THE REAPING AND SPLITTING NUMBERS OF NICE IDEALS

RAFAL FILIPOW

Abstract. We examine the splitting number \(s(B) \) and the reaping number \(r(B) \) of quotient Boolean algebras \(B = \mathcal{P}(\omega)/I \) over \(F_\sigma \) ideals and analytic \(P \)-ideals. For instance we prove that under Martin’s axiom \(s(\mathcal{P}(\omega)/I) = \epsilon \) for all \(F_\sigma \) ideals and analytic \(P \)-ideals with BW property (and one cannot drop the assumption about BW property). On the other hand we prove that under Martin’s axiom \(r(\mathcal{P}(\omega)/I) = \epsilon \) for all \(F_\sigma \) ideals and analytic \(P \)-ideals (in this case we do not need the assumption about BW property). We also provide applications of these characteristics to the ideal convergence of sequences of real-valued functions defined on reals.

1. Introduction

Let \(B \) be a Boolean algebra. A set \(S \) is a splitting set for \(B \) if for every nonzero \(b \in B \) there is an \(s \in S \) such that \(b \cdot s \neq 0 \neq b \cdot (-s) \). A set \(D \subseteq B \setminus \{0\} \) is weakly dense if for every \(b \in B \) there is \(d \in D \) such that \(d \leq b \) or \(d \leq -b \). By the splitting number of \(B \) we mean the cardinal \(s(B) = \min\{|S| : S \text{ is a splitting set for } B\} \), and by the reaping number of \(B \) we mean \(r(B) = \min\{|D| : D \text{ is weakly dense in } B\} \). Many results on \(s(B) \) and \(r(B) \) for various Boolean algebras can be found in [23].

In the sequel we assume that if \(I \) is an ideal on \(\omega \) then \([\omega]^{<\omega} \subseteq I \) and \(\omega \notin I \).

For a set \(A \subseteq \omega \) we put \(A^0 = A \) and \(A^1 = \omega \setminus A \).

Let \(I \) be an ideal on \(\omega \). By \(I^+ = \mathcal{P}(\omega) \setminus I \) we denote the coideal of \(I \). A set \(A \) \(I \)-splits \(B \) if both \(B \cap A^0, B \cap A^1 \in I^+ \). A family \(\mathcal{R} \subseteq I^+ \) is \(I \)-unsplittable if no single set \(I \)-splits all members of \(\mathcal{R} \). An \(I \)-splitting family is a family \(S \subseteq \mathcal{P}(\omega) \) such that each \(A \in I^+ \) is \(I \)-split by at least one \(S \in S \).

In this paper we are interested in the splitting and reaping numbers of quotient Boolean algebras of the form \(B = \mathcal{P}(\omega)/I \) where \(I \) is an \(F_\sigma \) ideal or analytic \(P \)-ideal on \(\omega \) (see Section 2 for definitions of \(F_\sigma \) and analytic \(P \)-ideals). We write then \(s(I) = s(\mathcal{P}(\omega)/I) \) and \(r(I) = r(\mathcal{P}(\omega)/I) \). In this case the definitions of \(s(I) \) and \(r(I) \) can be rephrased in the following manner:

\[
s(I) = \min\{|S| : S \subseteq I^+, S \text{ is an } I \text{-splitting family}\},
\]

and

\[
r(I) = \min\{|\mathcal{R}| : \mathcal{R} \subseteq I^+, \mathcal{R} \text{ is } I \text{-unsplittable}\}.
\]

In the case of the ideal \(I = \text{Fin} \) of all finite subsets of \(\omega \), we obtain the classical cardinal characteristics of the continuum: \(s = s(\text{Fin}) \) and \(r = r(\text{Fin}) \) (see e.g. [2])

Date: November 4, 2013.

2010 Mathematics Subject Classification. Primary: 03E17, 40A35. Secondary: 03E50, 40A30, 03E75.

Key words and phrases. Boolean algebra, quotient Boolean algebra, cardinal characteristic, cardinal invariant, ideal, \(F_\sigma \) ideal, analytic \(P \)-ideal, filter, ideal convergence, filter convergence, Bolzano-Weierstrass property, splitting number, reaping number, Martin’s Axiom.
and \([27]\)). It is well known that \(s\) and \(t\) are uncountable and if we assume Martin’s Axiom (MA) then \(s = t = \mathfrak{c}\).

In Section 3 we show that \(s(\mathcal{I}), t(\mathcal{I})\) are uncountable for every \(F_{\sigma}\) ideal (Proposition 3.1) and we prove that if we assume MA then \(s(\mathcal{I}) = t(\mathcal{I}) = \mathfrak{c}\) for every \(F_{\sigma}\) ideal (Theorem 3.2).

In Section 4 we prove that \(t(\mathcal{I})\) is uncountable for every analytic \(P\)-ideal (Proposition 4.1) and we also prove that if we assume MA then \(t(\mathcal{I}) = \mathfrak{c}\) for every analytic \(P\)-ideal (Theorem 4.2).

In [9] the authors proved that \(s(\mathcal{I}) = \omega\) \iff the ideal \(\mathcal{I}\) does not have BW property (see Section 2 for the definition of BW property). We prove that if we assume MA then \(s(\mathcal{I}) = \mathfrak{c}\) for analytic \(P\)-ideals with BW property (Theorem 4.3).

The splitting, reaping and other cardinal characteristics (e.g. \(a, p\) and \(t\)) of the quotient Boolean algebras \(\mathcal{P}(\omega)/\mathcal{I}\) were already considered in some papers, see e.g. \([1], [3], [8], [13], [15], [16]\) and \([26]\).

In Section 5 we apply the results on \(s(\mathcal{I})\) and \(t(\mathcal{I})\) to the ideal convergence of sequences of real-valued functions defined on reals.

2. Preliminaries

2.1. Nice ideals. By identifying sets of natural numbers with their characteristic functions, we equip \(\mathcal{P}(\omega)\) with the Cantor-space topology and therefore we can assign topological complexity to ideals of sets of integers. In particular, an ideal \(\mathcal{I}\) is an \(F_{\sigma}\) (resp. analytic) subset of the Cantor space.

An ideal \(\mathcal{I}\) is a \(P\)-ideal if for every countable family \(\{A_n : n \in \omega\} \subseteq \mathcal{I}\) there is \(A \in \mathcal{I}\) such that \(A_n \setminus A\) is finite for every \(n \in \omega\).

