ON HINDMAN SPACES AND THE BOLZANO-WEIERSTRASS PROPERTY

RAFTAL FILIPÓW

Abstract. We examine relationships between two classes of topological spaces defined with the aid of the Hindman ideal. We also do the same for another ideal — instead of sums, as in the Hindman ideal, we consider differences.

1. Introduction

In the sequel we assume all our topological spaces to be Hausdorff. The set of natural numbers we denote by the symbol ω. By Y^X we denote the set of all functions from X into Y, and in case of $X \subseteq \omega$ the set Y^X is the set of all sequences $(y_n)_{n \in X}$ with $y_n \in Y$ for $n \in X$. Let $Y^{\leq \omega} = \bigcup_{n \in \omega} Y^{\{0,1,\ldots,n-1\}}$.

An ideal on ω is a family $I \subseteq \mathcal{P}(\omega)$ (where $\mathcal{P}(\omega)$ denotes the power set of ω) which is closed under taking subsets and finite unions. In the sequel we assume that all considered ideals contain all finite sets and are proper (i.e. $\omega \notin I$).

Let I be an ideal on ω. It seems interesting to describe the class of topological spaces X such that for every sequence $(x_n)_{n \in \omega} \in X^\omega$ there exists a converging subsequence $(x_{n_k})_{k \in \omega}$ such that $\{n_k : k \in \omega\} \notin I$ (i.e. the set of indexes is large in sense of the ideal I). (Note that for the ideal I of all finite subsets of ω we obtain the class of all sequentially compact spaces.) This question was already considered in the literature. In [7] Kojman examines the above property for the van der Waerden ideal $W = \{A \subseteq \omega : A$ does not contain arithmetic progressions of arbitrary length$\}$, in [3] Flasiková examines the ideal $I_{1/n} = \{A \subseteq \omega : \sum_{n \in A} \frac{1}{n} < \infty\}$, in [1] and [2] the authors characterize ideals I for which the above property holds for some subclass of topological spaces.

However, this property seems to be too strong for some ideals. For instance, in [6, Theorem 3], the author proved that there is no uncountable space X which satisfies the above property for the Hindman ideal $H = \{A \subseteq \omega :$ there is no infinite set $D \subseteq A$ with $\text{FS}(D) \subseteq A\}$, where $\text{FS}(D) = \{\sum_{n \in F} n : F \subseteq D$ is nonempty and finite$\}$.

One can cope with this difficulty by changing the hypothesis that the subsequence is convergent by other kinds of convergence related to the ideal I. For example, in [4] the authors introduced IP-convergence (see Section 3 for the definition) and proved...
that there are uncountable spaces \(X \) such that for every sequence \((x_n)_{n \in \omega} \in X^\omega \) there exists a subsequence which is IP-convergent. In [6], the author calls them Hindman spaces. On the other hand, in [1] and [2] the authors, using the \(I \)-convergence (see Section 2 for the definition), examine ideals \(I \) and spaces \(X \) such that for every sequence \((x_n)_{n \in \omega} \in X^\omega \) there exists a subsequence which is \(I \)-convergent (in this case they say that \((X, I) \) has BW property).

In Section 3 we study the relationship between Hindman spaces and spaces \(X \) such that \((X, H) \) has BW property.

In Section 4 we consider an ideal similar to the Hindman ideal and examine topological spaces defined with this ideal in the similar manner as Hindman spaces.

2. Bolzano-Weierstrass property

Let \(X \) be a topological space, \(I \) an ideal on \(\omega \) and \(A \subseteq \omega \). We say that a sequence \((x_n)_{n \in A} \in X^A \) is \(I \)-convergent to \(x \in X \) if

\[
\{ n \in A : x_n \notin U \} \in I
\]

for every open neighborhood \(U \subseteq X \), \(x \in U \). We say that the pair \((X, I)\) has BW property if every sequence \((x_n)_{n \in \omega} \in X^\omega \) has an \(I \)-convergent subsequence \((x_n)_{n \in A} \) with \(A \notin I \).

We write \((X, I) \in BW\) if the pair \((X, I)\) has BW property; we say that an ideal \(I \) has BW property \((I \in BW, \text{in short})\) if the pair \((\{0, 1\}, I) \in BW\). For examples and properties of ideals with(out) BW property see [1] where this definition was introduced.

In the sequel we will use the following characterization of BW property.

