# An $L_{2}$-quotient algorithm for finitely presented groups 

Wilhelm Plesken and Anna Fabiańska

Second Killing and Weierstrass Colloquium
Braniewo, 24-26.03.2010 RWTHAACHEN UNIVERSTTY

## Motivation

- deciding triviality/infiniteness of finitely presented groups
- computing certain types of factor groups:
- abelian factor groups
- nilpotent factor groups
- soluble factor groups
- PROBLEM: perfect groups (i.e. no abelian quotients)


## Starting point

INPUT: a finitely presented group:

$$
G:=\left\langle a_{1}, a_{2}, \ldots, a_{n} \mid w_{i}\left(a_{1}, \ldots, a_{n}\right), i=1, \ldots, k\right\rangle
$$

e.g.

$$
G:=\left\langle a, b \mid a^{2}, b^{3},(a b)^{7},[a, b]^{21}\right\rangle, \text { where }[a, b]=a^{-1} b^{-1} a b .
$$

AIM: all epimorphisms:

i.e. all factor groups $G / N \cong \operatorname{PSL}\left(2, p^{\alpha}\right)$ for $p$ prime and $\alpha, \beta \in \mathbb{N}$.

## Problems

Given a f. p. group $G:=\left\langle a_{1}, a_{2}, \ldots, a_{n} \mid w_{i}\left(a_{1}, \ldots, a_{n}\right), i=1, \ldots, k\right\rangle$ :

- decide if the set

$$
N_{L_{2}}(G):=\left\{N \preccurlyeq G \mid G / N \cong L_{2}(q) \text { for some prime power } q\right\}
$$

is finite.

- in case $\left|N_{L_{2}}(G)\right|<\infty$ : give for each $N \in N_{L_{2}}(G)$ a representation $\Delta$ with $N=\operatorname{ker} \Delta$.
- in case $\left|N_{L_{2}}(G)\right|$ is infinite: give one of the representations and a proof that the set $N_{L_{2}}(G)$ is infinite.


## Main idea: matrix ansatz



Similar problems:
Plesken, Souvignier (1997)
Plesken, Robertz (2006)

## Main idea



## Main idea



## Example: a "naive approach"

## Example

$$
G:=\left\langle a, b \mid a^{2}, b^{3},(a b)^{7},[a, b]^{21}\right\rangle \text {, where }[a, b]=a^{-1} b^{-1} a b .
$$

Matrix ansatz:

$$
A:=\left(\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right), B:=\left(\begin{array}{ll}
b_{1,1} & b_{1,2} \\
b_{2,1} & b_{2,2}
\end{array}\right)
$$

Matrix equations:

$$
A^{2}= \pm I_{2}, \quad B^{3}= \pm I_{2}, \quad(A B)^{7}= \pm I_{2}, \quad\left(A^{-1} B^{-1} A B\right)^{21}= \pm I_{2}
$$

and $\operatorname{det}(A)=1, \operatorname{det}(B)=1$.

## Example

## Example

$G:=\left\langle a, b \mid a^{2}, b^{3},(a b)^{7},[a, b]^{21}\right\rangle$, where $[a, b]=a^{-1} b^{-1} a b$.
Matrix ansatz (w.l.o.g):

$$
A:=\left(\begin{array}{cc}
a_{1,1} & a_{1,2} \\
0 & a_{2,2}
\end{array}\right), B:=\left(\begin{array}{cc}
0 & -1 \\
1 & b_{2,2}
\end{array}\right)
$$

Matrix equations:

$$
A^{2}= \pm I_{2}, \quad B^{3}= \pm I_{2}, \quad(A B)^{7}= \pm I_{2}, \quad\left(A^{-1} B^{-1} A B\right)^{21}= \pm I_{2}
$$

and $\operatorname{det}(A)=1, \operatorname{det}(B)=1$.
Consider one of the $2^{4}$ possibilities, e.g. $\epsilon=(+,+,+,+)$, then

$$
A^{2}=\left(\begin{array}{cc}
a_{1,1}^{2} & a_{1,1} a_{1,2}+a_{1,2} a_{2,2} \\
0 & a_{2,2}^{2}
\end{array}\right) \text { and }
$$

$I(G, \Delta, \epsilon)=\left\langle a_{1,1}{ }^{2}-1, \quad a_{1,1} a_{1,2}+a_{1,2} a_{2,2}, \quad a_{2,2}{ }^{2}-1, \ldots, \operatorname{det}(A)-1\right\rangle \unlhd \mathbb{Z}\left[a_{1,1}, \ldots b_{2,2}\right]$

## Example

given:

$$
I(G, \Delta, \epsilon) \unlhd \mathbb{Z}\left[a_{1,1}, \ldots b_{2,2}\right]
$$



## Example

## Example

$G:=\left\langle a, b \mid a^{2}, b^{3},(a b)^{7},[a, b]^{21}\right\rangle$, where $[a, b]=a^{-1} b^{-1} a b$.