A map \(\phi: \mathcal{P}(\omega) \to [0, \infty]\) is a submeasure on \(\omega\) if \(\phi(\emptyset) = 0\) and \(\phi(A) \leq \phi(A \cup B) \leq \phi(A) + \phi(B)\) for all \(A, B \subseteq \omega\). In the sequel we assume that \(\phi(\{n\}) < \infty\) for every submeasure \(\phi\) and \(n \in \omega\). A submeasure \(\phi\) is lower semicontinuous (we will write lsc for short) if for all \(A \subseteq \omega\) we have \(\phi(A) = \lim_{n \to \infty} \phi(A \cap \{0, 1, \ldots, n-1\})\). For a submeasure \(\phi\) we write

\[\text{Fin}(\phi) = \{A \subseteq \omega : \phi(A) < \infty\}\]

and

\[\text{Exh}(\phi) = \left\{A \subseteq \omega : \|A\|_\phi = 0\right\},\]

where \(\|A\|_\phi = \lim_{n \to \infty} \phi(A \setminus \{0, 1, \ldots, n-1\})\).

Theorem 2.1 ([21],[25]). Let \(\mathcal{I}\) be an ideal on \(\omega\) (not necessarily proper).

1. \(\mathcal{I}\) is an \(F_{\sigma}\) ideal \iff \(\mathcal{I} = \text{Fin}(\phi)\) for some lsc submeasure \(\phi\) on \(\omega\).

2. \(\mathcal{I}\) is an analytic \(P\)-ideal \iff \(\mathcal{I} = \text{Exh}(\phi)\) for some lsc submeasure \(\phi\) on \(\omega\).

2.1.1. Examples. For many examples of nice ideals see e.g. [16] or [7]. Below we list some of them.

1. The ideal \(\text{Fin}\) is an \(F_{\sigma}\) \(P\)-ideal.

2. Let \(f: \omega \to [0, \infty)\) be such that \(\sum_{n \in \omega} f(n) = \infty\). The summandable ideal generated by \(f\)

\[\mathcal{I}_f = \left\{A \subseteq \omega : \sum_{n \in A} f(n) < \infty\right\}\]
is an F_σ ideal ([21]).

(3) The ideal of sets of asymptotic density 0

$$\mathcal{I}_d = \left\{ A \subseteq \omega : \limsup_{n \to \infty} \frac{|A \cap \{0, 1, \ldots, n-1\}|}{n} = 0 \right\}$$

is an analytic P-ideal (and it is not an F_σ ideal).

(4) Let $f : \omega \to [0, +\infty)$ be such that

$$\sum_{i=0}^{\infty} f(i) = +\infty \text{ and } \lim_{n \to \infty} \frac{\sum_{i \in n} f(i)}{\sum_{i \in n} f(i)} = 0.$$

The Erdős-Ulam ideal generated by f

$$\mathcal{EU}_f = \left\{ A \subseteq \omega : \lim_{n \to \infty} \frac{\sum_{i \in A \cap n} f(i)}{\sum_{i \in A \cap n} f(i)} = 0 \right\}$$

is an analytic P-ideal ([17]). Note that the ideal \mathcal{I}_d is an Erdős-Ulam ideal.

(5) Assume that I_n are pairwise disjoint intervals on ω, and μ_n is a measure that concentrates on I_n. Then $\phi = \sup_n \mu_n$ is a lower semicontinuous submeasure and $\text{Exh}(\phi)$ is called the density ideal generated by $(\mu_n)_n$. It is known that Erdős-Ulam ideals are density ideals.

(6) The van der Waerden ideal

$$W = \{ A \subseteq \omega : A \text{ does not contain arithmetic progressions of arbitrary length} \}$$

is an F_σ ideal (and it is not a P-ideal).

(7) The eventually different ideal

$$\mathcal{ED} = \{ A \subseteq \omega \times \omega : \exists m, n \in \omega \forall k \geq n (|\{ i \in \omega : (k, i) \in A \}| \leq m) \}$$

is an F_σ ideal (and it is not a P-ideal).

2.2. Ideal convergence. Let \mathcal{I} be an ideal on ω and $A \subseteq \omega$. We say that a sequence $(x_n)_{n \in \mathbb{N}}$ of reals is \mathcal{I}-convergent to $x \in \mathbb{R}$ if for every $\varepsilon > 0$, $\{ n \in A : |x_n - x| \geq \varepsilon \} \in \mathcal{I}$ for every $\varepsilon > 0$. We say that an ideal \mathcal{I} on ω has BW property ($\mathcal{I} \in \text{BW}$, for short) if for every bounded sequence $(x_n)_{n \in \mathbb{N}}$ of reals there exists $A \in \mathcal{I}^+$ such that $(x_n)_{n \in A}$ is \mathcal{I}-convergent ([9]).

Proposition 2.2 ([9]).

(1) Every F_σ ideal has BW property (hence Fin, summable ideals, W and \mathcal{ED} have BW property as well).

(2) Erdős-Ulam ideals (and \mathcal{I}_d) do not have BW property.

(3) A density ideal does not have BW-property if and only if it is an Erdős-Ulam ideal.

Theorem 2.3 ([9]). Let \mathcal{I} be an ideal on ω. Then $s(\mathcal{I}) = \omega \iff \mathcal{I}$ does not have BW property.

2.3. Big intersections. Below we presents some auxilary results which we will need later (however they seem to be interesting on their own).

Lemma 2.4. Let \mathcal{I} be an ideal on ω. There is a function $x : \mathcal{P}(\omega) \to \{0, 1\}$ such that

$$\bigcap \{ A_{x(A)} : A \in \mathcal{A} \} \notin \mathcal{I}$$

for every finite and nonempty family $\mathcal{A} \subseteq \mathcal{P}(\omega)$.

