Ireneusz Recław, Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland

A NOTE ON THE σ-IDEAL OF σ-POROUS SETS

In this note we shall show that γ-sets of reals are σ-porous and there exists a family of cardinality of the continuum of disjoint non- σ-porous perfect sets.

A family g of open subsets of X is an ω-cover of X iff every finite subset of X is contained in an element of g. A space X has the γ-property (X is a γ-set) iff for every ω-cover $\&$ of X there exists a family $\left\{D_{m}: m \in \omega\right\} \in g$ such that $X \leq \underset{k}{\mathbf{U}} \underset{m \times k}{n} D_{m}$.

For a subset of the reals we define the set

$$
P(X)=\left\{X \in X: \limsup _{\varepsilon \rightarrow 0^{+}} 1(X, X, \varepsilon) / \varepsilon>0\right\}
$$

where $l(X, X, \varepsilon)$ is the length of the longest subinterval of $(X-\varepsilon, x+\varepsilon)$ disjoint from X. A set $X \in \mathbb{R}$ is called porous if $P(X)=X$ and is called σ-porous if it can be represented as countable union of porous sets.

Theorem 1. If $X \subseteq \mathbb{R}$ has the γ-property, then X is σ-porous.

Proof. Let $X \subseteq \mathbb{R}$ be a \boldsymbol{r}-set. For every $0<n<\omega$ and $A=$ $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \leq X \quad$ let $d_{A}=\min \left(\left\{\left|x_{i}-x_{j}\right|: i \neq j\right\} u\left\{\frac{l}{n}\right\}\right)$. Define $U_{A}=$ ${ }_{i}^{U} I_{i}$ where I_{i} is an open interval such that $x_{i} \in I_{i}\left|I_{i}\right|<\frac{1}{4} d_{A}$ and $\operatorname{dist}^{i=1}\left(I_{i}, I_{j}\right)>\frac{3}{4} d_{A} \quad$ for $i \neq j$.

Let $\left\{y_{n}\right\}$ be a sequence of distinct elements of x. Define $g_{n}=$ $\left\{U_{A}-\left\{y_{n}\right\}: A \subseteq X\right.$ has n elements $\}$ and $\&=\bigcup_{n=1}^{\infty} g_{n} \cdot \&$ is an ω-cover of X. Thus there exists a family $\left\{D_{m}: m \in \omega\right\} \equiv \&$ such that $X \equiv$ $\infty \quad \infty$
U $\quad \cap \quad D_{m}$.
$\mathrm{k}=1 \mathrm{~m}=\mathrm{k}$
Since y_{n} must be in all but finitely many D_{m}, we have that finitely many of $\left\{D_{m}: m \in \omega\right\}$ belong to g_{n}.

We shall show that $X_{k}=\prod_{m=k}^{\infty} D_{m}$ is porous. Let $x \in X_{k}$ and $\varepsilon>0$ and $n>\frac{1}{\varepsilon}$. Then there exist $m_{0}>k$ and $n_{0}>n$ such that $D_{m_{0}} \in \&_{n_{0}}$. There exists a set $A=\left\{x_{1}, x_{2}, \ldots, x_{n_{0}}\right\} \subseteq X$ such that $D_{m_{0}}=U_{A}-\left\{y_{n_{0}}\right\}$ and $x \in D_{m_{0}}$. So $D_{m_{0}}={\underset{i=1}{U_{0}}}_{U_{i}}-\left\{y_{n_{0}}\right\}$ where I_{i} is an open interval such that $\operatorname{dist}\left(I_{i}, I_{j}\right)>\frac{3}{4} d_{A}$ and $\left|I_{i}\right|<\frac{1}{4} d_{A}$. Assume that $x \in I_{1}$. Then $\left(x-\frac{3}{4} d_{A}, x+\frac{3}{4} d_{A}\right) \cap I_{i}=\varnothing \quad$ for $i>1$. Thus $\left(\left(x-\frac{3}{4} d_{A}, x+\frac{3}{4} d_{A}\right)-I_{1}\right) \cap X_{k}=\varnothing$. Hence $\left(x-\frac{3}{4} d_{A}, x+\frac{3}{4} d_{A}\right)-I_{1}$ contains an interval longer than $\frac{1}{2} d_{A}$. So $1\left(x_{k}, x, d_{A}\right) / d_{A}>\frac{1}{2}$. Since $\mathrm{d}_{\mathrm{A}}<\varepsilon, \quad \underset{\varepsilon \rightarrow 0^{+}}{\limsup } 1\left(\mathrm{X}_{\mathrm{k}}, \mathrm{x}, \varepsilon\right) / \varepsilon \geqslant \frac{1}{2}$.

It is not hard to see that the continuous image of a $\boldsymbol{\gamma}$-set is a $\boldsymbol{\gamma}$-set. F. Galvin and A.W. Miller [2] showed that assuming Martin's axiom there exists a $\boldsymbol{\gamma}$-set of reals of cardinality of the continuum. They also stated that every set of reals of cardinality less than that of the continuum is a γ-set. This implies:

Corollary 1. Assume Martin's axiom. Every set of reals of cardinality less than that of the continuum is σ-porous.

Corollary 2. Assume Martin's axiom. There exists a set of reals X of cardinality of the continuum such that every continuous image of X is σ-porous.

Remark. A.W. Miller proved in [3] that it is consistent that for every $X \subseteq R$ of cardinality of the continum there exists a continuous function from X onto $[0,1]$.

Assume that it is consistent that there exists a measurable cardinal. D.H. Fremlin and J. Jasinski [1] proved that it is consistent that there exists a set of reals X of cardinality of the continuum such that every Borel image of X has the γ-property.

Corollary 3. Assume that it is consistent that there exists a measurable cardinal. Then it is consistent that there exists a set of reals X of cardinality of the continuum such that every Borel image of X is σ-porous.
J. Tkadlec [5] showed that there exists an uncountable family of disjoint, non- σ-porous, perfect subsets of the reals. We shall prove a stronger theorem.

Theorem 2. There exists a family of cardinality of the continuum of disjoint, non- σ-porous, perfect subsets of reals.

Proof. By Theorem 1 of J. Tkadlec [5] there exists a non- σ-porous perfect subset of the reals S such that $S-S$ is of the first category. $\left(S-S=\left\{s-s_{1}: s, s_{1} \in S\right\}\right.$.) Let G be a dense G_{δ} set such that $G \cap(S-S)=\varnothing$. Then $G \cup\{0\}$ is a dense G_{δ} set. By the result of J. Mycielski [4] there exists a perfect set D such that $D-D \subset G \cup\{0\}$. So $(D-D) \cap(S-S)=\{0\}$. This implies that for every $t, w \in D$ such that $t \neq w, \quad(t+S) \cap(w+S)=\varnothing$. Since D is the cardinality of the continuum, we have the result.

References

1. D.H. Fremlin and J. Jasiński, G_{δ} covers and large thin sets of reals, Journal of the London Math. Soc., to appear.
2. F. Galvin and A.W. Miller, γ-sets and other singular sets of real line, Topology Appl., 17 (1984), 145-155.
3. A.W. Miller, Mapping a set of reals onto the reals, The Journal of Symbolic Logic, Vol. 48 No. 3, Sept. 1983.
4. J. Mycielski, Independent sets in topological algebras, Fund. Math. 55 (1964), 139-147.
5. J. Tkadlec, Construction of Some Non- σ-porous Sets on the Real Line, Real Analysis Exchange, Vol. 9 No. 2, (1983-1984), 473-482.