Proposition 2.1 ([1, Proposition 3.3]). An ideal \(I \) has BW property if and only if for every family \(\{A_s : s \in \{0, 1\}^{<\omega}\} \) fulfilling the following conditions

1. \(A_0 = \omega \),
2. \(A_s = A_{s-0} \cup A_{s-1}, \)
3. \(A_{s-0} \cap A_{s-1} = \emptyset, \)

there exist \(x \in \{0, 1\}^\omega \) and \(B \subseteq \omega \), \(B \notin I \) such that \(B \setminus A_{x|n} \in I \) for all \(n \).

We say that sets \(A, B \) are almost disjoint if \(A \cap B \) is finite.

Let \(\mathcal{A} \) be a pairwise almost disjoint family of infinite subsets of \(\omega \). Define a topological space \(\Psi(\mathcal{A}) \) as follows: the underlying set of \(\Psi(\mathcal{A}) \) is \(\omega \cup \mathcal{A} \), the points of \(\omega \) are isolated and a basic neighborhood of \(A \in \mathcal{A} \) has the form \(\{A\} \cup (A \setminus F) \), with \(F \) finite. (The space \(\Psi(\mathcal{A}) \) was introduced in [8].) It is known that the space \(\Psi(\mathcal{A}) \) is Hausdorff, regular, locally compact, first countably and separable; if \(\mathcal{A} \) is infinite then \(\Psi(\mathcal{A}) \) is not compact (see [8] or [10, Section 11]). Moreover, it is easy to see that

- \(A \cup \{A\} \) is compact in \(\Psi(\mathcal{A}) \) for every \(A \in \mathcal{A} \);
- \(K \cap \mathcal{A} \) is finite for every compact \(K \subseteq \Psi(\mathcal{A}) \);
- \((K \setminus \bigcup(K \cap \mathcal{A})) \cap \omega \) is finite for every compact \(K \subseteq \Psi(\mathcal{A}) \).

Let \(\Phi(\mathcal{A}) = \Psi(\mathcal{A}) \cup \{\infty\} \) be the one-point compactification of \(\Psi(\mathcal{A}) \). (Recall that open neighborhoods of \(\infty \) are of the form \(\Phi(\mathcal{A}) \setminus K \) for compact sets \(K \subseteq \Psi(\mathcal{A}) \).) Thus, \(\Phi(\mathcal{A}) \) is Hausdorff and compact. It is not difficult to show that \(\Phi(\mathcal{A}) \) is separable and first countable at every point of \(\Phi(\mathcal{A}) \setminus \{\infty\} \); if \(\mathcal{A} \) is infinite then \(\Phi(\mathcal{A}) \) is not first countable at the point \(\infty \). If \(\mathcal{A} \) is a mad family on \(\omega \) (i.e. infinite
maximal pairwise almost disjoint family of infinite subsets of \(\omega \), then \(\Phi(A) \) is sequentially compact (see [7, Theorem 6]).

Theorem 2.2. Let \(I \) be an ideal on \(\omega \). If \(A \subseteq I \) is a mad family on \(\omega \), then \((\Phi(A), I) \in BW\).

Proof. Let \(Y = \Psi(A), X = \Phi(A), (x_n)_{n \in \omega} \in X^\omega \). We have 3 cases:

1. \(B = \{ n \in \omega : x_n = \infty \} \notin I \);
2. \(B = \{ n \in \omega : x_n \in A \} \notin I \);
3. \(B = \{ n \in \omega : x_n \in \omega \} \notin I \).

In case (1) the subsequence \((x_n)_{n \in B}\) is \(I \)-convergent to \(\infty \) and \(B \notin I \).
In case (2) we have two subcases:

(2a) there is \(A \in A \) with \(C = \{ n \in B : x_n = A \} \notin I \);
(2b) \(\{ n \in B : x_n = A \} \notin I \) for every \(A \in A \).
In case (2a) the subsequence \((x_n)_{n \in C}\) is \(I \)-convergent to \(A \) and \(C \notin I \).
In case (2b) the sequence \((x_n)_{n \in B}\) is \(I \)-convergent to \(\infty \) and \(B \notin I \). Indeed, let \(K \subseteq Y \) be a compact subset of \(Y \). We will show that \(\{ n \in B : x_n \notin X \setminus K \} \notin I \).

Let \(K \cap A = \{ A_1, \ldots, A_m \} \). Let \(F_i = \{ n \in B : x_n = A_i \} \) (\(i = 1, \ldots, m \)). Since \(F_i \in I \) for every \(i = 1, \ldots, m \), so \(n \in B : x_n \notin X \setminus K \) = \(F_1 \cup \cdots \cup F_m \in I \).

