Ireneusz Recław, Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland

A NOTE ON THE σ -IDEAL OF σ -POROUS SETS

In this note we shall show that γ -sets of reals are σ -porous and there exists a family of cardinality of the continuum of disjoint non- σ -porous perfect sets.

A family $\$ of open subsets of X is an ω -cover of X iff every finite subset of X is contained in an element of $\$. A space X has the γ -property (X is a γ -set) iff for every ω -cover $\$ of X there exists

a family {D_m : m ∈ ω} ⊆ \$ such that X ⊆ U ∩ D_m. k m≥k

For a subset of the reals we define the set

$$P(X) = \{x \in X : \limsup_{\varepsilon \to 0^+} 1(X, x, \varepsilon) / \varepsilon > 0\}$$

where $l(X, x, \varepsilon)$ is the length of the longest subinterval of $(x-\varepsilon, x+\varepsilon)$ disjoint from X. A set X $\subseteq \mathbb{R}$ is called <u>porous</u> if P(X) = X and is called <u> σ -porous</u> if it can be represented as countable union of porous sets.

Theorem 1. If $X \subseteq \mathbb{R}$ has the γ -property, then X is σ -porous.

Proof. Let $X \subseteq \mathbb{R}$ be a γ -set. For every $0 < n < \omega$ and $A = \{x_1, x_2, \dots, x_n\} \subseteq X$ let $d_A = \min(\{|x_1 - x_j| : i \neq j\} \cup \{\frac{1}{n}\})$. Define $U_A = \prod_{i=1}^{n} U_i$ where I_i is an open interval such that $x_i \in I_i$ $|I_i| < \frac{1}{4} d_A$ and i=1 dist $(I_i, I_j) > \frac{3}{4} d_A$ for $i \neq j$.

Let $\{y_n\}$ be a sequence of distinct elements of X. Define $g_n = \infty$ $\{U_A - \{y_n\} : A \subseteq X \text{ has } n \text{ elements} \}$ and $g = \bigcup g_n$. g is an ω -cover n=1of X. Thus there exists a family $\{D_m : m \in \omega\} \subseteq g$ such that $X \subseteq \infty$ $\bigcup \cap D_m$. k=1 m=k

Since y_n must be in all but finitely many D_m , we have that finitely many of $\{D_m : m \in \omega\}$ belong to g_n .

We shall show that $X_{\mathbf{k}} = \bigcap_{\mathbf{m}=\mathbf{k}}^{\mathbf{n}} D_{\mathbf{m}}$ is porous. Let $\mathbf{x} \in X_{\mathbf{k}}$ and $\varepsilon > 0$ and $\mathbf{n} > \frac{1}{\varepsilon}$. Then there exist $\mathbf{m}_0 > \mathbf{k}$ and $\mathbf{n}_0 > \mathbf{n}$ such that $D_{\mathbf{m}_0} \in \mathfrak{P}_{\mathbf{n}_0}$. There exists a set $\mathbf{A} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{\mathbf{n}_0}\} \in \mathbf{X}$ such that $D_{\mathbf{m}_0} = U_{\mathbf{A}} - \{\mathbf{y}_{\mathbf{n}_0}\}$ and $\mathbf{x} \in D_{\mathbf{m}_0}$. So $D_{\mathbf{m}_0} = \bigcup_{i=1}^{\mathbf{n}_0} I_i - \{\mathbf{y}_{\mathbf{n}_0}\}$ where I_i is an open interval such that $\operatorname{dist}(I_i, I_j) > \frac{3}{4} d_{\mathbf{A}}$ and $|I_i| < \frac{1}{4} d_{\mathbf{A}}$. Assume that $\mathbf{x} \in I_1$. Then $(\mathbf{x} - \frac{3}{4} d_{\mathbf{A}}, \mathbf{x} + \frac{3}{4} d_{\mathbf{A}}) \cap I_i = \emptyset$ for i > 1. Thus $((\mathbf{x} - \frac{3}{4} d_{\mathbf{A}}, \mathbf{x} + \frac{3}{4} d_{\mathbf{A}}) - I_1) \cap X_{\mathbf{k}} = \emptyset$. Hence $(\mathbf{x} - \frac{3}{4} d_{\mathbf{A}}, \mathbf{x} + \frac{3}{4} d_{\mathbf{A}}) - I_1$ contains an interval longer than $\frac{1}{2} d_{\mathbf{A}}$. So $1(X_{\mathbf{k}}, \mathbf{x}, d_{\mathbf{A}})/d_{\mathbf{A}} > \frac{1}{2}$. Since $d_{\mathbf{A}} < \varepsilon$, limsup $1(X_{\mathbf{k}}, \mathbf{x}, \varepsilon)/\varepsilon \ge \frac{1}{2}$.

It is not hard to see that the continuous image of a γ -set is a γ -set. F. Galvin and A.W. Miller [2] showed that assuming Martin's axiom there exists a γ -set of reals of cardinality of the continuum. They also stated that every set of reals of cardinality less than that of the continuum is a γ -set. This implies:

Corollary 1. Assume Martin's axiom. Every set of reals of cardinality less than that of the continuum is σ -porous.

Corollary 2. Assume Martin's axiom. There exists a set of reals X of cardinality of the continuum such that every continuous image of X is σ -porous.

Remark. A.W. Miller proved in [3] that it is consistent that for every $X \subseteq \mathbb{R}$ of cardinality of the continuum there exists a continuous function from X onto [0,1].

Assume that it is consistent that there exists a measurable cardinal. D.H. Fremlin and J. Jasiński [1] proved that it is consistent that there exists a set of reals X of cardinality of the continuum such that every Borel image of X has the γ -property. **Corollary 3.** Assume that it is consistent that there exists a measurable cardinal. Then it is consistent that there exists a set of reals X of cardinality of the continuum such that every Borel image of X is σ -porous.

J. Tkadlec [5] showed that there exists an uncountable family of disjoint, non- σ -porous, perfect subsets of the reals. We shall prove a stronger theorem.

Theorem 2. There exists a family of cardinality of the continuum of disjoint, non- σ -porous, perfect subsets of reals.

Proof. By Theorem 1 of J. Tkadlec [5] there exists a non- σ -porous perfect subset of the reals S such that S - S is of the first category. $(S - S = \{s - s_1 : s, s_1 \in S\}.)$ Let G be a dense G_{δ} set such that $G \cap (S - S) = \emptyset$. Then $G \cup \{0\}$ is a dense G_{δ} set. By the result of J. Mycielski [4] there exists a perfect set D such that $D - D \in G \cup \{0\}.$ So $(D - D) \cap (S - S) = \{0\}.$ This implies that for every $t, w \in D$ such that $t \neq w$, $(t + S) \cap (w + S) = \emptyset$. Since D is the cardinality of the continuum, we have the result.

References

- 1. D.H. Fremlin and J. Jasiński, G_{δ} covers and large thin sets of reals, Journal of the London Math. Soc., to appear.
- F. Galvin and A.W. Miller, γ-sets and other singular sets of real line, Topology Appl., 17 (1984), 145-155.
- 3. A.W. Miller, Mapping a set of reals onto the reals, The Journal of Symbolic Logic, Vol. 48 No. 3, Sept. 1983.
- J. Mycielski, Independent sets in topological algebras, Fund. Math. 55 (1964), 139-147.
- J. Tkadlec, Construction of Some Non-σ-porous Sets on the Real Line, Real Analysis Exchange, Vol. 9 No. 2, (1983-1984), 473-482.

Received June 19, 1986