All corresponding minimal associated prime ideals:

$$
\begin{aligned}
& P_{1}=\left\langle 13, b_{2,2}+1, a_{2,2}+5, a_{1,2}+8, a_{1,1}+8\right\rangle \\
& P_{2}=\left\langle 13, b_{2,2}+1, a_{2,2}+8, a_{1,2}+11, a_{1,1}+5\right\rangle \\
& P_{3}=\left\langle 41, b_{2,2}+1, a_{2,2}+9, a_{1,2}+36, a_{1,1}+32\right\rangle \\
& P_{4}=\left\langle 41, b_{2,2}+1, a_{2,2}+32, a_{1,2}+18, a_{1,1}+9\right\rangle \\
& P_{5}=\left\langle 43, b_{2,2}+1, a_{1,2}+42 a_{2,2}+35, a_{1,1}+a_{2,2}, a_{2,2} b_{2,2}+a_{2,2}, a_{2,2}^{2}+1\right\rangle
\end{aligned}
$$

## Example: Subgroup tests

(1) $P_{1}=\left\langle 13, b_{2,2}+1, a_{2,2}+5, a_{1,2}+8, a_{1,1}+8\right\rangle$

Do the matrices

$$
A:=\left(\begin{array}{cc}
-8 & -8 \\
0 & -5
\end{array}\right), B:=\left(\begin{array}{cc}
0 & -1 \\
1 & -1
\end{array}\right)
$$

generate $\operatorname{PSL}(2,13)$ or a subgroup of it?
(2) $P_{5}=\left\langle 43, b_{2,2}+1, a_{1,2}+42 a_{2,2}+35, a_{1,1}+a_{2,2}, a_{2,2} b_{2,2}+a_{2,2}, a_{2,2}^{2}+1\right\rangle$

Do matrices

$$
A:=\left(\begin{array}{cc}
-a_{2,2} & a_{2,2}+8 \\
0 & a_{2,2}
\end{array}\right), B:=\left(\begin{array}{cc}
0 & -1 \\
1 & -1
\end{array}\right)
$$

generate $\operatorname{PSL}\left(2,43^{2}\right), \operatorname{PSL}(2,43)$, or a subgroup of one of them?
$\rightarrow$ Subgroup tests, Dickson's Classification Theorem (1901)
$\rightarrow$ Galois descent

## Example: summary

## Example

$G:=\left\langle a, b \mid a^{2}, b^{3},(a b)^{7},[a, b]^{21}\right\rangle$, where $[a, b]=a^{-1} b^{-1} a b$.

Five minimal associated primes:

$$
\begin{aligned}
& P_{1}=\left\langle 13, b_{2,2}+1, a_{2,2}+5, a_{1,2}+8, a_{1,1}+8\right\rangle \\
& P_{2}=\left\langle 13, b_{2,2}+1, a_{2,2}+8, a_{1,2}+11, a_{1,1}+5\right\rangle \\
& P_{3}=\left\langle 41, b_{2,2}+1, a_{2,2}+9, a_{1,2}+36, a_{1,1}+32\right\rangle \\
& P_{4}=\left\langle 41, b_{2,2}+1, a_{2,2}+32, a_{1,2}+18, a_{1,1}+9\right\rangle \\
& P_{5}=\left\langle 43, b_{2,2}+1, a_{1,2}+42 a_{2,2}+35, a_{1,1}+a_{2,2}, a_{2,2} b_{2,2}+a_{2,2}, a_{2,2}^{2}+1\right\rangle
\end{aligned}
$$

and finitely many epimorphic images of $L_{2}$-type:
$\operatorname{PSL}(2,13), \operatorname{PSL}(2,41)$, and $\operatorname{PSL}(2,43)$

## Main problems



## Main problems:

(1) multiplication of matrices (long words)
(2) subgroup tests

## New idea: properties of traces

(1) Let $X$ be a $2 \times 2$ matrix of determinant 1 .

Is it possible to compute $\operatorname{tr}\left(X^{n}\right), \ldots, \operatorname{tr}(w(X))$ knowing only $\operatorname{tr}(X)$ ?
(2) Let $X_{1}, \ldots, X_{n}$ be $2 \times 2$ matrices of determinat 1 .

Is it possible to compute $\operatorname{tr}\left(w\left(X_{1}, \ldots, X_{n}\right)\right)$ knowing only $\operatorname{tr}\left(X_{1}\right), \ldots, \operatorname{tr}\left(X_{n}\right)$ ?

## Example

What is the trace

$$
\operatorname{tr}(w(A, B)) \text { for } w=[a, b] \in F_{2},
$$

where $A, B$ are $2 \times 2$-matrices of determinant 1 ?