Proof. Let \(J \) be a maximal ideal such that \(I \subseteq J \). For \(A \in \mathcal{P}(\omega) \) we define
\[
x(A) = \begin{cases} 0 & \text{if } A \notin J \\ 1 & \text{if } A \in J \end{cases}.
\]
Since \(A^{x(A)} \notin J \) for every \(A \) and \(J \) is a maximal ideal, so \(\bigcap \{ A^{x(A)} : A \in A \} \notin J \).
Thus \(\bigcap \{ A^{x(A)} : A \in A \} \notin I \).
\(\square \)

Corollary 2.5. Let \(I = \text{Fin}(\phi) \) be an \(F_\sigma \) ideal. There is \(x : \mathcal{P}(\omega) \to \{0, 1\} \) such that
\[
\phi \left(\bigcap \{ A^{x(A)} : A \in A \} \right) = \infty
\]
for every finite and nonempty family \(A \subseteq \mathcal{P}(\omega) \).

Proof. Apply Lemma 2.4 and note that \(A \notin I \iff \phi(A) = \infty \).
\(\square \)

Corollary 2.6. Let \(I = \text{Exh}(\phi) \) be an analytic \(P \)-ideal. There is \(x : \mathcal{P}(\omega) \to \{0, 1\} \) such that
\[
\left\| \bigcap \{ A^{x(A)} : A \in A \} \right\|_\phi > 0
\]
for every finite and nonempty family \(A \subseteq \mathcal{P}(\omega) \).

Proof. Apply Lemma 2.4 and note that \(A \notin I \iff \left\| A \right\|_\phi > 0 \).
\(\square \)

Below we show that for ideals with BW property we can obtain a strengthening of the above result.

Lemma 2.7. Let \(I = \text{Exh}(\phi) \) be an analytic \(P \)-ideal. The ideal \(I \) has BW property if and only if there are \(\delta > 0 \) and \(x : \mathcal{P}(\omega) \to \{0, 1\} \) such that
\[
\left\| \bigcap \{ A^{x(A)} : A \in A \} \right\|_\phi \geq \delta
\]
for every finite and nonempty family \(A \subseteq \mathcal{P}(\omega) \).

Proof. (\(\Rightarrow \)) By [9, Theorem 3.6] there exists \(\delta > 0 \) such that for every finite partition \(A_1 \cup \cdots \cup A_n = \omega \) there exists \(1 \leq i \leq n \) with \(\left\| A_i \right\|_\phi \geq \delta \). We will show that this \(\delta \) is the required one.

For every finite and nonempty family \(A \subseteq \mathcal{P}(\omega) \) we define
\[
C_A = \left\{ x \in \{0, 1\}^{\mathcal{P}(\omega)} : \left\| \bigcap \{ A^{x(A)} : A \in A \} \right\|_\phi \geq \delta \right\}.
\]
We will show that

1. \(C_A \neq \emptyset \);
2. \(C_A \) is a closed set in \(\{0, 1\}^{\mathcal{P}(\omega)} \);
3. the family \(\{ C_A : A \text{ is finite and nonempty} \} \) is centered.

Then using compactness of the topological space \(\{0, 1\}^{\mathcal{P}(\omega)} \) we get
\[
x \in \bigcap \{ C_A : A \text{ is finite and nonempty} \}.
\]
It is easy to see that this \(x \) is as required. Thus, the proof will be finished as soon as we show properties (1)–(3).

(1). Take any finite and nonempty \(A \subseteq \mathcal{P}(\omega) \). Since the family
\[
\left\{ \bigcap \{ A^{x(A)} : A \in A \} : s \in \{0, 1\}^A \right\}
\]

is a finite partition of \(\omega\), so there is \(s \in \{0,1\}^A\) with \(\left\| \bigcap \{ A^{x(A)} : A \in \mathcal{A} \} \right\|_\phi \geq \delta\). Then any \(x \in \{0,1\}^{P(\omega)}\) such that \(s \subseteq x\) belongs to \(C_A\).

(2). Take any finite and nonempty \(A \subseteq P(\omega)\). Since \(S = \{ x \mid A : x \in C_A \} \subseteq \{0,1\}^A\) is finite and \(C_A = \bigcup_{s \in S} \{ x \in \{0,1\}^{P(\omega)} : s \subseteq x \}\), so \(C_A\) is a finite union of basic clopen sets, hence closed.

(3). Take any finite and nonempty \(A_1, \ldots, A_n \subseteq P(\omega)\). Since \(A = A_1 \cup \cdots \cup A_n\) is finite, so \(C_A \neq \emptyset\) by (1). On the other hand, it is not difficult to see that \(C_A \subseteq C_{A_1} \cap \cdots \cap C_{A_n}\).

\((\Leftarrow)\) Let \(\delta > 0\) and \(x : P(\omega) \to \{0,1\}\) be such that \(\left\| \bigcap \{ A^{x(A)} : A \in \mathcal{A} \} \right\|_\phi \geq \delta\) for every finite and nonempty family \(\mathcal{A} \subseteq P(\omega)\).

By [9, Theorem 3.6], \(I\) has BW property if and only if there is \(\varepsilon > 0\) such that for every \(N \in \omega\) and every partition \(A_1, \ldots, A_N\) of \(\omega\) there is \(i \leq N\) with \(\|A_i\|_\phi \geq \varepsilon\).

Let \(\varepsilon = \delta\). Let \(N \in \omega\) and \(A_1, \ldots, A_N\) be a partition of \(\omega\). Let \(\mathcal{A} = \{ A_1, \ldots, A_n \}\). Since \(\mathcal{A}\) is a partition of \(\omega\) so there is \(i \leq N\) with \(x(A_i) = 0\) (otherwise \(\bigcap \{ A^{x(A)} : A \in \mathcal{A} \} \subseteq \emptyset\) hence \(\left\| \bigcap \{ A^{x(A)} : A \in \mathcal{A} \} \right\|_\phi = 0 < \delta\)). Thus \(A_i \supseteq \bigcap \{ A^{x(A)} : A \in \mathcal{A},\}\), hence

\[\|A_i\|_\phi \geq \left\| \bigcap \{ A^{x(A)} : A \in \mathcal{A} \} \right\|_\phi \geq \delta = \varepsilon.\]

\[\square\]

3. \(F_\sigma\) Ideals

Proposition 3.1. Let \(I = \text{Fin}(\phi)\) be an \(F_\sigma\) ideal. Then \(s(I), \tau(I) \geq \omega_1\).

Proof. \((s(I)) \geq \omega_1\).) Let \(S = \{ S_n : n \in \omega \} \subseteq I^+\). We will show that \(S\) is not an \(I\)-splitting family i.e. we will construct an \(A \in I^+\) such that \(A \cap S_0 \in \mathcal{I}\) or \(A \cap S_1 \in \mathcal{I}\) for every \(n \in \omega\).

