filomat 30 (2016), no. 12, 3209–3216.
 S. Głąb and M. Olczyk, Convergence of Series on Large Set of Indices, Math. Slovaca 65 (2015), no. 5, 10951106.
 M. Balcerzak, B. Farkas, and S. Głąb, Covering properties of ideals, Arch. Math. Logic 52 (2013), no. 34, 279294.

[pdf,
doi]
Pointwise versus equal (quasinormal) convergence via ideals,
J. Math. Anal. Appl. 422 (2015), no. 2, 9951006
(with M. Staniszewski)

[arXiv,
pdf]
A. Marton, J. Supina,
On Plike ideals induced by disjoint families, arXiv:2212.07260 [math.GN]

[doi]
J. Supina,
Pseudointersection numbers, ideal slaloms, topological spaces, and cardinal inequalities,
Arch. Math. Logic 62 (2023), no. 12, 87–112.

[doi,
pdf]
M. Repický,
Spaces not distinguishing ideal convergences of realvalued functions.
Real Anal. Exchange 46 (2021), no. 2, 367–394.

[doi]
S. Singh, B. Tyagi, M. Bhardwaj,
Sequence selection properties in Cp(X) with the double ideals.
Math. Slovaca 71 (2021), no. 1, 147–154.

[doi]
P. Das, S. Sengupta, J. Šupina,
I^{K}convergence of sequences of functions.
Math. Slovaca 69 (2019), no. 5, 1137–1148.

[doi]
P. Das, U. Samanta, D. Chandra,
Some observations on Hurewicz and IHurewicz property.
Topology Appl. 258 (2019), 202–214.

[doi]
V. Šottová, J. Šupina,
Principle S_{1}(P,R): ideals and functions.
Topology Appl. 258 (2019), 282–304.

[doi]
A. Kwela, Ideal weak QNspaces, Topology Appl. 240 (2018), 98–115
 [doi]
J. Šupina, Ideal QNspaces, J. Math. Anal. Appl. 435 (2016), no. 1, 477491.

[pdf,
doi]
When does the Katětov order imply that one ideal extends the other?,
Colloq. Math. 130 (2013), no. 1, 91102
(with P. Barbarski, N. Mrożek and P. Szuca)

[arXiv]
M. RincónVillamizar, C. Uzcátegui Aylwin
Banach spaces of Iconvergent sequences, arXiv:2309.08076.
 [pdf,
arxiv]
S. Bardyla, J. Supina, L. Zdomskyy,
Ideal approach to convergence in functional spaces, arXiv:2111.05049.
 [pdf, arxiv]
A. Kwela, Inductive limits of ideals, arXiv:2103.17169.

[arxiv,
doi]
A. Kwela, Unboring ideals, to appear in Fund. Math. (2023)
 [doi]
C. Uzcátegui Aylwin, Ideals on countable sets: a survey with questions.
Rev. Integr. Temas Mat. 37 (2019), no. 1, 167–198.
 A. Kwela and M. Staniszewski, Ideal equal Baire classes. J. Math. Anal. Appl. 451 (2017), no. 2, 1133–1153
 A. Kwela and J. Tryba, Homogeneous ideals on countable sets, Acta Math. Hungar. 151 (2017), no. 1, 139–161.
 O. GuzmanGonzalez and D. MezaAlcantara, Some Structural Aspects of the Katetov Order on Borel Ideals,
Order 33 (2016), no. 2, 189194.
 [doi]
A. Kwela, A note on a new ideal, J. Math. Anal. Appl. 430 (2015), no. 2, 932949.

[pdf,
doi]
Iselection principles for sequences of functions,
J. Math. Anal. Appl. 396 (2012), no. 2, 680688
(with N. Mrożek, I. Recław and P. Szuca)

[arxiv,
doi]
A. Kwela, Unboring ideals, to appear in Fund. Math. (2023)

