Double pants decompositions of 2-surfaces

Anna Felikson

joint work with Sergey Natanzon

24.03.2010, Braniewo

1. Pants decompositions

 $S = S_{g,n}$ 2-surface, genus g, n holes; P pants decomposition of S == dec. into pairs of pants

$$P = \langle c_1, \dots, c_{3g-3+n} \rangle$$

• $c_i \cap c_j = \emptyset$

• maximal system of curves

1. Pants decompositions

 $S = S_{g,n}$ 2-surface, genus g, n holes; P pants decomposition of S == dec. into pairs of pants

$$P = \langle c_1, \dots, c_{3g-3+n} \rangle$$

• $c_i \cap c_j = \emptyset$

• maximal system of curves

- Flips are sufficient to get to any "combinatorial type" of dec.
- Flips do not act transitively on all pants decompositions:

$$P \to \mathcal{L}(P) \subset H_1(S, \mathbb{Z})$$
$$\mathcal{L}(P) = \langle h(c_1), \dots, h(c_{3g-3+n}) \rangle$$
Lagrangian plane.

• Flips preserve $\mathcal{L}(P)$.

How to get out of $\mathcal{L}(P)$?

• Classical approach: add *S*-moves:

Theorem.(Hatcher, Thurston' 80) Flips and S-moves act transitively on pants dec.

2. Double pants decompositions

 $DP = (P_a, P_b) \quad \langle \mathcal{L}(P_a), \mathcal{L}(P_b) \rangle = H_1(S, \mathbb{Z}).$

Prop. 1. Flips and handle-twists act transitively on the pairs of Lagrangian planes.

Problem: Do flips and handle-twists act transitively on DP's? Natural way to solve: Prop. 1 + Transitivity of flips on $\mathcal{L}(P)$

A. Hatcher: $S \hookrightarrow \mathbb{R}^3$ defines an inner handlebody S_+ . • If all $c \in P$ are contractible in S_+ then flip(c) is... • c' is not contr. in S_+ (linked with d). **Problem**: Do flips and handle-twists act transitively on DP's?

New strategy: use Hatcher-Thurston's theorem:

Need: $(P_a, P_b) \rightarrow (P'_a, P'_b)$. HT treats P_a We take care of P_b

Price: restrictions on DP.

3. Admissible double pants decompositions

- Standard *DP*: *g* common handles.
- Admissible *DP*:

may be transformed to a standard one by flips.

S

 \bigcirc

 \sim

 \bigcirc

Question: How wide is the class of admissible DP's?

• Have no examples of non-admissible DP's.

Theorem 1. Flips and handle-twists act transitively on admissible DP's.

Idea of proof.

- 1. Sufficient to prove transitivity on standard DP's.
- 2. For two standard DP's with the same set of handles: is easy.
- **3**. Need to bring any set of g handles to any other: $(P_a, P_b) \rightarrow (P'_a, P'_b)$
- $P_a \rightarrow P'_a$ by Hatcher-Thurston's thm.
- $P_b \to P_b''$ "accompyning decomposition" such that (P'_a, P''_b) is standard and may be obtained from (P_a, P_b) by flips and handle-twists.

4. do Step 3 only for pairs of "adjacent" standard DP's. Example: if g = 2 and (P_a, P_b) and (P'_a, P'_b) are two "adjacent" standard DP's, then P_a may be transformed to P'_a in 2 flips. Theorem 2. A groupoid generated by flips and twists contains a group isomorphic to mapping class group.

Idea of proof: There exists an admissible DP such that no element of MCG fixes this double pants decomposition.

4. What's next to do?

- Combinatorics of "double-curve complex" (or exchange graph);
- Variables: for each c_i ∈ DP define f(c_i) so that (DP, {f(c_i)}) define the whole geometric structure on S.

Example: $f(c_i)$ is a length of c_i , then $(DP, \{f(c_i)\})$ defines a hyperbolic surface.

• Application: moduli spaces and their compactifications.

