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ON LUNINA’S 7-TUPLES FOR IDEAL
CONVERGENCE

Abstract

We prove the ideal versions of Lunina’s Theorem on convergence and
divergence sets of real continuous functions defined on a metric space
for Fσ-ideals and ideals with Baire property.

Let (M,ρ) be a metric space. For a sequence of continuous real func-
tions ~f = (fn)n defined on M we consider 7 types of sets of convergence or
divergence of that sequence:

E
~f
1 = {x : −∞ < limn→∞ fn (x) < +∞} ,

E
~f
2 = {x : limn→∞ fn (x) = +∞} ,

E
~f
3 = {x : limn→∞ fn (x) = −∞} ,

E
~f
4 =

{
x : −∞ < limn→∞ fn (x) < limn→∞ fn (x) < +∞

}
,

E
~f
5 =

{
x : −∞ < limn→∞ fn (x) < limn→∞ fn (x) = +∞

}
,

E
~f
6 =

{
x : −∞ = limn→∞ fn (x) < limn→∞ fn (x) < +∞

}
,

E
~f
7 =

{
x : −∞ = limn→∞ fn (x) ∧ limn→∞ fn (x) = +∞

}
.

Moreover, let
E
~f
8 =

{
x : limn→∞ fn (x) = +∞

}
,

E
~f
9 = {x : limn→∞ fn (x) = −∞} .
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Observe that E
~f
8 = E

~f
2 ∪ E

~f
5 ∪ E

~f
7 and E

~f
9 = E

~f
3 ∪ E

~f
6 ∪ E

~f
7

Theorem 1 (Lunina, [6] ). Suppose that a metric space M is a union of 7
disjoint sets E1, E2 . . . E7 such that E1, E2, E3 is Fσδ in M and E2 ∪ E5 ∪
E7, E3 ∪ E6 ∪ E7 are Gδ in M. Then there exists the sequence of real-valued
continuous functions ~f = (fn)n on M so that Ei = E

~f
i for i = 1, 2, . . . , 7.

This completely describes the defined sets because it was known that for a
given sequence of continuous functions ~f on a metric space M , the sets satisfy
the assumption of the theorem. We will call (E1, . . . , E7) Lunina’s 7-tuple inM
if there exists a sequence of real-valued continuous functions ~f = (fn)n on M

such that Ei = E
~f
i for i = 1, 2, . . . , 7. Let us denote Λ7(M) = {(E1, . . . , E7) :

(E1, . . . , E7) is Lunina’s 7-tuple in M}. So Lunina’s theorem can be expressed
in the following way:

Λ7(M) = {(E1, . . . , E7) : (E1, . . . , E7) is a partition of M and
E1, E2, E3 ∈ Fσδ(M) and E2 ∪ E5 ∪ E7, E3 ∪ E6 ∪ E7 ∈ Gδ(M)}

for a metric space M .
In this paper we are going to prove some results which generalize Lun-

ina’s Theorem (however using it) for ideal convergence for ideals with Baire
property (inclusion) and Fσ-ideals (equality). The notion of ideal convergence
(I-convergence) is a generalization of the notion of convergence (in the case
of the ordinary convergence the ideal I is equal to the ideal of finite subsets
of ω = {0, 1, 2, . . .}). It was first considered in the case of the ideal of sets of
statistical density 0 by Steinhaus and Fast [4] (in such a case ideal convergence
is equivalent to statistical convergence.) In its general form it appears in the
work of Bernstein [1] (for maximal ideals) and M. Katětov [5], where both
authors use dual notions of filter convergence.

A family of sets of integers I ⊂ P (ω) is an ideal if ω 6∈ I and it is closed
under finite unions and taking subsets. Throughout the paper assume that I
contains the ideal of finite subsets Fin. Since we can identify a set of integers
with it’s characteristic function we can identify P (ω) with the Cantor space.
In this sense ideals can be Fσ-subsets or have Baire property in the space
P (ω). The ideal Fin is an Fσ-ideal. Let us give two more less trivial examples
of Fσ-ideals. The ideal I1/n = {A ⊂ ω : Σn∈A1/n < ∞} and the van der
Waerden ideal, an ideal of sets which do not contain arbitrarily long arithmetic
progressions. It is known that the ideal of sets of statistical density 0 is an
Fσδ-ideal but not an Fσ-ideal.

Definition 2. Let I be an ideal on ω and (xn)n be a sequence of real numbers
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and x ∈ R. Then

I− lim
n→∞

xn = x ⇔ ∀l∈N+

{
n∈ω : |xn − x| >

1
l

}
∈I,

I− lim
n→∞

xn = −∞ ⇔ ∀l∈Z {n∈ω : xn > l}∈I,

I− lim
n→∞

xn = +∞ ⇔ ∀l∈Z {n∈ω : xn < l}∈I,

I−limxn = inf {α : {n : xn > α} ∈ I} ,
I−limxn = sup {α : {n : xn < α} ∈ I} .