Let \(\varepsilon \in \{0,1\}^\omega\) be a sequence such that \(\bigcap_{n \leq \varepsilon} S_i \subseteq I^+\) for every \(n \in \omega\). By lsc of \(\phi\), we can find finite sets \(F_n (n \in \omega)\) such that \(F_n \subseteq \bigcap_{n \leq \varepsilon} S_i^n\) and \(\phi(F_n) \geq \varepsilon\).

Let \(\mathcal{A} = \bigcup_n F_n\). Then \(A \in I^+\) and \(A \cap S_i^{\varepsilon - n} \subseteq \bigcup_{n \leq \varepsilon} F_i \in I\) for every \(n \in \omega\).

\((\tau(I)) \geq \omega_1\).) Let \(\mathcal{R} = \{ R_n : n \in \omega \} \subseteq I^+\). We will show that \(\mathcal{R}\) is not an \(I\)-unsplitable family i.e. we will construct a set \(A \subseteq \omega\) such that \(R_n \cap A^0 \in I^+\) and \(R_n \cap A^1 \in I^+\) for every \(n \in \omega\).

By lsc of \(\phi\), we can find pairwise disjoint finite sets \(F_{i,n}^k (i, n \in \omega, k \in \{0,1\})\) such that \(F_{i,n}^k \subseteq R_n\) and \(\phi(F_{i,n}^k) \geq k\) for every \(i, n \in \omega, k \in \{0,1\}\).

Let \(A = \bigcup_{i,n \in \omega} F_{i,n}^k\). If \(n \in \omega\) and \(k \in \{0,1\}\), then \(R_n \cap A^k \supseteq \bigcup_{i \in \omega} F_{i,n}^k\) and hence \(R_n \cap A^k \in I^+\).

\[\square\]

Theorem 3.2. Assume MA. Let \(I = \text{Fin}(\phi)\) be an \(F_\sigma\) ideal. Then \(s(I) = \tau(I) = \omega_1\).

Proof. \((s(I)) = \omega_1\).) Let \(S \subseteq P(\omega)\) be such that \(|S| = \kappa < \omega_1\). We will show that \(S\) is not an \(I\)-splitting family.

Let \(x : P(\omega) \to \{0,1\}\) be as in Corollary 2.5. Let \(\mathcal{F} = \{ S^{x(S)} : S \in S\}\) and \(\mathcal{P} = [\omega]^\omega \times [\mathcal{F}]^{\omega}\). For \((s, A), (t, B) \in \mathcal{P}\) we define \((s, A) \leq (t, B)\) if

\[(1)\] \(s \supseteq t\), and
\[(2)\] \(A \supseteq B\), and
\[(3)\] \(s \setminus t \subseteq \bigcap B\).
Then it is not difficult to show that \(\langle \mathbb{P}, \leq \rangle \) is a ccc poset.

Define

1. \(D_F = \{(s, A) \in \mathbb{P} : F \subseteq A\} \) for every \(F \in \mathcal{F} \).
2. \(D_n = \{(s, A) \in \mathbb{P} : \phi(s) > n\} \) for every \(n \in \omega \),

It is easy to see that \(D_F \) is dense for every \(F \). We show that \(D_n \) is also dense for every \(n \).

Let \((s, A) \in \mathbb{P} \) and \(A = \{F_0, \ldots, F_{m-1}\} \). Let \(F_i = S^{\varepsilon(S_i)}_i, S_i \in \mathcal{S} \) for \(i<m \).

Since \(\bigcap A = \bigcap_{i < m} F_i = \bigcap_{i < m} S_i^{\varepsilon(S_i)} \), so \(\phi(\bigcap A) = \infty \). By lsc of \(\phi \) there is a finite set \(t \subseteq \bigcap A \) such that \(\phi(t) > n \). Then \((s \cup t, A) \in D_n \) and \((s \cup t, A) \leq (s, A) \).

Applying Martin’s Axiom, there is a filter \(G \subseteq \mathbb{P} \) such that \(G \cap D_n \neq \emptyset \) and \(G \cap D_F \neq \emptyset \) for every \(n \in \omega \) and \(F \in \mathcal{F} \). Let

\[
X = \bigcup \{s : (s, A) \in G\}.
\]

Clearly \(X \in \mathcal{I}^+ \), and \(X \) is not \(\mathcal{I} \)-split by any member of \(S \) because if \(F = S^{\varepsilon(S)} \in \mathcal{F} \) and \((s, A) \in G \cap D_F \), then \(X \cap S^{1-\varepsilon(S)} \subseteq s \) and hence \(X \cap S^{1-\varepsilon(S)} \in \mathcal{I} \).

\((\tau(\mathcal{I}) = \varepsilon)\) Let \(\kappa < \varepsilon \) and \(F = \{F_n : \alpha < \kappa\} \subseteq \mathcal{I}^+ \). We will show that there is a set which \(\mathcal{I} \)-splits all members of \(\mathcal{F} \).

Let \(\mathbb{P} = 2^{\omega_1} \). Then \((\mathbb{P}, \supseteq) \) is a ccc poset.

Define

\[
D_{\alpha,n} = \{s \in \mathbb{P} : \phi(s^{-1}(0) \cap F_n) > n \land \phi(s^{-1}(1) \cap F_n) > n\}
\]

for every \(n \in \omega \) and \(\alpha < \kappa \). Using lsc of \(\phi \) it is not difficult to show that sets \(D_{\alpha,n} \) are dense in \(\mathbb{P} \).

Applying Martin’s Axiom, there is a filter \(G \subseteq \mathbb{P} \) such that \(G \cap D_{\alpha,n} \neq \emptyset \) for every \(n \in \omega \) and \(\alpha < \kappa \). Let

\[
f = \bigcup G \text{ and } X = f^{-1}(0).
\]

Then it is easy to see that \(X \in \mathcal{I}^+ \). We will show that \(X \mathcal{I} \)-splits all sets in \(\mathcal{F} \).