In case (3) we have 3 subcases:

(3a) there is \(r \in \omega \) with \(C = \{ n \in B : x_n = r \} \notin I \);
(3b) \(\{ n \in B : x_n = r \} \notin I \) for every \(r \in \omega \) and \(C = \{ n \in B : x_n \in A \} \notin I \) for some \(A \in A \);
(3c) \(\{ n \in B : x_n = r \} \in I \) for every \(r \in \omega \) and \(\{ n \in B : x_n \in A \} \in I \) for every \(A \in A \).

In case (3a) the subsequence \((x_n)_{n \in C}\) is \(I \)-convergent to \(r \) and \(C \notin I \).
In case (3b) the subsequence \((x_n)_{n \in C}\) is \(I \)-convergent to \(A \) and \(C \notin I \). Indeed, let \(F \subseteq A \) be a finite set. We will show that \(\{ n \in C : x_n \notin \{ A \cup (A \setminus F) \} \} \notin I \).

Let \(F = \{ r_1, \ldots, r_m \} \). Let \(F_i = \{ n \in B : x_n = r_i \} \) (\(i = 1, \ldots, m \)). Since \(F_i \in I \) for every \(i = 1, \ldots, m \), so \(n \in C : x_n \notin \{ A \} \cup (A \setminus F) \} \subseteq F_1 \cup \cdots \cup F_m \in I \).

In case (3c) the subsequence \((x_n)_{n \in B}\) is \(I \)-convergent to \(\infty \) and \(B \notin I \). Indeed, let \(K \subseteq Y \) be a compact subset of \(Y \). We will show that \(\{ n \in B : x_n \notin X \setminus K \} \notin I \).

Let \(K \cap A = \{ A_1, \ldots, A_m \} \). Let \(F_i = \{ n \in B : x_n \in A_i \} \) (\(i = 1, \ldots, m \)). Let \(F = \{ n \in B : x_n \notin A_i \} \) (\(j = 1, \ldots, k \)). Since \(F_j, G_j \in I \) for every \(i = 1, \ldots, m, j = 1, \ldots, k \), so \(\{ n \in B : x_n \notin X \setminus K \} \subseteq F_1 \cup \cdots \cup F_m \cup G_1 \cup \cdots \cup G_k \in I \). \(\Box \)

3. Hindman ideal

For \(A \subseteq \omega \) we write

\[
FS(A) = \left\{ \sum_{n \in F} n : F \subseteq A \text{ is nonempty and finite} \right\},
\]

i.e. \(FS(A) \) is the set of all finite non-repeating sums of members of \(A \). A set \(A \subseteq \omega \) may be called an IP-set if there is an infinite \(D \subseteq A \) with \(FS(D) \subseteq A \).

Theorem 3.1 (Hindman [5]). If an IP-set is partitioned into finitely many parts, then one of the parts is an IP-set.
Let \mathcal{H} denote the family of all non-IP-sets $A \subseteq \omega$. Then by Hindman’s theorem \mathcal{H} is an ideal, and we call it the Hindman ideal.

An infinite set $D \subseteq \omega$ is called sparse if for every $x \in \text{FS}(D)$ there is a unique nonempty finite set $F \subseteq D$ with $x = \sum_{n \in F} n$. It is not difficult to show that for every infinite D there is an infinite sparse $E \subseteq D$.

For $A, B \subseteq \omega$ we write $A + B = \{a + b : a \in A \land b \in B\}$. If $n \in \omega$ then $A + n = A + \{n\}$.

Lemma 3.2. If $E \subseteq \omega$ is an infinite sparse set then $\text{FS}(E \cap \{0, 1, \ldots, m - 1\}) + \text{FS}(E \setminus \{0, 1, \ldots, m - 1\}) \in \mathcal{H}$ for every $m \in \omega$.

