RESEARCH

Dariusz Borzestowski,* Institute of Mathematics, University of Gdańsk, Poland. email: db@math.univ.gda.pl

Ireneusz Recław,[†] Institute of Informatics, University of Gdańsk, Poland. email: reclaw@inf.ug.edu.pl

ON LUNINA'S 7-TUPLES FOR IDEAL CONVERGENCE

Abstract

We prove the ideal versions of Lunina's Theorem on convergence and divergence sets of real continuous functions defined on a metric space for F_{σ} -ideals and ideals with Baire property.

Let (M, ρ) be a metric space. For a sequence of continuous real functions $\vec{f} = (f_n)_n$ defined on M we consider 7 types of sets of convergence or divergence of that sequence:

$$\begin{split} E_1^f &= \left\{ x : -\infty < \lim_{n \to \infty} f_n\left(x\right) < +\infty \right\}, \\ E_2^{\vec{f}} &= \left\{ x : \lim_{n \to \infty} f_n\left(x\right) = +\infty \right\}, \\ E_3^{\vec{f}} &= \left\{ x : \lim_{n \to \infty} f_n\left(x\right) = -\infty \right\}, \\ E_4^{\vec{f}} &= \left\{ x : -\infty < \underline{\lim}_{n \to \infty} f_n\left(x\right) < \overline{\lim}_{n \to \infty} f_n\left(x\right) < +\infty \right\}, \\ E_5^{\vec{f}} &= \left\{ x : -\infty < \underline{\lim}_{n \to \infty} f_n\left(x\right) < \overline{\lim}_{n \to \infty} f_n\left(x\right) = +\infty \right\}, \\ E_6^{\vec{f}} &= \left\{ x : -\infty = \underline{\lim}_{n \to \infty} f_n\left(x\right) < \overline{\lim}_{n \to \infty} f_n\left(x\right) < +\infty \right\}, \\ E_7^{\vec{f}} &= \left\{ x : -\infty = \underline{\lim}_{n \to \infty} f_n\left(x\right) < \overline{\lim}_{n \to \infty} f_n\left(x\right) = +\infty \right\}, \end{split}$$

Moreover, let

$$E_8^{\vec{f}} = \left\{ x : \overline{\lim}_{n \to \infty} f_n(x) = +\infty \right\},\$$

$$E_9^{\vec{f}} = \left\{ x : \underline{\lim}_{n \to \infty} f_n(x) = -\infty \right\}.$$

Mathematical Reviews subject classification: Primary: 28A20; Secondary: 03E15 Key words: ideal convergence, continuous functions, convergence sets, Lunina's theorem Received by the editors October 13, 2009

Communicated by: Udayan B. Darji *The author is a Ph.D. student at University of Gdańsk

 $^{^{\}dagger}\text{Research}$ partially supported by Alexander von Humboldt Foundation and by the grant BW 5100-5-0148-8.

Observe that $E_8^{\vec{f}} = E_2^{\vec{f}} \cup E_5^{\vec{f}} \cup E_7^{\vec{f}}$ and $E_9^{\vec{f}} = E_3^{\vec{f}} \cup E_6^{\vec{f}} \cup E_7^{\vec{f}}$

Theorem 1 (Lunina, [6]). Suppose that a metric space M is a union of 7 disjoint sets $E_1, E_2 \ldots E_7$ such that E_1, E_2, E_3 is $F_{\sigma\delta}$ in M and $E_2 \cup E_5 \cup E_7$, $E_3 \cup E_6 \cup E_7$ are G_{δ} in M. Then there exists the sequence of real-valued continuous functions $\vec{f} = (f_n)_n$ on M so that $E_i = E_i^{\vec{f}}$ for $i = 1, 2, \ldots, 7$.