Let \(\alpha < \kappa \). For any \(n \in \omega \) there is \(s_n \in G \cap D_{\alpha,n} \). Since \(F_n \cap X^1 \supseteq F_n \cap s_n^{-1}(i) \) for \(i = 0, 1 \) and every \(n \), we have \(\phi(F_n \cap X^1) > n \) for \(i = 0, 1 \) and every \(n \), and so \(F_n \cap X^1 \in \mathcal{I}^+ \) (\(i = 0, 1 \)).

4. Analytic P-ideals

Proposition 4.1. Let \(\mathcal{I} = \text{Exh}(\phi) \) be an analytic P-ideal. Then \(\tau(\mathcal{I}) \geq \omega_1 \).

Proof. Let \(\mathcal{F} = \{F_n \in \mathcal{I}^+ : n \in \omega\} \). We will show that there is a set which \(\mathcal{I} \)-splits all members of \(\mathcal{F} \).

Let \(\delta_n > 0 \) be such that \(\|F_n\|_\phi > \delta_n \) for every \(n \in \omega \). Let \(\{G_n : n \in \omega\} \) be a sequence such that \(\{G_n : n \in \omega\} = \{F_n : n \in \omega\} \) and \(\{k \in \omega : G_k = F_n\} \) is infinite for each \(n \in \omega \). Let \(f : \omega \rightarrow \omega \) be such that \(G_n = F_{f(n)} \) for every \(n \in \omega \). We will construct sequences \((s_n : n \in \omega) \) and \((t_n : n \in \omega) \) such that

1. \(s_n, t_n \) are finite,
2. \(s_n, t_n \subseteq G_n \setminus \{0, 1, \ldots, n-1\} \) for every \(n \in \omega \),
3. \(s_n \cap s_k = \emptyset, t_n \cap t_k = \emptyset \) and \(s_n \cap t_k = \emptyset \) for every \(n, k \in \omega \),
4. \(\phi(s_n) > \delta_{f(n)}, \phi(t_n) > \delta_{f(n)} \).
Suppose that we have already constructed s_i, t_i for $i \leq n$. Let $s = s_0 \cup \cdots \cup s_n$ and $t = t_0 \cup \cdots \cup t_n$. Let $G = G_{n+1} \setminus (s \cup t)$. Since $s \cup t$ is finite so $\|G\|_\phi > \delta_{f(n+1)}$.

By the definition of $\|\cdot\|_\phi$ and lsc of ϕ there is a finite set $s_{n+1} \subseteq G \setminus \{0,1,\ldots,n\}$ with $\phi(s_{n+1}) > \delta_{f(n+1)}$. Applying the definition of $\|\cdot\|_\phi$ and lsc of ϕ again, there is a finite set $t_{n+1} \subseteq G \setminus s_{n+1}$ with $\phi(t_{n+1}) > \delta_{f(n+1)}$.

Let $X = \bigcup_{n \in \omega} s_n$. Then $s_n \subseteq G_n \setminus \{0,1,\ldots,n-1\} = F_0 \setminus \{0,1,\ldots,n-1\}$ for every $n \in f^{-1}(0)$. Thus $\phi(X \setminus \{0,1,\ldots,n-1\}) \geq \phi(s_n) > \delta_0 > 0$ for every $n \in f^{-1}(0)$, hence $\|X\|_\phi \geq \delta_0 > 0$. We will show that X \mathbb{I}-splits all sets in the family F.

First of all, we will show that $F_k \cap X \in \mathbb{I}^+$. Let $i \in \omega$. Then there is $n \in f^{-1}(k)$ with $n > i$. Then $\phi((F_k \cap X) \setminus \{0,1,\ldots,i-1\}) = \phi((G_n \cap X) \setminus \{0,1,\ldots,i-1\}) \geq \phi((G_n \cap X) \setminus \{0,1,\ldots,n-1\}) \geq \phi(s_n) > \delta_k$. Thus $\|F_k \cap X\|_\phi \geq \delta_k > 0$.

Using the same argument as above one can show that $F_k \setminus X \in \mathbb{I}^+$. □

Theorem 4.2. Assume MA. Let $\mathcal{I} = \text{Exh}(\phi)$ be an analytic P-ideal. Then $\kappa(\mathcal{I}) = \kappa$.

Proof. Let $\kappa < \kappa$ and $\mathcal{F} = \{F_\alpha : \alpha < \kappa\} \subseteq \mathbb{I}^+$. Let $\delta_\alpha > 0$ be such that $\|F_\alpha\|_\phi > \delta_\alpha$ for every $\alpha < \kappa$.

Let $\mathbb{P} = 2^{<\omega}$. Then (\mathbb{P}, \supseteq) is a ccc poset.

Define

$$D_{\alpha,n} = \{s \in \mathbb{P} : \phi((F_\alpha \cap s^{-1}(i)) \setminus \{0,1,\ldots,n-1\}) > \delta_n \text{ for } i = 0, 1\}$$

for every $n \in \omega$ and $\alpha < \kappa$. It is not difficult to show that $D_{\alpha,n}$ is dense in \mathbb{P}.

Applying Martin’s Axiom, there is a filter $G \subseteq \mathbb{P}$ such that $G \cap D_{\alpha,n} \neq \emptyset$ for every $n \in \omega$ and $\alpha < \kappa$. Let

$$f = \bigcup G$$

and $X = f^{-1}(0)$.

Then $X \in \mathbb{I}^+$ and X \mathbb{I}-splits all sets in F.

□

Theorem 4.3. Assume MA. Let $\mathcal{I} = \text{Exh}(\phi)$ be an analytic P-ideal with BW property. Then $s(\mathcal{I}) = \kappa$.

Proof. Let $S \subseteq \mathcal{P}(\omega)$ be such that $|S| = \kappa < \omega$. We will show that S is not an \mathbb{I}-splitting family.

Let $\delta > 0$ and $x : \mathcal{P}(\omega) \to \{0,1\}$ be as in Lemma 2.7.

Let $\mathcal{F} = \{S^{x(S)} : S \in S\}$ and $\mathbb{P} = [\omega]^{<\omega} \times [\mathcal{F}]^{<\omega}$. For $(s, A), (t, B) \in \mathbb{P}$ we define $(s, A) \leq (t, B)$ if

1. $s \supseteq t$, and
2. $A \supseteq B$, and
3. $s \setminus t \subseteq \bigcap B$.

Then it is not difficult to show that (\mathbb{P}, \leq) is a ccc poset.

