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 A NOTE ON THE cr-IDEAL OF or-POROUS SETS

 In this note we shall show that r-sets of reals are <r-porous and there

 exists a family of cardinality of the continuum of disjoint non-<r-porous perfect

 sets.

 A family > of open subsets of X is an «-cover of X iff every finite

 subset of X is contained in an element of >. A space X has the

 r-property (X is a r-set) iff for every «-cover fr of X there exists

 a family {Dm : m e «} s > such that X s U il Dq.
 k m*k

 For a subset of the reals we define the set

 P(X) = {x e X : limsup l(X,x,e)/E > 0}
 £-*0+

 where l(X,x,e) is the length of the longest subinterval of (x-e,x+e)

 disjoint from X. A set X s F is called porous if P(X) = X and is called

 q- porous if it can be represented eus countable union of porous sets.

 Theorem 1. If X s IR has the r-property, then X is <r-porous.

 Proof. Let X s R be a r-set. For every 0 < n < « and A =

 {xi ,x2 , . . . ,xn} s X let d^ = min({ |xj-xj| : i * j} u {- n }). Define =
 n n 1
 U I i where I¿ is an open interval such that xļ€ Iļ 1 1^ ļ < j d^ and
 i=1 3
 dist(Ii,Ij) > - dA for i * j.

 Let {yn} be a sequence of distinct elements of X. Define Jtn =
 CO

 - {yn) : A s X has n elements} and fr = U >n. > is an «-cover
 n=l

 of X. Thus there exists a family {Dm : m € u} s fr such that X s
 00 00

 u n Dm.
 k=l m=k

 Since yn must be in all but finitely many Dm, we have that finitely

 many of {Dm : m € «} belong to >n.
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 <D

 We shall show that Xfc = 0 Dj, is porous. Let x € Xfc and e > 0
 m=k

 and n > j . Then there exist m0 > k and n0 > n such that € 8rn<).

 There exists a set A = {Xi ,x2, . . . ,xno) s X such that DB,o = Ua - {Yn0)
 n0

 and xeDn.. So Dm = U Ii * - {yn } where Ii is an open interval O O _ * O
 1=1 _

 3 1
 such that dist(Ii,Ij) > -ķ and |Iļ| < -ę d¿. Assume that x c It.

 3 3

 Then (x - -ķ d^» x + 4 ^a) n Ii = 0 for i > 1. Thus
 3 3 3 3
 ((x - -ķ dA, x + -ę dA) - Ii) n Xķ = 0. Hence (x - 5 dA, x + 4 dA) ~

 1 1
 contains an interval longer than ģ dA> So l(X](,x,dA)/dA > 2 *

 Since dA < e. limsup l(X]{,x,e)/e ^ -i .
 e-H)+

 It is not hard to see that the continuous image of a y-set is a 7-set.

 F. Galvin and A.W. Miller [2] showed that assuming Martin's axiom there exists

 a r-set of reals of cardinality of the continuum. They also stated that every

 set of reals of cardinality less than that of the .continuum is a 7-set. This

 implies:

 Corollary 1. Assume Martin's axiom. Every set of reals of cardinality less

 than that of the continuum is <r-porous.

 Corollary 2. Assume Martin's axiom. There exists a set of reals X of

 cardinality of the continuum such that every continuous image of X is

 »-porous .

 Reaark. A.W. Miller proved in [3] that it is consistent that for every

 X a R of cardinality of the continuum there exists a continuous function

 from X onto [0,1].

 Assume that it is consistent that there exists a measurable cardinal.

 D.H. Fremlin and J. Jasiński [1] proved that it is consistent that there

 exists a set of reals X of cardinality of the continuum such that every

 Borei image of X has the 7-property.
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 Corollary 3. Assume that it is consistent that there exists a measurable

 cardinal. Then it is consistent that there exists a set of reals X of

 cardinality of the continuum such that every Borei image of X is <r-porous.

 J. Tkadlec [5] showed that there exists an uncountable family of

 disjoint, non-o- porous, perfect subsets of the reals. We shall prove a

 stronger theorem.

 Theorea 2. There exists a family of cardinality of the continuum of disjoint,

 non-o- porous , perfect subsets of reals.

 Proof. By Theorem 1 of J. Tkadlec [5] there exists a non-<r-porous perfect

 subset of the reals S such that S - S is of the first category.

 (S - S = {s - Si : s, Si e S}.) Let G be a dense G¿ set such that

 G n (s - S) = 0. Then G u {0} is a dense G¿ set. By the result of

 J. Mycielski [4] there exists a perfect set D such that D - D c G u {0}.

 Śo (D - D) n (s - S) = {0}. This implies that for every t,w € D such
 that t * w, (t + S) n (w + S) = 0. Since D is the cardinality of the

 continuum, we have the result.
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