This completely describes the defined sets because it was known that for a given sequence of continuous functions \vec{f} on a metric space M, the sets satisfy the assumption of the theorem. We will call (E_1, \ldots, E_7) Lunina's 7-tuple in M if there exists a sequence of real-valued continuous functions $\vec{f} = (f_n)_n$ on M such that $E_i = E_i^{\vec{f}}$ for $i = 1, 2, \ldots, 7$. Let us denote $\Lambda 7(M) = \{(E_1, \ldots, E_7) : (E_1, \ldots, E_7) \text{ is Lunina's 7-tuple in } M\}$. So Lunina's theorem can be expressed in the following way:

$$\Lambda^{7}(M) = \{ (E_{1}, \dots, E_{7}) : (E_{1}, \dots, E_{7}) \text{ is a partition of } M \text{ and} \\ E_{1}, E_{2}, E_{3} \in F_{\sigma\delta}(M) \text{ and } E_{2} \cup E_{5} \cup E_{7}, E_{3} \cup E_{6} \cup E_{7} \in G_{\delta}(M) \}$$

for a metric space M.

In this paper we are going to prove some results which generalize Lunina's Theorem (however using it) for ideal convergence for ideals with Baire property (inclusion) and F_{σ} -ideals (equality). The notion of ideal convergence (\mathcal{I} -convergence) is a generalization of the notion of convergence (in the case of the ordinary convergence the ideal \mathcal{I} is equal to the ideal of finite subsets of $\omega = \{0, 1, 2, \ldots\}$). It was first considered in the case of the ideal of sets of statistical density 0 by Steinhaus and Fast [4] (in such a case ideal convergence is equivalent to statistical convergence.) In its general form it appears in the work of Bernstein [1] (for maximal ideals) and M. Katětov [5], where both authors use dual notions of filter convergence.

A family of sets of integers $\mathcal{I} \subset P(\omega)$ is an ideal if $\omega \notin \mathcal{I}$ and it is closed under finite unions and taking subsets. Throughout the paper assume that \mathcal{I} contains the ideal of finite subsets Fin. Since we can identify a set of integers with it's characteristic function we can identify $P(\omega)$ with the Cantor space. In this sense ideals can be F_{σ} -subsets or have Baire property in the space $P(\omega)$. The ideal Fin is an F_{σ} -ideal. Let us give two more less trivial examples of F_{σ} -ideals. The ideal $\mathcal{I}_{1/n} = \{A \subset \omega : \sum_{n \in A} 1/n < \infty\}$ and the van der Waerden ideal, an ideal of sets which do not contain arbitrarily long arithmetic progressions. It is known that the ideal of sets of statistical density 0 is an $F_{\sigma\delta}$ -ideal but not an F_{σ} -ideal.

Definition 2. Let \mathcal{I} be an ideal on ω and $(x_n)_n$ be a sequence of real numbers

480

and $x \in \mathbb{R}$. Then

$$\begin{split} \mathcal{I}-\lim_{n\to\infty} x_n &= x \iff \forall l \in \mathbb{N}_+ \quad \left\{ n \in \omega \colon |x_n - x| > \frac{1}{l} \right\} \in \mathcal{I}, \\ \mathcal{I}-\lim_{n\to\infty} x_n &= -\infty \iff \forall l \in \mathbb{Z} \quad \{n \in \omega \colon x_n > l\} \in \mathcal{I}, \\ \mathcal{I}-\lim_{n\to\infty} x_n &= +\infty \iff \forall l \in \mathbb{Z} \quad \{n \in \omega \colon x_n < l\} \in \mathcal{I}, \\ \mathcal{I}-\lim_{n\to\infty} x_n &= \inf \left\{ \alpha \colon \{n \colon x_n > \alpha\} \in \mathcal{I} \right\}, \\ \mathcal{I}-\lim_{n\to\infty} x_n &= \sup \left\{ \alpha \colon \{n \colon x_n < \alpha\} \in \mathcal{I} \right\}. \end{split}$$

Observe that to define the first three parts of the definition it is enough to use only the last two parts, simply defining $\mathcal{I} - \lim_{n \to \infty} x_n = x$ if $\mathcal{I} - \overline{\lim} x_n = \mathcal{I} - \underline{\lim} x_n = x$, and $\mathcal{I} - \lim_{n \to \infty} x_n = -\infty$ if $\mathcal{I} - \overline{\lim} x_n = -\infty$, and $\mathcal{I} - \lim_{n \to \infty} x_n = \infty$ if $\mathcal{I} - \underline{\lim} x_n = \infty$