Proof. Let $m \in \omega$. If $E \cap \{0, 1, \ldots, m - 1\} = \emptyset$, then $\text{FS}(E \cap \{0, 1, \ldots, m - 1\}) + \text{FS}(E \setminus \{0, 1, \ldots, m - 1\}) = \emptyset \in \mathcal{H}$. Now suppose that $E \cap \{0, 1, \ldots, m - 1\} \neq \emptyset$. Since $\text{FS}(E \cap \{0, 1, \ldots, m - 1\})$ is finite so $\text{FS}(E \cap \{0, 1, \ldots, m - 1\}) + \text{FS}(E \setminus \{0, 1, \ldots, m - 1\})$ is a finite union of sets of the form

$$(x_1 + \cdots + x_n) + \text{FS}(E \setminus \{0, 1, \ldots, m - 1\})$$

for distinct $x_1, \ldots, x_n \in E \cap \{0, 1, \ldots, m - 1\}$ and $n \geq 1$. If we show that each of the above sets is in \mathcal{H} then $\text{FS}(E \cap \{0, 1, \ldots, m - 1\}) + \text{FS}(E \setminus \{0, 1, \ldots, m - 1\}) \in \mathcal{H}$.

Let $A = (x_1 + \cdots + x_n) + \text{FS}(E \setminus \{0, 1, \ldots, m - 1\})$ where $x_1, \ldots, x_n \in E \cap \{0, 1, \ldots, m - 1\}$ are pairwise distinct. We will show that the sum of any two different elements from A is not in A. Thus there is no infinite subset of A all of whose finite sums belong to it.

Suppose it is not the case. Then there are $e_1, \ldots, e_k \in E \setminus \{0, 1, \ldots, m - 1\}$ (pairwise distinct), $f_1, \ldots, f_p \in E \setminus \{0, 1, \ldots, m - 1\}$ (pairwise distinct) and $g_1, \ldots, g_l \in E \setminus \{0, 1, \ldots, m - 1\}$ (pairwise distinct) such that

$$(x_1 + \cdots + x_n + e_1 + \cdots + e_k) + (x_1 + \cdots + x_n + f_1 + \cdots + f_p) = x_1 + \cdots + x_n + g_1 + \cdots + g_l.$$

Then

$$(x_1 + \cdots + x_n) + (e_1 + \cdots + e_k) + (f_1 + \cdots + f_p) = g_1 + \cdots + g_l \in \text{FS}(E).$$

We know that every element of FS(E) has a unique representation as a sum of some elements from E. But $g_i \neq x_j$ for every i, j, a contradiction. \qed

A filter on ω is a family $\mathcal{F} \subseteq \mathcal{P}(\omega)$ which is closed under taking supersets and finite intersections. A maximal filter is called ultrafilter.

For $A \subseteq \omega$ we define $A - n = \{k \in \omega : k + n \in A\}$.

An ultrafilter \mathcal{U} on ω is called idempotent if $\mathcal{U} = \mathcal{U} + \mathcal{U}$, where

$$\mathcal{U} + \mathcal{U} = \{A \subseteq \omega : \{n \in \omega : A - n \in \mathcal{U}\} \in \mathcal{U}\}.$$

It is known that there are idempotent ultrafilters (see e.g. [9, p. 68]).

Theorem 3.3. The Hindman ideal \mathcal{H} has BW property.

Proof. Let $\{A_s : s \in \{0, 1\}^{<\omega}\}$ satisfy (T1) – (T3) from Proposition 2.1. Let \mathcal{U} be an idempotent ultrafilter on ω.

Since \mathcal{U} is an ultrafilter, so if $A \cup B \in \mathcal{U}$ and $A \cap B = \emptyset$, then either $A \in \mathcal{U}$ or $B \in \mathcal{U}$. Thus there is (a unique) $x \in \{0, 1\}^{<\omega}$ such that $A_{x|n} \in \mathcal{U}$ for every $n \in \omega$.

We define a sequence $(b_n : n \in \omega)$ such that

(1) for $i \in \{0, 1, \ldots, n\}$ and $a \in \text{FS}((b_i, b_{i+1}, \ldots, b_n))$ one has that $a \in A_{x|i}$ and $(A_{x|i} - a) \cap \omega \in \mathcal{U}$ and
(2) if $i < n$, then $b_{i+1} > b_0 + \cdots + b_i$.

Take any $b_0 \in A_x[0] = \omega$. Suppose we have already constructed b_0, \ldots, b_n as required. Let

$$A = \bigcap_{i \leq n} \bigcap_{a \in \text{FS}([b_i, b_{i+1}, \ldots, b_n])} (A_x[i \cdot a] \cap \omega).$$

Since A is an intersection of finitely many sets from \mathcal{U} so $A \in \mathcal{U}$. Since $\mathcal{U} = \mathcal{U} + \mathcal{U}$ so $\{ k \in \omega : (A_x[n+1] - k) \cap \omega \in \mathcal{U} \} \in \mathcal{U}$ and $\{ k \in \omega : (A - k) \cap \omega \in \mathcal{U} \} \in \mathcal{U}$. Let $b_{n+1} \in A_x[n+1]$ such that $(A_x[n+1] - b_{n+1}) \cap \omega \in \mathcal{U}$, $(A - b_{n+1}) \cap \omega \in \mathcal{U}$ and $b_{n+1} > b_0 + \cdots + b_n$.