[pdf,
doi]
J. Yu, S. Zhang,
MAD Families, P+(I)Ideals and Ideal Convergence,
Filomat 34:9 (2020), 3099–3108
 [doi]
G. García, A quantitative version of Helly’s selection principle in Banach spaces and its applications.
Ann. Funct. Anal. 11 (2020), no. 4, 1220–1235.
 [doi]
C. Uzcátegui Aylwin, Ideals on countable sets: a survey with questions.
Rev. Integr. Temas Mat. 37 (2019), no. 1, 167–198.
 H. Feng and D. Hobson, Gambling in contests with random initial law, Ann. Appl. Probab. 26 (2016), no. 1, 186215.
 [doi]
A. Kwela, A note on a new ideal, J. Math. Anal. Appl. 430 (2015), no. 2, 932949.
 E. Athanassiadou, A. Boccuto, X. Dimitriou, and N. Papanastassiou, Ascolitype theorems and ideal (α)convergence, Filomat 26 (2012), no. 2, 397405.

[pdf,
doi]
Density versions of Schur's theorem for ideals generated by submeasures,
J. Combin. Theory Ser. A 117 (2010), no. 7, 943956
(with P. Szuca)
 [doi]
J. Tryba, Different kinds of density ideals. J. Math. Anal. Appl. (2021), 124930.
 [doi]
K. Bose, P. Das, S. Sengupta,
On spliced sequences and the density of points with respect to a matrix constructed by using a weight function.
Ukraïn. Mat. Zh. 71 (2019), no. 9, 1192–1207; reprinted in
Ukrainian Math. J. 71 (2020), no. 9, 1359–1378
 [doi,
pdf]
P. Das, K. Bose, S. Sengupta, On IADensity of Points and Some of its Consequences, Filomat 31 (2017), no. 20, 65856595.
 S. Głąb and M. Olczyk, Convergence of Series on Large Set of Indices, Math. Slovaca 65 (2015), no. 5, 10951106.
 A. Bartoszewicz, P. Das, and S. Głąb, On matrix summability of spliced sequences and Adensity of points, Linear Algebra Appl. 487 (2015), 2242.
 P. Das, S. Dutta, S. A. Mohiuddine, and A. Alotaibi, Astatistical cluster points in finite dimensional spaces and application to turnpike theorem, Abstr. Appl. Anal. (2014), Art. ID 354846, 7.
 A. Boccuto, X. Dimitriou, and N. Papanastassiou, Schur lemma and limit theorems in lattice groups with respect to filters, Math. Slovaca 62 (2012), no. 6, 11451166.

[pdf,
doi]
On some questions of Drewnowski and Łuczak concerning submeasures on N,
J. Math. Anal. Appl. 371 (2010), no. 2, 655660
(with P. Szuca)
 [arXiv]
L. Drewnowski, Nonatomic submeasures on N and the Banach space l_1 (2021)
 [doi]
K. Bose, P. Das, S. Sengupta,
On spliced sequences and the density of points with respect to a matrix constructed by using a weight function.
Ukraïn. Mat. Zh. 71 (2019), no. 9, 1192–1207; reprinted in
Ukrainian Math. J. 71 (2020), no. 9, 1359–1378
 [doi,
pdf]
P. Das, K. Bose, S. Sengupta, On IADensity of Points and Some of its Consequences, Filomat 31 (2017), no. 20, 65856595.
 S. Głąb and M. Olczyk, Convergence of Series on Large Set of Indices, Math. Slovaca 65 (2015), no. 5, 10951106.
 A. Bartoszewicz, P. Das, and S. Głąb, On matrix summability of spliced sequences and Adensity of points, Linear Algebra Appl. 487 (2015), 2242.
 T. Natkaniec and J. Wesołowska, Sets of ideal convergence of sequences of quasicontinuous functions, J. Math. Anal. Appl. 423 (2015), no. 2, 924939.

[pdf,
doi]
On the difference property of Borel measurable and (s)measurable functions,
Acta Math. Hungar. 96 (2002), no. 12, 2125
(with I. Recław)
 H. Fujita and T. Matrai, On the difference property of Borel measurable functions, Fund. Math. 208
(2010), no. 1, 5773.

H. Fujita, Remarks on two problems by M. Laczkovich on functions with Borel measurable differences,
Acta Math. Hungar. 117 (2007), no. 12, 153160.

K. Ciesielski and J. Pawlikowski, Nice Hamel bases under the covering property axiom, Acta Math.
Hungar. 105 (2004), no. 3, 197213.