Let $\vec{f} = (f_n)_n$ be a sequence of continuous functions such that $f_n \colon M \to \mathbb{R}$ for all $n = 1, 2, 3, \ldots$ Suppose that \mathcal{I} is an ideal on ω . Let us introduce the following notation:

$$\begin{split} E_1^{\vec{f}}(\mathcal{I}) &= \left\{ x : -\infty < \mathcal{I} - \lim_{n \to \infty} f_n\left(x\right) < +\infty \right\}, \\ E_2^{\vec{f}}(\mathcal{I}) &= \left\{ x : \mathcal{I} - \lim_{n \to \infty} f_n\left(x\right) = +\infty \right\}, \\ E_3^{\vec{f}}(\mathcal{I}) &= \left\{ x : \mathcal{I} - \lim_{n \to \infty} f_n\left(x\right) = -\infty \right\}, \\ E_4^{\vec{f}}(\mathcal{I}) &= \left\{ x : -\infty < \mathcal{I} - \lim_{n \to \infty} f_n\left(x\right) < \mathcal{I} - \lim_{n \to \infty} f_n\left(x\right) < +\infty \right\}, \\ E_5^{\vec{f}}(\mathcal{I}) &= \left\{ x : -\infty < \mathcal{I} - \lim_{n \to \infty} f_n\left(x\right) < \mathcal{I} - \lim_{n \to \infty} f_n\left(x\right) = +\infty \right\}, \\ E_6^{\vec{f}}(\mathcal{I}) &= \left\{ x : -\infty = \mathcal{I} - \lim_{n \to \infty} f_n\left(x\right) < \mathcal{I} - \lim_{n \to \infty} f_n\left(x\right) < +\infty \right\}, \\ E_7^{\vec{f}}(\mathcal{I}) &= \left\{ x : -\infty = \mathcal{I} - \lim_{n \to \infty} f_n\left(x\right) < \mathcal{I} - \lim_{n \to \infty} f_n\left(x\right) = +\infty \right\}. \end{split}$$

Moreover, let

$$E_8^{\vec{f}}(\mathcal{I}) = \left\{ x : \mathcal{I} - \overline{\lim_{n \to \infty}} f_n(x) = +\infty \right\},\$$
$$E_9^{\vec{f}}(\mathcal{I}) = \left\{ x : \mathcal{I} - \underline{\lim_{n \to \infty}} f_n(x) = -\infty \right\}.$$

Since standard convergence coincides with the ideal convergence with respect to Fin, for the ideal Fin we have $E_i^{\vec{f}} = E_i^{\vec{f}}$ (Fin) for i = 1, 2, ..., 9.

We will call (E_1, \ldots, E_7) Lunina's 7-tuple in M for \mathcal{I} if there exists a sequence of real-valued continuous functions $\vec{f} = (f_n)_n$ on M so that $E_i = E_i^{\vec{f}}(\mathcal{I})$ for $i = 1, 2, \ldots, 7$. Let us denote $\Lambda 7(M, \mathcal{I}) = \{(E_1, \ldots, E_7) : (E_1, \ldots, E_7) : (E_1, \ldots, E_7) \}$ is Lunina's 7-tuple in M for $\mathcal{I}\}$.

Let us recall the Rudin-Keisler ordering for ideals. $\mathcal{I} \leq_{RK} \mathcal{J}$ if there is a function $h: \omega \to \omega$ such that $A \in \mathcal{I}$ iff $h^{-1}[A] \in \mathcal{J}$.

Theorem 3. If $\mathcal{I} \leq_{RK} \mathcal{J}$ then $\Lambda 7(M, \mathcal{I}) \subset \Lambda 7(M, \mathcal{J})$.