It is not difficult to check that $(b_n : n \in \omega)$ satisfies the required conditions.

Let $B = \text{FS}([b_n : n \in \omega]) \not\in \mathcal{H}$. We will show that $B \setminus A_x[n] \in \mathcal{H}$ for every $n \in \omega$.

Let $n \in \omega$. Since $B = \text{FS}([b_0, \ldots, b_{n-1}]) \cup \text{FS}([b_i : i \geq n]) \cup (\text{FS}([b_0, \ldots, b_{n-1}]) + \text{FS}([b_i : i \geq n]))$.

and $\text{FS}([b_i : i \geq n]) \subseteq A_x[n]$ so

$$B \setminus A_x[n] \subseteq \text{FS}([b_0, \ldots, b_{n-1}]) \cup (\text{FS}([b_0, \ldots, b_{n-1}]) + \text{FS}([b_i : i \geq n])).$$

But $\{b_n : n \in \omega \}$ is a sparse set so $\text{FS}([b_0, \ldots, b_{n-1}]) + \text{FS}([b_i : i \geq n]) \in \mathcal{H}$ by Lemma 3.2. Thus finally $B \setminus A_x[n] \in \mathcal{H}$. \hfill \Box

It was shown in [1, p. 505] that if $\mathcal{I} \in \mathcal{B}W$ then $(X, \mathcal{I}) \in \mathcal{B}W$ for every uncountable compact metric space.

Corollary 3.4. If X is an uncountable compact metric space, then $(X, \mathcal{H}) \in \mathcal{B}W$.

Let $D \subseteq \omega$ be an infinite set and X a topological space. A sequence $(x_n)_{n \in \text{FS}(D)}$, $x_n \in X$ is IP-convergent to $x \in X$ if for every open neighborhood $U \subseteq X$, $x \in U$ there is $m \in \omega$ such that

$$\{x_n : n \in \text{FS}(D \setminus \{0, 1, \ldots, m-1\}) \subseteq U\}.$$

A topological space X is Hindman if for every sequence $(x_n)_{n \in \omega}$, $x_n \in X$ there is an infinite set $D \subseteq \omega$ such that $\{x_n : n \in \text{FS}(D)\}$ is IP-convergent to some $x \in X$ ([6, Definition 4]).

Proposition 3.5. If X is a Hindman space then $(X, \mathcal{H}) \in \mathcal{B}W$.

Proof. Let $(x_n)_{n \in \omega} \in X^\omega$. Let $D \subseteq \omega$ be an infinite set such that $(x_n)_{n \in \text{FS}(D)}$ is IP-convergent to some $x \in X$. We can assume that D is sparse. Let $B = \text{FS}(D)$.

We claim that $(x_n)_{n \in B} \in \mathcal{H}$-convergent.

Obviously $B \not\in \mathcal{H}$. Let $U \subseteq X$ be an open neighborhood of x. Since $(x_n)_{n \in B}$ is IP-convergent to x, so there is $m \in \omega$ with $\{x_n : n \in \text{FS}(D \setminus \{0, 1, \ldots, m-1\}) \} \subseteq U$.

Then $\{n \in B : x_n \not\in U \} \subseteq \text{FS}(D \cap \{0, 1, \ldots, m-1\}) + \text{FS}(D \setminus \{0, 1, \ldots, m-1\})$.

By Lemma 3.2, $\text{FS}(D \cap \{0, 1, \ldots, m-1\}) + \text{FS}(D \setminus \{0, 1, \ldots, m-1\}) \in \mathcal{H}$, so $\{n \in B : x_n \not\in U \} \in \mathcal{H}$. \hfill \Box

In [6, Theorem 11] it is shown that every topological space X satisfying the following condition:

(*) closure of every countable set in X is compact and first countable is Hindman.

Corollary 3.6. If a space X satisfies condition (\ast) then $(X, \mathcal{H}) \in \mathcal{B}W$.

Below we show that BW property for a space is weaker than being Hindman.