## Properties of traces

For $2 \times 2$ matrices $X, Y$ of determinant 1 :
(1) $\operatorname{tr}(X Y)-\operatorname{tr}(X) \operatorname{tr}(Y)=\operatorname{det}(X)+\operatorname{det}(Y)-\operatorname{det}(X+Y)$
(2) $\operatorname{tr}(X Y)=\operatorname{tr}(Y X)$
(0) $\operatorname{tr}(X X Y)=\operatorname{tr}(X) \operatorname{tr}(X Y)-\operatorname{tr}(Y)$
(3) $\operatorname{tr}\left(X^{-1}\right)=\operatorname{tr}(X)$

## Theorem

Let $X$ be a $2 \times 2$ matrix of determinant 1 and $\operatorname{trace} \operatorname{tr}(X)=x$.
Let $T_{n}(x)$ be the trace of $X^{n}$. Then,
$T_{0}(x)=2$,
$T_{1}(x)=x$
and $T_{n+1}(x)=x T_{n}(x)-T_{n-1}(x)$.

Chebyshev polynomials of the first kind

$$
C_{0}(x)=2
$$

$$
C_{1}(x)=x
$$

$C_{n+1}(x)=2 x C_{n}(x)-C_{n-1}(x)$

$$
\begin{aligned}
T_{0}(x) & =2 \\
T_{1}(x) & =x \\
T_{n+1}(x) & =x T_{n}(x)-T_{n-1}(x)
\end{aligned}
$$

i.e. $T_{n}(x)=2 C_{n}\left(\frac{x}{2}\right)$ for $n>1$.

## Generalized Chebyshev polynomials

## Definition (Plesken, F., 2009)

Multivariate polynomials $p_{w}$, satisfying

$$
\begin{aligned}
p_{1} & =2 \\
p_{w v} & =p_{v w} \\
p_{w w v} & =p_{w} p_{w v}-p_{v}
\end{aligned}
$$

are called the generalized Chebyshev polynomials.

## Example

What is the trace

$$
\operatorname{tr}(w(A, B)) \text { for } w=[a, b] \in F_{2},
$$

where $A, B$ are $2 \times 2$-matrices of determinant 1 ?

## Generalized Chebyshev polynomials: Example

$$
\text { Rules: } \quad p_{1}=2 \quad p_{w v}=p_{v w} \quad p_{w w v}=p_{w} p_{w v}-p_{v}
$$

Then:
(1) $p_{a^{2}}=p_{a a}=p_{a_{a a^{-1}}}=p_{a} p_{a^{-1}}-p_{a^{-1} a}=p_{a} p_{a}-2=p_{a}^{2}-2$
(2) $p_{\text {baab }}=p_{a a b b}=p_{a} p_{a b b}-p_{b b}=p_{a}\left(p_{b} p_{b a}-p_{a}\right)-p_{b b}=$

$$
=p_{a} p_{b} p_{b a}-p_{a}^{2}-p_{b}^{2}+2
$$

(3) $p_{a^{-1} b^{-1} a b}=p_{a^{-1} b^{-1} a^{-1} b^{-1} \text { baab }}=p_{a^{-1} b^{-1}} p_{a b}-p_{b a a b}=p_{(a b)^{-1}} p_{a b}-p_{b a a b}=$

$$
=p_{a b}^{2}-\left(p_{a} p_{b} p_{b a}-p_{a}^{2}-p_{b}^{2}+2\right)=p_{a}^{2}+p_{b}^{2}+p_{a b}^{2}-p_{a} p_{b} p_{b a}-2
$$

Thus finally:

$$
\operatorname{tr}\left(A^{-1} B^{-1} A B\right)=\operatorname{tr}(A)^{2}+\operatorname{tr}(B)^{2}+\operatorname{tr}(A B)^{2}-\operatorname{tr}(A) \operatorname{tr}(B) \operatorname{tr}(A B)-2
$$

## Theorem (Plesken, F., 2009)

For every $w=w\left(g_{1}, g_{2}\right) \in F_{2}$ there exists a unique polynomial

$$
p_{w}\left(x_{1}, x_{2}, x_{12}\right) \in \mathbb{Z}\left[x_{1}, x_{2}, x_{12}\right]
$$

satisfying for every $\Delta: F_{2} \rightarrow \mathrm{SL}(2, R): g_{i} \mapsto X_{i}$ (for any integral domain $R$ ) the property

$$
\operatorname{tr}(\Delta(w))=p_{w}\left(\operatorname{tr}\left(X_{1}\right), \operatorname{tr}\left(X_{2}\right), \operatorname{tr}\left(X_{1} X_{2}\right)\right) .
$$