Define

1. $D_n = \{(s, A) \in \mathbb{P} : \phi(s \setminus \{0,1,\ldots,n-1\}) > \frac{n}{2}\}$ for every $n \in \omega$,
2. $D_F = \{(s, A) \in \mathbb{P} : F \in A\}$ for every $F \in \mathcal{F}$.

Clearly D_F is dense for every $F \in \mathcal{F}$. We will show that sets D_n are dense.

Let $(s, A) \in \mathbb{P}$ and $A = \{F_0, \ldots, F_{m-1}\}$. Let $F_i = S^{x(S_i)}, S_i \in S$ for $i < m$. Since

$$\bigcap A = \bigcap_{i<m} F_i = \bigcap_{i<m} S^{x(S_i)},$$

so $\bigcap A \setminus \phi \geq \delta$. Since $\|\bigcap A\|_\phi = \lim_{k \to \infty} \phi(\bigcap A \setminus $
{0, 1, ..., k − 1}) so φ(∩A \ {0, 1, ..., n − 1}) > \frac{3}{2}. By lsc of φ there is a finite set \(t \subseteq \bigcap A \setminus \{0, 1, ..., n - 1\} \) such that φ(t) > \frac{3}{2}. Then (s ∪ t, A) ∈ Dn and (s ∪ t, A) ≤ (s, A).

Applying Martin’s Axiom, there is a filter \(G \subseteq \mathcal{P} \) such that \(G \cap D_n \neq \emptyset \) and \(G \cap D_F \neq \emptyset \) for every \(n \in \omega \) and \(F \in \mathcal{F} \). Let

\[
X = \bigcup \{s : (s, A) \in G\}.
\]

Clearly, \(\|X\|_\varphi \geq \frac{3}{2} \) so \(X \in \mathcal{I}^+ \), and \(X \) is not \(\mathcal{I} \)-split by any member of \(\mathcal{S} \) because if \(S \in \mathcal{S} \), \(F = S^{\omega}(S) \), and \((s, A) \in G \cap D_F \), then \(X \cap S^{\omega - x(S)} \subseteq s \).

5. Applications

It is not difficult to prove that the Bolzano-Weierstrass theorem (that every bounded sequences of reals has a convergent subsequence) fails if we consider sequences of functions instead of reals (i.e. there exists a uniformly bounded sequence \((f_n)_{n \in \omega}\) of real-valued functions defined on \(\mathbb{R} \) such that no subsequence of \((f_n)_{n \in \omega}\) is pointwise convergent). The ideal versions of this result is presented below (in this case we have to consider two cases: either \(\mathcal{I} \) is a “somewhere” maximal ideal or not).

Let \(\mathcal{I} \) be an ideal on \(\omega \) and \(A \subseteq \omega \). We say that a sequence \((f_n)_{n \in A}\) of real-valued functions defined on a set \(X \) is pointwise \(\mathcal{I} \)-convergent to \(f : X \to \mathbb{R} \) if for every \(x \in X \) the sequence of reals \((f_n(x))_{n \in A}\) is \(\mathcal{I} \)-convergent to \(f(x) \). (See [18], [20] and [6] for description of pointwise \(\mathcal{I} \)-limits of continuous functions; in [12], [5] and [11] the authors consider also ideal version of discrete and equal convergence of sequences of functions.)

For an ideal \(\mathcal{I} \) on \(\omega \) and \(A \subseteq \omega \) we define the ideal \(\mathcal{I} \upharpoonright A = \{B \subseteq \omega : B \cap A \in \mathcal{I}\} \).

Proposition 5.1. Let \(\mathcal{I} \) be an ideal on \(\omega \). Let \(f_n : \mathbb{R} \to \mathbb{R} \ (n \in \omega) \) be a uniformly bounded sequence of functions.

1. If \(\mathcal{I} \) is a maximal ideal then \((f_n)_{n \in \omega}\) is pointwise \(\mathcal{I} \)-convergent.
2. If there is \(A \in \mathcal{I}^+ \) such that \(\mathcal{I} \upharpoonright A \) is a maximal ideal then the subsequence \((f_n)_{n \in A}\) is pointwise \(\mathcal{I} \)-convergent.

Proof. (1). Follows from the fact that every bounded sequence of reals is \(\mathcal{I} \)-convergent for a maximal ideal \(\mathcal{I} \).

(2). Follows from (1).

Proposition 5.2. Let \(\mathcal{I} \) be an ideal on \(\omega \) such that \(\mathcal{I} \upharpoonright A \) is not maximal for any \(A \in \mathcal{I}^+ \). There exists a uniformly bounded sequence of functions \(f_n : \mathbb{R} \to \mathbb{R} \ (n \in \omega) \) such that \((f_n)_{n \in A}\) is not pointwise \(\mathcal{I} \)-convergent for any \(A \in \mathcal{I}^+ \).

Proof. Let \(\{0, 1\}^\omega = \{s_\alpha : \alpha < \mathfrak{c}\} \) and \(\mathbb{R} = \{x_\alpha : \alpha < \mathfrak{c}\} \). We define \(f_n : \mathbb{R} \to \mathbb{R} \) by \(f_n(x_\alpha) = s_\alpha(n) \ (n \in \omega, \alpha < \mathfrak{c}) \).

Let \(A \in \mathcal{I}^+ \). Then there are \(B, C \subseteq \omega \) such that \(A = B \cup C \), \(B \cap C = \emptyset \) and \(B, C \in \mathcal{I}^+ \).

Let \(\alpha \) be such that \(s_\alpha(n) = 0 \) for \(n \in B \) and \(s_\alpha(n) = 1 \) for \(n \in C \).

Since \(\mathcal{I}^+ \supseteq C \subseteq \{n : f_n(x_\alpha) \neq 0\} \) and \(\mathcal{I}^+ \supseteq B \subseteq \{n : f_n(x_\alpha) \neq 1\} \), so \((f_n)_{n \in A}\) is not \(\mathcal{I} \)-convergent.