Theorem 3.7. There exists a Hausdorff, compact, sequentially compact, separable space X which is first-countable at all points but one such that $(X, H) \in BW$ but X is not Hindman.

Proof. Let A be a mad family such that $A \subseteq H$. Let $X = \Phi(A)$. By Theorem 2.2 $(X, H) \in BW$ and by [6, Theorem 10] X is not Hindman. □

4. DIFFERENCES INSTEAD OF SUMS

For $A, B \subseteq \omega$ we write $A - B = \{a - b : a \in A, b \in B, a > b\}$ and $D(A) = A - A$. A set $A \subseteq \omega$ is called D-set if there is an infinite $E \subseteq \omega$ with $D(E) \subseteq A$. Let D denote the family of all non-D-sets $A \subseteq \omega$.

Proposition 4.1. D is a proper ideal on ω.

Proof. Clearly D is proper and closed under subsets. We will show that it is closed under finite unions. Let $A, B \in D$ and suppose that $A \cup B \notin D$. Thus there is an infinite $E \subseteq \omega$ with $D(E) \subseteq A \cup B$. We define a coloring $c : [E]^2 \rightarrow \{0, 1\}$ by $c(n, m) = 0 \iff |n - m| \in A$. By Ramsey’s theorem there is an infinite $F \subseteq E$ which is homogeneous for c. If it is 0-homogeneous then $D(F) \subseteq A$ and if it is 1-homogeneous then $D(F) \subseteq B$. In both cases we get a contradiction. □

Proposition 4.2. $D \subseteq H$ and $D \notin H$.

Proof. Let $A \notin H$. Then there is an infinite $B = \{b_n : n \in \omega\}$ with $FS(B) \subseteq A$. Let $E = \{\sum_{i=0}^n b_i : n \in \omega\}$. Then E is infinite and $D(E) \subseteq FS(B) \subseteq A$. Thus $A \notin D$.

Now we show that $D \notin H$. Let $A = \{\sum_{i=0}^n 4^i : k, n \in \omega \wedge k \leq n\}$. Then $A \notin D$ since $D(B) \subseteq A$, where $B = \{\sum_{i=0}^n 4^i : n \in \omega\}$. Suppose that $A \notin H$. Then there is an infinite $C \subseteq A$ with $FS(C) \subseteq A$. We have two cases:

1. There are $x = \sum_{i=1}^{n_1} 4^i, y = \sum_{i=2}^{n_2} 4^i \in C$ such that $x < y$ and $k_2 \leq n_1$;
2. For every $x = \sum_{i=1}^{n_1} 4^i, y = \sum_{i=2}^{n_2} 4^i \in C$, if $x < y$ then $n_1 < k_2$.

In the first case, the base 4 representation of $x + y$ has a block of 2’s, whereas the members of A are those numbers whose base 4 representation consists of a block of 1’s followed by a (possibly empty) block of 0’s, a contradiction.

Now, consider the second case. Let $x = \sum_{i=1}^{n_1} 4^i, y = \sum_{i=2}^{n_2} 4^i, z = \sum_{i=3}^{n_3} 4^i \in C$ such that $x < y < z$. Then $n_1 < k_2 < k_3$. Since $x + z \in A$, there are $n < k$ such that $x + z = \sum_{i=1}^{n} 4^i$. Thus $x + z = \sum_{i=1}^{n_1} 4^i + \sum_{i=2}^{n_2} 4^i = \sum_{i=1}^{n} 4^i$, but A is a sparse set, a contradiction. □

A set $A \subseteq \omega$ is D-sparse if for every $k \in D(A)$ there is only one pair $n, m \in A$ with $k = m - n$.

Proposition 4.3.

1. If $A \subseteq \omega$ is D-sparse and $n \in \omega$, then $A + n \in D$.
2. For every infinite $A \subseteq \omega$ there is an infinite D-sparse $B \subseteq A$.
3. The ideal D is dense (i.e. every infinite $A \subseteq \omega$ contains an infinite $B \subseteq A$ with $B \in I$).

Proof.

1. Suppose that there is an infinite $E \subseteq \omega$ with $D(E) \subseteq A + n$. Let $a < b < c < d \in E$. Then $d - a - n, d - b - n, c - b - n, c - a - n \in A$ and $d - b - n \notin d - a - n$. On the other hand,

$$
(d - b - n) - (c - b - n) = (d - a - n) - (c - a - n) \in D(A),
$$

2. Let A be an infinite set and B be a sparse set. Then $A + B$ is D-sparse.

3. Let A be an infinite set. Then $D(A)$ is dense in A.
a contradiction.
(2) Straightforward.
(3) Follows from (2). \square

Theorem 4.4. The ideal \mathcal{D} has BW property.