PROOF. Let $h: \omega \to \omega$ be a function such that for each $A \subset \omega A \in \mathcal{I}$ iff $h^{-1}[A] \in \mathcal{J}$ and let $(E_1, \ldots, E_7) \in \Lambda^{7}(M, \mathcal{I})$. Then there exists a sequence of continuous functions $\vec{f} = (f_n)_n, f_n: M \to \mathbb{R}$ so that $E_i = E_i^{\vec{f}}(\mathcal{I})$ for $i = 1, 2, \ldots, 7$. We define a sequence of functions $\vec{g} = (g_n)_n, g_n: M \to \mathbb{R}$ such that $g_k = f_n$ for $k \in h^{-1}[\{n\}]$. To show that $E_i = E_i^{\vec{g}}(\mathcal{J})$ for $i = 1, 2, \ldots, 7$, it is enough to show the following for all $x \in M$:

- 1. $\mathcal{I} \underline{\lim}_{n \to \infty} f_n(x) = \mathcal{J} \underline{\lim}_{n \to \infty} g_n(x),$
- 2. $\mathcal{I} \overline{\lim}_{n \to \infty} f_n(x) = \mathcal{J} \overline{\lim}_{n \to \infty} g_n(x),$
- 3. $\mathcal{I} \lim_{n \to \infty} f_n(x) = \mathcal{J} \lim_{n \to \infty} g_n(x).$

Observe first that $\{n : f_n(x) \in Z\} \in \mathcal{I}$ iff $\{k : g_k(x) \in Z\} \in \mathcal{J}$ for fixed $x \in M$ and $Z \subset \mathbb{R}$, simply because $\{k : g_k(x) \in Z\} = h^{-1}[\{n : f_n(x) \in Z\}]$. Then $\{\alpha : \{n : f_n(x) > \alpha\} \in \mathcal{I}\} = \{\alpha : \{k : g_k(x) > \alpha\} \in \mathcal{J}\}$ and $\{\alpha : \{n : f_n(x) < \alpha\} \in \mathcal{I}\} = \{\alpha : \{k : g_k(x) < \alpha\} \in \mathcal{J}\}$ as well as their suprema and infima.

Corollary 4. If \mathcal{I} is an ideal with the Baire property then $\Lambda 7(M) \subset \Lambda 7(M, \mathcal{I})$.

PROOF. M. Talagrand ([8] or [3], Corollary 3.10.2) proved that if \mathcal{I} has the Baire property then Fin $\leq_{RK} \mathcal{I}$.

Next we are going to show the inverse of the above inclusion for F_{σ} -ideals. We start with the following characterization of F_{σ} -ideals. A map $\Phi: P(\omega) \rightarrow [0, \infty]$ is a submeasure on ω if $\Phi(\emptyset) = 0$, and $\Phi(A) \leq \Phi(A \cup B) \leq \Phi(A) + \Phi(B)$, for all $A, B \subset \omega$. It is lower semicontinuous if for all $A \subset \omega$ we have $\Phi(A) = \lim_{n \to \infty} \Phi(A \cap \{0, \ldots, n\})$.

Theorem 5 (K. Mazur, [7], Lemma 1.2 or [3], Theorem 1.2.5). Let \mathcal{I} be an ideal on ω . Then \mathcal{I} is F_{σ} if and only if $\mathcal{I} = \operatorname{Fin}(\phi)$ for some lower semicontinuous submeasure ϕ , where $\operatorname{Fin}(\phi) = \{A \subseteq \omega : \phi(A) < \infty\}$.

Lemma 6. Assume that $\mathcal{I} = Fin(\phi)$ for some lower semicontinuous submeasure ϕ . Then $A \in \mathcal{I}$ if and only if there exists a natural number n so that $(\forall B \in Fin) (\phi(B) > n \Rightarrow \exists m \in B \ m \notin A).$

PROOF. If $A \in \mathcal{I}$ then let $n = \phi(A)$. If $\phi(B) > n$ then B cannot be contained in A. And conversely, assume that $A \notin \mathcal{I}$. Then $\phi(A) = \infty$ so from lower semicontinuity of ϕ for each *n* there is $B \subset A$ finite with $\phi(B) > n$.