Saks asked the question (see [24]) if for every uniformly bounded sequence \((f_n)_{n \in \omega}\) of real-valued functions defined on \(\mathbb{R} \) there exists an infinite set \(A \subseteq \omega \)
such that the subsequence \((f_n(x))_{n \in A}\) is convergent for uncountably many \(x \in \mathbb{R}\). This question was answered in the negative by Sierpiński ([24]) under the assumption of the Continuum Hypothesis (CH). Later, Fuchino and Plewik proved ([14]) that if \(\mathfrak{s} > \omega_1\) then the answer to the question is positive. In fact, they proved that for every uniformly bounded sequence \(f_n : \mathbb{R} \to \mathbb{R}\) and every \(X \subseteq \mathbb{R}, |X| < \mathfrak{s}\) there exists an infinite \(A \subseteq \omega\) such that \((f_n \upharpoonright X)_{n \in A}\) is pointwise convergent. The ideal versions of these results are presented below.

First, if \(\mathcal{I}\) is a “somewhere” maximal ideal then the answer to ideal version of Saks question is positive (by Proposition 5.1).

Second, if an ideal \(\mathcal{I} \not\in \text{BW}\) then there exists (in ZFC) a uniformly bounded sequence \((f_n)_{n \in \omega}\) of real-valued functions defined on \(\mathbb{R}\) such that for every \(A \in \mathcal{I}^+\) the subsequence \((f_n(x))_{n \in A}\) is \(\mathcal{I}\)-convergent for less than \(\mathfrak{c}\) many \(x \in \mathbb{R}\). (Indeed, let \((x_n)_{n \in \omega}\) be a bounded sequence such that \((x_n)_{n \in A}\) is not \(\mathcal{I}\)-convergent for any \(x \in \mathbb{R}\). Then the functions \(f_\alpha(x) = x_n (n \in \omega, x \in \mathbb{R})\) are as required.) Thus, the answer to ideal version of Saks question is negative.

Below (Corollaries 5.4 and 5.6) we prove that in the third case (i.e. \(\mathcal{I} \in \text{BW}\) and \(\mathcal{I} \upharpoonright A\) is not a maximal ideal) the answer to ideal version of Saks question is independent of ZFC for \(F_\sigma\) ideals and analytic P-ideals.

Proposition 5.3. Let \(\mathcal{I}\) be an ideal on \(\omega\). If \(\tau(\mathcal{I}) = \mathfrak{c}\) then there exists a uniformly bounded sequence \((f_n)_{n \in \omega}\) of real-valued functions defined on \(\mathbb{R}\) such that for every \(A \in \mathcal{I}^+\) the subsequence \((f_n(x))_{n \in A}\) is \(\mathcal{I}\)-convergent for less than \(\mathfrak{c}\) many \(x \in \mathbb{R}\).

Proof. Let \(\mathcal{R} = \{x_\alpha : \alpha < \mathfrak{c}\}\) and \(\mathcal{I}^+ = \{A_\alpha : \alpha < \mathfrak{c}\}\). We defined \(f_n : \mathbb{R} \to \mathbb{R}\) by

\[
 f_n(x_\alpha) = \begin{cases}
 0 & \text{for } n \in S_\alpha, \\
 1 & \text{for } n \in \omega \setminus S_\alpha,
\end{cases}
\]

where \(S_\alpha \in \mathcal{I}^+\) is a set that \(\mathcal{I}\)-splits the family \(\{A_\beta : \beta < \alpha\}\) (there is one since \(|\alpha| < \tau(\mathcal{I})\)).

Let \(A = A_\beta \in \mathcal{I}^+\). We will show that the subsequence \((f_n(x_\alpha))_{n \in A}\) is not \(\mathcal{I}\)-convergent for every \(\alpha > \beta\) and that will finish the proof.

Let \(\alpha > \beta\). Then \(\{n \in A : f_n(x_\alpha) = 0\} = A_\beta \cap S_\alpha \in \mathcal{I}^+\) and \(\{n \in A : f_n(x_\alpha) = 1\} = A_\beta \setminus S_\alpha \in \mathcal{I}^+\). Thus \((f_n(x_\alpha))_{n \in A}\) is not \(\mathcal{I}\)-convergent. \(\square\)

Corollary 5.4. Assume CH. Let \(\mathcal{I}\) be an \(F_\sigma\) ideal or analytic P-ideal on \(\omega\). There exists a uniformly bounded sequence \((f_n)_{n \in \omega}\) of real-valued functions defined on \(\mathbb{R}\) such that \(\{x : (f_n(x))_{n \in \omega}\) is \(\mathcal{I}\)-convergent\} is countable for every \(A \in \mathcal{I}^+\).

Proof. Apply Proposition 5.3 and Proposition 3.1 or 4.1 respectively. \(\square\)

Proposition 5.5. Let \(\mathcal{I}\) be an ideal on \(\omega\) with BW property. Let \(f_n : \mathbb{R} \to \mathbb{R}\) \((n \in \omega)\) be a uniformly bounded sequence of functions. Let \(X \subseteq \mathbb{R}\) be such that \(|X| < \mathfrak{s}(\mathcal{I})\). There exists \(A \subseteq \mathcal{I}^+\) such that \((f_n \upharpoonright X)_{n \in A}\) is pointwise \(\mathcal{I}\)-convergent.

Proof. The proof is a slight modification of the proof of [14, Lemma 4]. We provide it for the completeness.

Let \(|X| = \kappa < \mathfrak{s}(\mathcal{I})\). For every \(x, y \in \mathbb{R}\) let \(C^y_x = \{n \in \omega : f_n(x) < y\}\). Let \(\mathcal{C} = \{C^y_x : q \in \mathcal{Q}, x \in X\}\). Since \(|\mathcal{C}| < \mathfrak{s}(\mathcal{I})\), so there exists \(A \in \mathcal{I}^+\) such that \(A \cap \mathcal{C} \in \mathcal{I}\) or \(A \setminus \mathcal{C} \in \mathcal{I}\) for every \(C \in \mathcal{C}\).

We claim that \((f_n \upharpoonright X)_{n \in A}\) is \(\mathcal{I}\)-convergent to the function \(f : X \to \mathbb{R}\) given by \(f(x) = \inf \{y \in \mathbb{R} : \{n \in A : f_n(x) < y\} \in \mathcal{I}^+\} = \inf \{y \in \mathbb{R} : A \cap C^y_x \subseteq \mathcal{I}^+\}\).
Let $x \in X$ and $\varepsilon > 0$. Let $B_1 = \{ n \in A : f_n(x) < f(x) - \varepsilon \}$ and $B_2 = \{ n \in A : f_n(x) > f(x) + \varepsilon \}$.