Proof. Let $\{A_s : s \in \{0, 1\}^{<\omega}\}$ satisfy $(T1) - (T3)$ from Proposition 2.1. We will construct $E_n \subseteq \omega$ and $j_n \in \{0, 1\}$ $(n \in \omega)$ such that

1. E_n is an infinite set,
2. $E_0 \supseteq E_{n+1}$,
3. $\mathcal{D}(E_n) \subseteq A_{(j_0, j_1, \ldots, j_{n-1})}$.

Let $E_0 = \omega$. Suppose that we have already constructed E_k and j_k for $k \leq n$. We define a coloring $c : [E_n]^2 \to \{0, 1\}$ by

$$c(a, b) = j \iff |a - b| \in A_{(j_0, j_1, \ldots, j_{n-1}, j)}.$$

By Ramsey’s theorem there is an infinite $E_{n+1} \subseteq E_n$ and $j_n \in \{0, 1\}$ with $c(a, b) = j_n$ for every $a, b \in E_{n+1}$. That finishes the construction.

Let $F = \mathcal{D}(E)$ and $x \in \{0, 1\}^\omega$ such that $x(n) = j_n$ for each $n \in \omega$. Then $F \notin \mathcal{D}$ and we claim that $B \setminus A_{x|n} \in \mathcal{D}$ for every $n \in \omega$ (and that will finish the proof by Proposition 2.1).

Let $n \in \omega$. Then $B \setminus A_{x|n} \subseteq \mathcal{D}(F_n \cup (E \cap E_n)) \setminus A_{x|n} = \mathcal{D}(F_n) \cup \mathcal{D}(E \cap E_n) \cup (F_n - (E \cap E_n)) \setminus A_{x|n} \subseteq \mathcal{D}(F_n) \cup (F_n - (E \cap E_n)).$

The set $\mathcal{D}(F_n) \in \mathcal{D}$ as a finite set. Moreover, $F_n - (E \cap E_n) = \bigcup_{a \in F_n} (E \cap E_n - a)$ is a finite union of translations of the \mathcal{D}-sparse set, hence, by Proposition 4.3, $F_n - (E \cap E_n) \in \mathcal{D}$. Thus $B \setminus A_{x|n} \in \mathcal{D}$. \square

It was shown in [1, p. 505] that if $\mathcal{I} \in BW$ then $(X, \mathcal{I}) \in BW$ for every uncountable compact metric space.

Corollary 4.5. If X is an uncountable compact metric space, then $(X, \mathcal{D}) \in BW$.

Let $A \subseteq \omega$ be an infinite set and X a topological space. A sequence $(x_n)_{n \in \mathcal{D}(A)}$, $x_n \in X$ is R-convergent to $x \in X$ if for every open neighborhood $U \subseteq X$, $x \in U$ there is $m \in \omega$ with

$$\{x_n : n \in \mathcal{D}(A \setminus \{0, 1, \ldots, m - 1\})\} \subseteq U.$$

A topological space X is an R-space if for every sequence $(x_n)_{n \in \omega}$, $x_n \in X$ there is an infinite set $A \subseteq \omega$ such that $(x_n)_{n \in \mathcal{D}(A)}$ is R-convergent to some $x \in X$.

Proposition 4.6. Every Hindman space is an R-space.

Proof. Let X be a Hindman space and $(x_n)_{n \in \omega} \in X^\omega$. Then there is an infinite $A = \{a_n : n \in \omega\}$ $(a_n < a_{n+1}$ for every $n \in \omega)$ such that $(x_n)_{n \in \mathcal{FS}(A)}$ is IP-convergent to some $x \in X$. Let $B = \{\sum_{i=0}^n a_i : n \in \omega\}$. We will show that $(x_n)_{n \in \mathcal{D}(B)}$ is D-convergent to x. Let $U \subseteq X$ be an open neighborhood of x. Then there is $m \in \omega$ such that $\{x_n : n \in \mathcal{FS}(A \setminus \{0, 1, \ldots, m - 1\})\} \subseteq U$. Let $N \in \omega$ such that $a_N > m$. Let $k = \sum_{i=0}^{N-1} a_i$. Then $\{x_n : n \in \mathcal{D}(B \setminus \{0, 1, \ldots, k - 1\})\} \subseteq U$. \square