Theorem 7. Let M be a metric space. If \mathcal{I} is F_{σ} -ideal then $\Lambda 7(M) =$ $\Lambda 7(M, \mathcal{I})$

PROOF. Let ϕ be a lower semicontinuous submeasure with $\mathcal{I} = \operatorname{Fin}(\phi)$. Fix a sequence $\vec{f} = (f_n)_n$ of continuous functions $f_n : M \to \mathbb{R}$. From [2] (Proposition 1, Theorem 2) we use Cauchy-like characterization of ideal convergence and we get

$$E_1^{\vec{f}}(\mathcal{I}) = \left\{ x \colon \forall k \in \mathbb{N}_+ \exists l \in \mathbb{N} \left\{ n \colon |f_l(x) - f_n(x)| > \frac{1}{k} \right\} \in \mathcal{I} \right\}.$$

By Lemma 6

$$E_1^f(\mathcal{I}) = \{x \colon \forall k \in \mathbb{N}_+ \exists l \in \mathbb{N} \exists m \in \mathbb{N} \forall B \in \mathrm{Fin} \\ (\phi(B) > m \Rightarrow \exists b \in B \ |f_l(x) - f_b(x)| \leq \frac{1}{k})\} = \\\bigcap_{k \in \mathbb{N}_+} \bigcup_{l \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} \bigcap_{B \in \mathrm{Fin}, \phi(B) > m} \bigcup_{b \in B} \left\{x \colon |f_l(x) - f_b(x)| \leq \frac{1}{k}\right\}.$$

Since $\left\{x: |f_l(x) - f_b(x)| \leq \frac{1}{k}\right\}$ is a closed subset of M, therefore $E_1^{\vec{f}}(\mathcal{I})$ is $F_{\sigma\delta}$.

In the next case $E_2^{\vec{f}}(\mathcal{I}) = \{x \colon \forall l \in \mathbb{Z} \mid \{n \colon f_n(x) < l\} \in \mathcal{I}\}$. Applying Lemma 6 we get

$$\begin{split} E_{2}^{\vec{f}} &= \{x \colon \forall l \in \mathbb{Z} \;\; \exists m \in \mathbb{N} \;\; \forall B \in \operatorname{Fin}\left(\phi\left(B\right) > m \Rightarrow \exists b \in B \;\; f_{b}\left(x\right) \geq l\right)\} = \\ & \bigcap_{l \in \mathbb{Z}} \;\; \bigcup_{m \in \mathbb{N}} \;\; \bigcap_{B \in \operatorname{Fin}, \phi(B) > m} \;\; \bigcup_{b \in B} \left\{x \colon f_{b}\left(x\right) \geq l\right\}. \end{split}$$

Since $\{x: f_b(x) \ge l\}$ is a closed subset of M thus $E_2^{\vec{f}}(\mathcal{I})$ is $F_{\sigma\delta}$. Next we consider the set $E_8^{\vec{f}}(\mathcal{I}) = \{x: \forall l \in \mathbb{Z} \mid \{n: f_n(x) > l\} \notin \mathcal{I}\}$. Again, applying Lemma 6 we have

$$E_8^f(\mathcal{I}) = \bigcap_{l \in \mathbb{Z}} \bigcap_{m \in \mathbb{N}} \bigcup_{\substack{B \in \text{Fin} \\ \phi(B) > m}} \bigcap_{b \in B} \left\{ x \colon f_b(x) > l \right\}.$$

Therefore we see that $E_8^{\vec{f}}(\mathcal{I})$ is G_{δ} , because $f_b^{-1}[(l, +\infty)]$ is an open subset of M. Similarly, we show that $E_3^{\vec{f}}(\mathcal{I})$ is $F_{\sigma\delta}$ and $E_9^{\vec{f}}(\mathcal{I})$ is G_{δ} . So we have proven that $\Lambda 7(M) \supset \Lambda 7(M, \mathcal{I})$. The inverse inclusion follows from the fact that F_{σ} sets have the Baire Property and Corollary 4.

For some spaces the previous theorem can be inverted.