Since $\{ n \in A : |f_n(x) - f(x)| > \varepsilon \} = B_1 \cup B_2$, so it is enough to show that $B_1, B_2 \in \mathcal{I}$.

Suppose that $B_1 \in \mathcal{I}^+$. Since $A \cap C^{f(x) - \varepsilon}_x = B_1 \in \mathcal{I}^+$, so $f(x) = \inf \{ y \in \mathbb{R} : A \cap C^y_x \in \mathcal{I}^+ \} \leq f(x) - \varepsilon$, a contradiction.

Suppose that $B_2 \in \mathcal{I}^+$. Let $q \in \mathbb{Q}$ be such that $f(x) < q < f(x) + \varepsilon$. Since $B_2 \subseteq A \setminus C^q_x$, so $A \cap C^q_x \notin \mathcal{I}$. But $C^q_x \in \mathcal{C}$ and \mathcal{C} does not \mathcal{I}-split A, so $A \cap C^q_x \in \mathcal{I}$. So $f(x) = \inf \{ y \in \mathbb{R} : A \cap C^q_x \in \mathcal{I}^+ \} \geq q$, a contradiction. \qed

Remark. The assumption that \mathcal{I} has BW property is necessary in Proposition 5.5. Indeed, let \mathcal{I} be an ideal without BW. By Theorem 2.3, $\mathfrak{s}(\mathcal{I}) = \omega$. If $(f_n)_{n \in \omega}$ is the sequence defined above Proposition 5.3, and $X = \{ 0 \}$, then $|X| < \mathfrak{s}(\mathcal{I})$ but $(f_n | X)_{n \in \omega} = (x_n)_{n \in \omega}$ is not \mathcal{I}-convergent for any $A \in \mathcal{I}^+$.

Corollary 5.6. Assume MA and \negCH. Let \mathcal{I} be an F_σ ideal or analytic P-ideal with BW property on ω. For every uniformly bounded sequence $(f_n)_{n \in \omega}$ of real-valued functions defined on \mathbb{R} there exists $A \in \mathcal{I}^+$ such that the subsequence $(f_n(x))_{n \in A}$ is \mathcal{I}-convergent for uncountably many $x \in \mathbb{R}$.

Proof. Apply Proposition 5.5 and Theorems 3.2 and 4.3 respectively. \qed

Mazurkiewicz proved [22] that if one takes a uniformly bounded sequence of continuous functions $f_n : \mathbb{R} \to \mathbb{R}$ ($n \in \omega$) then there always exists a perfect set $P \subseteq \mathbb{R}$ and an infinite set $A \subseteq \omega$ such that $(f_n(x))_{n \in A}$ is convergent for every $x \in P$. (Since perfect sets are uncountable so his result yields a positive answer to Saks question in the realm of continuous functions.) In [10] the authors proved that ideal version of Mazurkiewicz’s result holds for F_σ ideals and analytic P-ideals with BW property.

Mazurkiewicz’s result shows (taking into account that perfect sets are of cardinality ω) that for a uniformly bounded sequence of continuous functions $(f_n)_{n \in \omega}$ one always finds an infinite $A \subseteq \omega$ such that the subsequence $(f_n(x))_{n \in A}$ is convergent for ε many $x \in \mathbb{R}$. Of course, Sierpiński’s result shows that under CH there is a uniformly bounded sequence $(f_n)_{n \in \omega}$ such that there is no infinite $A \subseteq \omega$ such that $(f_n(x))_{n \in A}$ is convergent for ε many $x \in \mathbb{R}$. Ciesielski and Pawlikowski [4] proved that it is consistent with the axioms of ZFC that for every uniformly bounded sequence $(f_n)_{n \in \omega}$ of real-valued functions defined on \mathbb{R} there exists an infinite $A \subseteq \omega$ such that the subsequence $(f_n(x))_{n \in A}$ is convergent for ε many $x \in \mathbb{R}$. We do not know if the result of Ciesielski and Pawlikowski can be generalized for ideal convergence.

It is known (see e.g. [4] or [19]) that assuming MA for every uniformly bounded sequence $(f_n)_{n \in \omega}$ of real-valued functions defined on \mathbb{R} and every $|X| < \varepsilon$ there exists an infinite $A \subseteq \omega$ such that the subsequence $(f_n | X)_{n \in A}$ is pointwise convergent, and on the other hand, there exists a uniformly bounded sequence $(f_n)_{n \in \omega}$ of real-valued functions defined on \mathbb{R} such that for every infinite $A \subseteq \omega$ the subsequence $(f_n(x))_{n \in A}$ is convergent for less than ε many $x \in \mathbb{R}$.

Corollary 5.7. Assume MA. Let \mathcal{I} be an F_σ ideal or analytic P-ideal with BW property on ω. For every uniformly bounded sequence $(f_n)_{n \in \omega}$ of real-valued functions defined on \mathbb{R} and every $|X| < \varepsilon$ there exists $A \in \mathcal{I}^+$ such that the subsequence $(f_n | X)_{n \in A}$ is pointwise \mathcal{I}-convergent.
THE REAPING AND SPLITTING NUMBERS OF NICE IDEALS

Proof. Apply Proposition 5.5 and Theorems 3.2 or 4.3 respectively.

Corollary 5.8. Assume MA. Let I be an F_σ ideal or analytic P-ideal on ω. There exists a uniformly bounded sequence $(f_n)_{n \in \omega}$ of real-valued functions defined on \mathbb{R} such that for every $A \in I^+$ the subsequence $(f_n(x))_{n \in A}$ is I-convergent for less than ϵ many $x \in \mathbb{R}$.

Proof. Apply Proposition 5.3 and Theorems 3.2 or 4.2 respectively.

Acknowledgment. The author was partially supported by the Skirball postdoctoral fellowship of the Center of Advanced Studies in Mathematics at the Mathematics Department of Ben Gurion University.

The author would like to thank Piotr Szuca and the referee for careful reading the manuscript and many helpful suggestions and remarks.

References

Institute of Mathematics, University of Gdańsk, ul. Wita Stwosza 57, 80-952 Gdańsk, Poland

E-mail address: rfilipow@mat.ug.edu.pl
URL: mat.ug.edu.pl/~rfilipow