Observe that to define the first three parts of the definition it is enough
to use only the last two parts, simply defining I − limn→∞ xn = x if I −
limxn = I − limxn = x, and I − limn→∞ xn = −∞ if I − limxn = −∞, and
I − limn→∞ xn =∞ if I − limxn =∞

Let ~f = (fn)n be a sequence of continuous functions such that fn : M → R
for all n = 1, 2, 3, . . . Suppose that I is an ideal on ω. Let us introduce the
following notation:

E
~f
1 (I) =

{
x : −∞ < I− lim

n→∞
fn (x) < +∞

}
,

E
~f
2 (I) =

{
x : I− lim

n→∞
fn (x) = +∞

}
,

E
~f
3 (I) =

{
x : I− lim

n→∞
fn (x) = −∞

}
,

E
~f
4 (I) =

{
x : −∞ < I− lim

n→∞
fn (x) < I− lim

n→∞
fn (x) < +∞

}
,

E
~f
5 (I) =

{
x : −∞ < I− lim

n→∞
fn (x) < I− lim

n→∞
fn (x) = +∞

}
,

E
~f
6 (I) =

{
x : −∞ = I− lim

n→∞
fn (x) < I− lim

n→∞
fn (x) < +∞

}
,

E
~f
7 (I) =

{
x : −∞ = I− lim

n→∞
fn (x) ∧ I− lim

n→∞
fn (x) = +∞

}
.

Moreover, let

E
~f
8 (I) =

{
x : I− lim

n→∞
fn (x) = +∞

}
,

E
~f
9 (I) =

{
x : I− lim

n→∞
fn (x) = −∞

}
.

Since standard convergence coincides with the ideal convergence with respect
to Fin, for the ideal Fin we have E

~f
i = E

~f
i (Fin) for i = 1, 2, . . . , 9.
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We will call (E1, . . . , E7) Lunina’s 7-tuple in M for I if there exists a
sequence of real-valued continuous functions ~f = (fn)n on M so that Ei =

E
~f
i (I) for i = 1, 2, . . . , 7. Let us denote Λ7(M, I) = {(E1, . . . , E7) : (E1, . . . , E7)

is Lunina’s 7-tuple in M for I}.
Let us recall the Rudin-Keisler ordering for ideals. I ≤RK J if there is a

function h : ω → ω such that A ∈ I iff h−1[A] ∈ J .

Theorem 3. If I ≤RK J then Λ7(M, I) ⊂ Λ7(M,J ).

Proof. Let h : ω → ω be a function such that for each A ⊂ ω A ∈ I iff
h−1[A] ∈ J and let (E1, . . . , E7) ∈ Λ7(M, I). Then there exists a sequence
of continuous functions ~f = (fn)n, fn : M → R so that Ei = E

~f
i (I) for

i = 1, 2, . . . , 7. We define a sequence of functions ~g = (gn)n, gn : M → R such
that gk = fn for k ∈ h−1[{n}]. To show that Ei = E~gi (J ) for i = 1, 2, . . . , 7,
it is enough to show the following for all x ∈M :

1. I − limn→∞ fn(x) = J − limn→∞ gn(x),

2. I − limn→∞ fn(x) = J − limn→∞ gn(x),

3. I − limn→∞ fn(x) = J − limn→∞ gn(x).

Observe first that {n : fn(x) ∈ Z} ∈ I iff {k : gk(x) ∈ Z} ∈ J for fixed
x ∈ M and Z ⊂ R, simply because {k : gk(x) ∈ Z} = h−1[{n : fn(x) ∈ Z}].
Then {α : {n : fn(x) > α} ∈ I} = {α : {k : gk(x) > α} ∈ J } and {α : {n :
fn(x) < α} ∈ I} = {α : {k : gk(x) < α} ∈ J } as well as their suprema and
infima.

Corollary 4. If I is an ideal with the Baire property then Λ7(M) ⊂ Λ7(M, I).

Proof. M. Talagrand ([8] or [3], Corollary 3.10.2) proved that if I has the
Baire property then Fin ≤RK I.

Next we are going to show the inverse of the above inclusion for Fσ-ideals.
We start with the following characterization of Fσ-ideals. A map Φ : P (ω)→
[0,∞] is a submeasure on ω if Φ(∅) = 0, and Φ(A) ≤ Φ(A∪B) ≤ Φ(A)+Φ(B),
for all A,B ⊂ ω. It is lower semicontinuous if for all A ⊂ ω we have Φ(A) =
limn Φ(A ∩ {0, . . . , n}).

Theorem 5 (K. Mazur, [7], Lemma 1.2 or [3], Theorem 1.2.5). Let I be an
ideal on ω. Then I is Fσ if and only if I = Fin(φ) for some lower semicon-
tinuous submeasure φ, where Fin (φ) = {A⊆ω : φ (A) <∞} .
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Lemma 6. Assume that I = Fin(φ) for some lower semicontinuous submea-
sure φ. Then A ∈ I if and only if there exists a natural number n so that
(∀B ∈ Fin) (φ (B) > n⇒ ∃m∈B m 6∈A) .

Proof. If A ∈ I then let n = φ(A). If φ(B) > n then B cannot be contained
in A. And conversely, assume that A 6∈ I. Then φ(A) = ∞ so from lower
semicontinuity of φ for each n there is B ⊂ A finite with φ(B) > n.