Similarly for $w \in F_{3}$ :

$$
\operatorname{tr}(\Delta(w))=p_{w}\left(\operatorname{tr}\left(X_{1}\right), \operatorname{tr}\left(X_{2}\right), \operatorname{tr}\left(X_{3}\right), \operatorname{tr}\left(X_{1} X_{2}\right), \operatorname{tr}\left(X_{1} X_{3}\right), \operatorname{tr}\left(X_{2} X_{3}\right), \operatorname{tr}\left(X_{1} X_{2} X_{3}\right)\right) .
$$

## Matrix ansatz

Matrix ansatz in case of two generators:

$$
A:=\left(\begin{array}{cc}
\alpha & x_{2} \alpha-x_{1} x_{2}+x_{12} \\
0 & -\alpha+x_{1}
\end{array}\right), B:=\left(\begin{array}{cc}
0 & -1 \\
1 & x_{2}
\end{array}\right),
$$

where

$$
\operatorname{tr}(A)=x_{1}, \operatorname{tr}(B)=x_{2} \text { and } \operatorname{tr}(A B)=x_{12} .
$$

## Example (finitely many primes, infinitely many $L_{2}$-quotients)

$$
G:=\left\langle a, b, c \mid a^{3}, b^{3}, c^{2},(c a)^{3},[a, b]\right\rangle
$$

- only one prime ideal passes the subgroup tests:

$$
P_{1}:=\left\langle 3, x_{23}+2 x_{123}+2, x_{13}+1, x_{12}+1, x_{3}, x_{2}+1, x_{1}+1\right\rangle
$$

- the Krull dimension of $P_{1}$ is one (in $\mathbb{Z}\left[x_{1}, \ldots x_{123}\right]$ )
- $x_{123}$ is a free variable
- thus for any $\alpha \in \mathbb{N}$ one gets $\operatorname{PSL}\left(2,3^{\alpha}\right)$ as an epimorphic image of $G$ (by specifying $x_{123}$ by an irreducible polynomial of degree $\alpha$ )


## Example (infinitely many primes infinitely many $L_{2}$-quotients for every prime)

$$
G:=\left\langle a, b, c \mid a^{2}, b^{2}, c^{2},(a b)^{3},(a c)^{4},(b c)^{5}\right\rangle
$$

- only one prime ideal passes the subgroup tests

$$
\begin{aligned}
P_{1}:= & \left\langle 1-7 x_{123}^{4}+2 x_{123}^{2}+2 x_{123}{ }^{6}+x_{123}{ }^{8}, 1-5 x_{123}^{4}+3 x_{23}+10 x_{123}{ }^{2}-2 x_{123}{ }^{6},\right. \\
& \left.x_{23} x_{123}{ }^{2}+1-3 x_{123}^{4}+x_{23}+5 x_{123}{ }^{2}-x_{123}{ }^{6}, x_{23}^{2}+x_{23}-1, x_{12}+1, x_{3}, x_{2}, x_{1}\right\rangle
\end{aligned}
$$

- $\mathbb{Q} P_{1}$ of Krull dim. 0 in $\mathbb{Q}\left[x_{1}, x_{2}, x_{3}, x_{12}, x_{13}, x_{23}, x_{123}\right]$,
- for every prime $p$ : finitely many (from 1 to 8 ) max. ideals in char. $p$ containing $P_{1}$, e.g.
$p=7: \quad \operatorname{PGL}\left(2, p^{2}\right)$ twice
$p=13: \quad \operatorname{PSL}\left(2, p^{2}\right)$ four times
$p=31: \quad \operatorname{PSL}(2, p)$ four times and $\operatorname{PGL}(2, p)$ twice
$p=241: \operatorname{PSL}(2, p)$ as epimorphic image of $G$ eight times


## Summary

$L_{2}$-quotient algorithm: enumeration of all epimorphic images of $L_{2}$-type

Applications:

- examination of f. p. groups
- in certain cases: proof of infiniteness of a group

Implementation:

- Maple-package PSL

```
http://wwwb.math.rwth-aachen.de/projekte.php
```

Tools:

- Janet Basis (special Groebner basis) of an ideal in a polynomial ring, Involutive (Y. Blinkov, C. Cid, V. Gerdt, W. Plesken, D. Robertz)
- minimal associated primes for ideals in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$, PRIMDECOMP (M. Lange-Hegermann)
- generalized Chebyshev polynomials


## Further problems

(1) finitely presented groups given on $n>3$ generators
(2) other epiomorphic images, e.g. $\operatorname{PSL}(3, q), \operatorname{PSL}(4, q)$, (S. Jambor)

Anna Fabiańska<br>fabianska@momo.math.rwth-aachen.de<br>Lehrstuhl B für Mathematik, RWTH Aachen University, Germany.<br>http://wwwb.math.rwth-aachen.de