K. Ciesielski and J. Pawlikowski, The covering property axiom, CPA, Cambridge Tracts in Mathematics, vol. 164, Cambridge University Press, Cambridge, 2004.

M. Laczkovich, The difference property, Paul Erdos and his mathematics, I (Budapest, 1999), Bolyai
Soc. Math. Stud., vol. 11, Janos Bolyai Math. Soc., Budapest, 2002, pp. 363410.

[pdf]
Ideal convergence,
a chapter in the monograph
Traditional and presentday topics in real analysis,
Łódź University Press, 2013,
Editors: M. Filipczak, E. WagnerBojakowska
(with T. Natkaniec and P. Szuca)
[Cover and table of contents of the book]

[doi]
P. Das, A. Ghosh, Eggleston’s dichotomy for characterized subgroups and the role of ideals,
Ann. Pure Appl. Logic (2023), 103289

[doi]
P. Das, Ideals, Nonnegative Summability Matrices and Corresponding Convergence Notions: A Short Survey of Recent Advancements, Axioms 2022, 11(1).

[doi]
M. Staniszewski, On ideal equal convergence II, J. Math. Anal. Appl. 451 (2017), no. 2, 1179–1197

[pdf]
M. Balcerzak, M. Filipczak, Ideal convergence of sequences and some of its applications. Folia Math. 19 (2017), no. 1, 3–8.

[pdf, doi]
Representation of ideal convergence as a union and intersection of matrix summability methods,
J. Math. Anal. Appl. 484 (2020), no. 2, 123760 (with J. Tryba)

[arXiv,
pdf]
A. Marton, J. Supina,
On Plike ideals induced by disjoint families, arXiv:2212.07260 [math.GN]

[pdf, arXiv]
P. Leonetti, C. Orhan, On some locally convex FK spaces, arXiv:2205.15048 .

[doi]
P. Das, Ideals, Nonnegative Summability Matrices and Corresponding Convergence Notions: A Short Survey of Recent Advancements, Axioms 2022, 11(1).

[pdf,
doi]
On some properties of Hamel bases and their applications to Marczewski measurable functions,
Cent. Eur. J. Math. 11 (2013), no. 3, 487508
(with F. Dorais and T. Natkaniec)

[doi]
N.H. Bingham, E. Jabłońska, W. Jabłoński, A. Ostaszewski On Subadditive Functions Bounded Above on a “Large” Set, Results Math 75, 58 (2020)
 A. B. Kharazishvili, Set Theoretical Aspects of Real Analysis, Monographs and Research Notes in Mathematics, Taylor & Francis, 2014.
 N. H. Bingham and A. J. Ostaszewski, The Steinhaus theorem and regular variation: de Bruijn and after, Indag. Math. (N.S.) 24 (2013), no. 4, 679692.

[pdf,
doi]
Coincidence of PTPN22 c.1858CC and FCRL3 169CC genotypes as a biomarker of preserved residual βcell function in children with type 1 diabetes,
Pediatric Diabetes 18 (2017), no. 8, 696705
(with M. Pawłowicz, G. Krzykowski, A. StanisławskaSachadyn, L. Morzuch, J. Kulczycka, A. Balcerska, J. Limon)

[doi]
R. Žak, L. Navasardyan, J. Hunák, J. Martinů, P. Heneberg,
PTPN22 intron polymorphism rs1310182 (c.2054852T>C) is associated with type 1 diabetes mellitus in patients of Armenian descent

[doi]
G. Huraib, F. Harthi, M. Arfin, A. AlAsmari,
The Protein Tyrosine Phosphatase NonReceptor Type 22 (PTPN22) Gene Polymorphism and Susceptibility to Autoimmune Diseases, a chapter in The Recent Topics in Genetic Polymorphisms, (2020).