Theorem 7. Let M be a metric space. If I is Fσ-ideal then Λ7(M) =
Λ7(M, I)

Proof. Let φ be a lower semicontinuous submeasure with I = Fin(φ). Fix
a sequence ~f = (fn)n of continuous functions fn : M → R. From [2] (Propo-
sition 1, Theorem 2) we use Cauchy-like characterization of ideal convergence
and we get

E
~f
1 (I) =

{
x : ∀k∈N+ ∃l∈N

{
n : |fl(x)− fn(x)| > 1

k

}
∈I
}
.

By Lemma 6

E
~f
1 (I) = {x : ∀k∈N+ ∃l∈N ∃m ∈ N ∀B∈Fin

(φ(B) > m⇒ ∃b∈B |fl(x)− fb(x)| 6 1
k )} =⋂

k∈N+

⋃
l∈N

⋃
m∈N

⋂
B∈Fin,φ(B)>m

⋃
b∈B

{
x : |fl(x)− fb(x)| 6 1

k

}
.

Since
{
x : |fl(x)− fb(x)| 6 1

k

}
is a closed subset of M, therefore E

~f
1 (I) is Fσδ.

In the next case E
~f
2 (I) = {x : ∀l∈Z {n : fn (x) < l}∈I} .Applying Lemma

6 we get

E
~f
2 = {x : ∀l∈Z ∃m∈N ∀B∈Fin (φ (B) > m⇒ ∃b∈B fb (x) ≥ l)} =⋂

l∈Z

⋃
m∈N

⋂
B∈Fin,φ(B)>m

⋃
b∈B

{x : fb (x) ≥ l} .

Since {x : fb (x) ≥ l} is a closed subset of M thus E
~f
2 (I) is Fσδ.

Next we consider the set E
~f
8 (I) = {x : ∀l ∈ Z {n : fn (x) > l} 6∈ I} .Again,

applying Lemma 6 we have

E
~f
8 (I) =

⋂
l∈Z

⋂
m∈N

⋃
B∈Fin

φ(B)>m

⋂
b∈B

{x : fb(x) > l} .
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Therefore we see that E
~f
8 (I) is Gδ, because f−1

b [(l,+∞)] is an open subset of

M. Similarly, we show that E
~f
3 (I) is Fσδ and E

~f
9 (I) is Gδ. So we have proven

that Λ7(M) ⊃ Λ7(M, I). The inverse inclusion follows from the fact that Fσ
sets have the Baire Property and Corollary 4.

For some spaces the previous theorem can be inverted.

Theorem 8. Let M be a metric space containing a subspace homeomorphic
to the Cantor space. If Λ7(M) = Λ7(M, I) then I is Fσ-ideal.

Proof. Assume that I is not Fσ-ideal. Let us define a sequence of continuous
functions fn : P (ω)→ R by the formula

fn(A) =

{
0 if n 6∈ A
n otherwise

.

Observe that if A ∈ I then I − lim fn(A) = 0, and if A 6∈ I then for each
k {n : fn(A) > k} = A \ {0, . . . , k} 6∈ I so I − limn→∞ fn(A) = ∞ so
E
~f
8 (I) = P (ω) \ I is not Gδ. Now assume that P (ω) is a homeomorphic

subset of M . Since P (ω) is a compact space it is also a closed subset of M .
So we can extend functions fn to continuous functions gn : M → R. Observe
that E

~f
8 (I) = E~g8 (I)∩P (ω) so if E

~f
8 (I) is not Gδ in P (ω) then E~g8 (I) is not

Gδ in M .

Corollary 9. Let I be an Fσ-ideal. Then

Fσδ (M) =
{
A⊆M : A = E

~f
i (I) for ~f ∈ C(M)ω

}
for i = 1, 2, 3,

Gδ (M) =
{
A⊆M : A = E

~f
i (I) for ~f ∈ C(M)ω

}
for i = 8, 9.

where C(M) denotes the set of all real-valued continuous functions defined on
M.

Proof. For A ∈ Fσδ (M) we apply Theorems 1 and 7 for 7-tuples:

(A, ∅, ∅,M \A, ∅, ∅, ∅) for i = 1,
(∅, A, ∅, ∅,M \A, ∅, ∅) for i = 2,
(∅, ∅, A, ∅, ∅,M \A, ∅) for i = 3.

For A ∈ Gδ (M) we take (∅, ∅, ∅,M \A, ∅, ∅, A) for i = 8, 9.
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[5] M. Katětov, Products of filters. Comment. Math. Univ. Carolin., 9 (1968),
173–189.

[6] M. A. Lunina, Sets of convergence and divergence of a sequences of real-
valued continuous functions on a metric space, Math. Notes, 17 (1975),
120–126.

[7] K. Mazur, Fσ-ideals and ω1ω
?
1-gaps in the Boolean algebras P(ω)/I, Fund.

Math., 138 (1991), 103–111.

[8] M. Talagrand, Compacts de fonctions mesurables et filtres non
mesurables, Studia Math., 67(1) (1980), 13–43.



486 D. Borzestowski and I. Rec law