Theorem 8. Let M be a metric space containing a subspace homeomorphic to the Cantor space. If $\Lambda 7(M) = \Lambda 7(M, \mathcal{I})$ then \mathcal{I} is F_{σ} -ideal.

PROOF. Assume that \mathcal{I} is not F_{σ} -ideal. Let us define a sequence of continuous functions $f_n: P(\omega) \to \mathbb{R}$ by the formula

$$f_n(A) = \begin{cases} 0 & \text{if } n \notin A \\ n & \text{otherwise} \end{cases}$$

Observe that if $A \in \mathcal{I}$ then $\mathcal{I} - \lim f_n(A) = 0$, and if $A \notin \mathcal{I}$ then for each $k \{n : f_n(A) > k\} = A \setminus \{0, \dots, k\} \notin \mathcal{I}$ so $\mathcal{I} - \overline{\lim}_{n \to \infty} f_n(A) = \infty$ so $E_8^{\vec{f}}(\mathcal{I}) = P(\omega) \setminus \mathcal{I}$ is not G_{δ} . Now assume that $P(\omega)$ is a homeomorphic subset of M. Since $P(\omega)$ is a compact space it is also a closed subset of M. So we can extend functions f_n to continuous functions $g_n : M \to \mathbb{R}$. Observe that $E_8^{\vec{f}}(\mathcal{I}) = E_8^{\vec{g}}(\mathcal{I}) \cap P(\omega)$ so if $E_8^{\vec{f}}(\mathcal{I})$ is not G_{δ} in $P(\omega)$ then $E_8^{\vec{g}}(\mathcal{I})$ is not G_{δ} in M.

Corollary 9. Let \mathcal{I} be an F_{σ} -ideal. Then

$$F_{\sigma\delta}(M) = \left\{ A \subseteq M \colon A = E_i^{\vec{f}}(\mathcal{I}) \text{ for } \vec{f} \in C(M)^{\omega} \right\} \text{ for } i = 1, 2, 3.$$

$$G_{\delta}(M) = \left\{ A \subseteq M \colon A = E_i^{\vec{f}}(\mathcal{I}) \text{ for } \vec{f} \in C(M)^{\omega} \right\} \text{ for } i = 8, 9.$$

where C(M) denotes the set of all real-valued continuous functions defined on M.

PROOF. For $A \in F_{\sigma\delta}(M)$ we apply Theorems 1 and 7 for 7-tuples:

$$\begin{array}{l} (A, \emptyset, \emptyset, M \setminus A, \emptyset, \emptyset, \emptyset) \text{ for } i = 1, \\ (\emptyset, A, \emptyset, \emptyset, M \setminus A, \emptyset, \emptyset) \text{ for } i = 2, \\ (\emptyset, \emptyset, A, \emptyset, \emptyset, M \setminus A, \emptyset) \text{ for } i = 3. \end{array}$$

For $A \in G_{\delta}(M)$ we take $(\emptyset, \emptyset, \emptyset, M \setminus A, \emptyset, \emptyset, A)$ for i = 8, 9.

References

- A. R. Bernstein, A new kind of compactness for topological spaces, Fund. Math., 66 (1969/1970), 185–193.
- [2] K. Dems, On J-Cauchy sequences, Real Anal. Exchange, 30 (2004/05), 123–128.
- [3] I. Farah, Analytic quotients: theory of liftings for quotients over analytic ideals on the integers, Mem. Amer. Math. Soc., 148(702) (2000).
- [4] H. Fast, Sur la convergence statistique. Colloq. Math., 2 (1951), 241–244.
- [5] M. Katětov, Products of filters. Comment. Math. Univ. Carolin., 9 (1968), 173–189.
- [6] M. A. Lunina, Sets of convergence and divergence of a sequences of realvalued continuous functions on a metric space, Math. Notes, 17 (1975), 120–126.
- [7] K. Mazur, F_σ-ideals and ω₁ω^{*}₁-gaps in the Boolean algebras P(ω)/I, Fund. Math., 138 (1991), 103–111.
- [8] M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Math., 67(1) (1980), 13–43.

D. BORZESTOWSKI AND I. RECŁAW