[doi] M. Z. Haider, M. A. Rasoul, M. AlMahdi, H. AlKandari, G. S. Dhaunsi,
Association of protein tyrosine phosphatase nonreceptor type 22 gene functional variant C1858T, HLADQ/DR genotypes and autoantibodies with susceptibility to type1 diabetes mellitus in Kuwaiti Arabs,
PLoS ONE 13(6): e0198652, (2018)

[pdf,
doi]
Extending the ideal of nowhere dense subsets of rationals to a Pideal,
Comment. Math. Univ. Carolin. 54 (2013), no. 3, 429435
(with N. Mrożek, I. Recław and P. Szuca)

[arXiv,
pdf
]
P. Leonetti, Tauberian theorems for ordinary convergence, arXiv:2012.03311 [math.FA]

[doi,
arXiv,
pdf]
M. Balcerzak, P. Leonetti, The Baire category of subsequences and permutations which preserve limit points.
Results Math. 75 (2020), no. 4, Paper No. 171, 14 pp.

[pdf,
doi]
There are measurable Hamel functions,
Real Anal. Exchange 36 (2010/2011), no. 1, 223230
(with A. Nowik and P. Szuca)
 T. Natkaniec, An example of a quasicontinuous Hamel function, Real Anal. Exchange 36 (2010/11), no. 1, 231236.
 G. Matusik and T. Natkaniec, Algebraic properties of Hamel functions, Acta Math. Hungar. 126 (2010), no. 3, 209229.

[pdf,
doi]
Algebraic sums of sets in MarczewskiBurstin algebras,
Real Anal. Exchange 31 (2005/2006), no. 1, 133142
(with F. Dorais)
 A. B. Kharazishvili, Set Theoretical Aspects of Real Analysis, Monographs and Research Notes in Mathematics, Taylor & Francis, 2014.
 M. Kysiak, Nonmeasurable algebraic sums of sets of reals, Colloq. Math. 102 (2005), no. 1, 113122.

[pdf,
doi]
On the difference property of the family of functions with the Baire property,
Acta Math. Hungar. 100 (2003), no. 12, 97104

T. Matrai, Weak difference property of functions with the Baire property, Fund. Math. 177 (2003),
no. 1, 117.

M. Laczkovich, The difference property, Paul Erdos and his mathematics, I (Budapest, 1999), Bolyai
Soc. Math. Stud., vol. 11, Janos Bolyai Math. Soc., Budapest, 2002, pp. 363410.

[pdf,
doi]
On Hindman spaces and the BolzanoWeierstrass property,
Topology Appl. 160 (2013), no. 15, 20032011

[pdf,
doi]
M. Singha, U. K. Hom,
Variant of thin sets and their influence in convergence,
Filomat 37:17 (2023), 5847–5858
 [doi]
K. Kowitz,
Differentially compact spaces,
Topology and its Applications,
Volume 307,
2022,
107948,

[pdf,
doi]
The reaping and splitting numbers of nice ideals,
Colloq. Math. 134 (2014), no. 2, 179192

[doi]
H. Zhang, J. He, S. Zhang,
Splitting positive sets, Sci. China Math. (2023)
 [pdf]
P. Das, U. Samanta, D. Chandra,
A more balanced approach to ideal variation of γcovers,
Houston J. Math. 46 (2020), no. 2, 519–535.

[pdf, doi]
Densities for sets of natural numbers vanishing on a given family,
J. of Number Theory 211 (2020), 371382 (with J. Tryba)

[arXiv,
pdf]
P. Leonetti, M. Caprio,
Turnpike in infinite dimension, arXiv:2012.06808 [math.FA]

[pdf,
doi]
A note on nonregular matrices and ideals associated with them,
Colloq. Math. 159 (2020), no. 1, 2945
(with P. Das and J. Tryba)

[doi]
M. Balcerzak and P. Leonetti, A Tauberian theorem for ideal statistical convergence, Indag. Math. (N.S.) 31 (2020), no. 1, 83–95.

[pdf,
doi]
Convergence in van der Waerden and Hindman spaces,
Topology Appl. 178 (2014), 438452
(with J. Tryba)

[arxiv,
doi]
A. Kwela, Unboring ideals, to appear in Fund. Math. (2023)

[arXiv,
PDF]
A unified approach to Hindman, Ramsey and van der Waerden spaces
(with K. Kowitz and A. Kwela)

[arxiv]
C. Corral, O. Guzmán, C. LópezCallejas, P. Memarpanahi, P. Szeptycki, S. Todorčevic,
Infinite dimensional sequential compactness: Sequential compactness based on barriers,
arXiv:2309.04397