Proposition 4.7. If X is an R-space then $(X, \mathcal{D}) \in BW$.
Proof. Let \(X \) be an R-space and \((x_n)_{n \in \omega} \in X^\omega\). Then there is an infinite \(E \subseteq \omega \) such that \((x_n)_{n \in D(E)}\) R-converges to some \(x \in X \). Let \(F \subseteq E \) be an infinite \(D \)-sparse set. Let \(B = D(F) \). Then \(B \notin D \) and we claim that \((x_n)_{n \in B}\) D-converges to \(x \). Indeed, let \(U \subseteq X \) be an open neighborhood of \(x \). There is \(m \in \omega \) such that \(\{ n : n \in D(F \setminus \{0,1,\ldots,m-1\}) \} \subseteq U \). Thus

\[
\{ n \in B : x_n \notin U \} \subseteq D(\{0,1,\ldots,m-1\}) \cup ((F \setminus \{0,1,\ldots,m-1\}) - \{0,1,\ldots,m-1\}).
\]

But \(D(\{0,1,\ldots,m-1\}) \in D \) as a finite set. Moreover, \((F \setminus \{0,1,\ldots,m-1\}) - \{0,1,\ldots,m-1\} \in D \) as a finite union of translations of \(D \)-sparse sets (by Proposition 4.3).

By Proposition 4.6 and [6, Theorem 11] we get the following corollary.

Corollary 4.8. If \(X \) satisfies \((*)\)-property then \(X \) is an R-space and \((X, D) \in BW\).

Finally, we show that \(BW \) property for a space is weaker than being R-space.

Theorem 4.9. There exists a Hausdorff, compact, sequentially compact, separable space \(X \) which is first-countable at all points but one such that \((X, D) \in BW \) but \(X \) is not an R-space.

Proof. Let \(A \) be a mad family such that \(A \subseteq D \). Let \(X = \Phi(F) \). By Theorem 2.2 \((X, D) \in BW\). Below we will show that \(X \) is not an R-space.

Let \(x_n = n \) for every \(n \in \omega \). We claim that this sequence does not have an R-convergent subsequence. Suppose that there is an infinite \(E \subseteq \omega \) such that \((x_n)_{n \in D(E)}\) is R-convergent to \(x \in X \). Obviously \(x \notin \omega \), hence we have two cases:

1. \(x \in A \) or
2. \(x = \infty \).

In the first case, let \(x = A \in A \). Then for \(U = A \cup \{A\} \) there is \(m \in \omega \) with \(\{ x_n : n \in D(E \setminus \{0,1,\ldots,m-1\}) \} \subseteq U \). Thus \(D(E \setminus \{0,1,\ldots,m-1\}) \subseteq A \), so \(A \notin D \), a contradiction.

Now consider the second case. Let \(B_m = D(E \setminus \{0,1,\ldots,m-1\}) \). Let \(B \subseteq \omega \) be an infinite set such that \(B \setminus B_m \) is finite for every \(m \in \omega \). Since \(D \) is dense (by Proposition 4.3) so there is \(C \subseteq B \) with \(C \in D \). Since \(A \) is maximal so there is \(A \in A \) with \(|A \cap C| = \omega \). Let \(U = X \setminus (A \cup \{A\}) \). Then there is \(m \in \omega \) with \(\{ x_n : n \in D(E \setminus \{0,1,\ldots,m-1\}) \} \subseteq U \). Thus \(B_m \cap A = \emptyset \) so \(C \cap A \) is finite, a contradiction. \(\square \)

5. Problems

Problem 1. Does there exist an R-space which is not a Hindman space?

Problem 2. Is there a relationship between \("(X, H) \in BW\)" and \("(X, D) \in BW\)"?

Acknowledgment. The work of the author was supported by BW grant 51005-0148-8 and the Skirball postdoctoral fellowship of the Center of Advanced Studies in Mathematics at the Mathematics Department of Ben Gurion University.

The author would like to thank Menachem Kojman for suggesting to consider the ideal \(D \) and R-convergence.
ON HINDMAN SPACES AND THE BOLZANO-WEIERSTRASS PROPERTY

References

Institute of Mathematics, University of Gdańsk, ul. Wita Stwosza 57, 80-952 Gdańsk, Poland

E-mail address: rfilipow@mat.ug.edu.pl
URL: http://rfilipow.mat.ug.edu.pl/