$\label{eq:constant} \begin{array}{c} \mbox{Introduction} \\ \mbox{The horizontal lift of a symmetric connection and its curvatures} \\ \mbox{Some properties of a horizontally lifted vector field} \\ \mbox{$\bar{F}(3,1)-$ structure on \mathcal{V}} \end{array}$

Horizontal lift of symmetric connections to the bundle of volume forms $\ensuremath{\mathcal{V}}$

Anna Gąsior

24 III 2010

Anna Gąsior Horizontal lift of symmetric connections to the bundle \mathcal{V}

The horizontal lift of a symmetric connection and its curvatures Some properties of a horizontally lifted vector field $\tilde{F}(3,1)-$ structure on \mathcal{V}

Throughout the talk we assume that $i, k, \ldots = 1, 2, 3, \ldots, n$ and $\alpha, \beta, \ldots = 0, 1, 2, \ldots, n$. Moreover, the Einstein summation convention will be used with respect to these systems of indices.

The horizontal lift of a symmetric connection and its curvatures Some properties of a horizontally lifted vector field $ar{F}(3,1)-$ structure on $\mathcal V$

Construction of the bundle of volume forms ${\cal V}$

Let:

1) *M* be an orientable n-dimensional manifold,

- 2) \mathcal{V} be a bundle of volume forms over M,
- 3) $\pi: \mathcal{V} \to M$ be a projection of the bundle.

We consider two local charts (U, x^i) , (U', x'_i) on M, where $U \cap U' \neq \emptyset$, and a volume form ω on M. Assume that form ω is given by

$$\omega = \upsilon(x) dx^1 \wedge \ldots \wedge dx^n$$

and

$$\omega = \upsilon'(x') dx^{1'} \wedge \ldots \wedge dx^{n'}$$

in the charts (U, x^i) and (U', x'_i) , respectively, and v > 0, v' > 0 are smooth functions on M.

A D D A D D A D D A D D A

The horizontal lift of a symmetric connection and its curvatures Some properties of a horizontally lifted vector field $\bar{F}(3, 1)-$ structure on $\mathcal V$

Construction of the bundle of volume forms ${\cal V}$

Let functions $x^{i'} = x^{i'}(x)$ be orientation-preserving transitions functions on M. Then the transitions functions on \mathcal{V} are given by

$$v' = \overline{\mathcal{I}} \cdot v, \quad x^{i'} = x^{i'}(x),$$

where $\overline{\mathcal{I}}$ is the Jacobian of the map $x^{i'} = x^{i'}(x)$. Now, we introduce a new coordinate system (x^0, x^1, \ldots, x^n) on \mathcal{V} , where $x^0 = \ln v$. Then the transition functions in the terms of these coordinate system are

$$x^{0'} = x^0(x) + \ln \bar{\mathcal{I}}(x), \quad x^{i'} = x^{i'}(x).$$

A D D A D D A D D A D D A

The horizontal lift of a symmetric connection and its curvatures Some properties of a horizontally lifted vector field $\bar{F}(3, 1)-$ structure on $\mathcal V$

Earlier results for \mathcal{V}

Let $\nabla = (\Gamma_{ii}^k)$ be a symmetric connection on M.

1) (Dhooghe, 1995) Let $X = X^i \frac{\partial}{\partial x^i}$ be a vector field on M. Then

$$\bar{X} = -X^i \Gamma^k_{ik} \frac{\partial}{\partial x^0} + X^i \frac{\partial}{\partial x^i}$$

is globally defined vector field on \mathcal{V} , which is called the horizontal lift of X.

(Miernowski, Mozgawa, 2003) Let g = (g_{ij}) be a tensor of type (0, 2) on *M*. Then

$$ar{g} = egin{bmatrix} 1 & {\sf \Gamma}^k_{ik} \ {\sf \Gamma}^k_{ik} & g_{ij} + {\sf \Gamma}^k_{ik} {\sf \Gamma}^t_{jt} \end{bmatrix}$$

is globally defined (0,2)-tensor field on \mathcal{V} , which is called the horizontal lift of g.

The horizontal lift of a symmetric connection and its curvatures Some properties of a horizontally lifted vector field $\bar{F}(3,1)-$ structure on $\mathcal V$

Earlier results for \mathcal{V}

3) (Miernowski, Mozgawa, 2003) Let g be a Riemannian metric on M. Then \overline{g} is a Riemannian metric on \mathcal{V} and

$$(ar{g})^{-1} = egin{bmatrix} g^{ij} \Gamma^k_{ik} \Gamma^t_{jt} & -g^{ij} \Gamma^k_{jk} \ -g^{ij} \Gamma^k_{jk} & g^{ij} \end{bmatrix}$$

4) (Miernowski, Mozgawa, 2003) Let $F = (F_j^i)$ be a tensor field of type (1,1) on M. Then

$$\bar{F} = \begin{bmatrix} 1 & -F_j^t \Gamma_{tk}^k + \Gamma_{jk}^k \\ 0 & F_j^i \end{bmatrix}$$

is a tensor field of type (1, 1) on \mathcal{V} , which is called a horizontal lift of the tensor field F.

The horizontal lift of a symmetric connection and its curvatures Some properties of a horizontally lifted vector field $\tilde{F}(3,1)-$ structure on \mathcal{V}

Earlier results for \mathcal{V}

5) (Gąsior, 2006) Let g be a Riemannian metric on M. Then the nonzero coefficients of a Levi-Civita connection ∇ for the horizontally lifted Riemannian metric g are given by formulas

$$\widetilde{\nabla}_{n}\frac{\partial}{\partial x^{m}}=\widetilde{\nabla}_{m}\frac{\partial}{\partial x^{n}}=\left(\Gamma_{mt|n}^{t}-\Gamma_{mn}^{t}\Gamma_{tk}^{k}\right)\frac{\partial}{\partial x^{0}}+\Gamma_{mn}^{s}\frac{\partial}{\partial x^{s}},$$

where $\nabla = (\Gamma_{ij}^k)$ is Levi-Civity connection on (M, g).

イロン イヨン イヨン

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{The horizontal lift of a symmetric connection and its curvatures} \\ \mbox{Some properties of a horizontally lifted vector field} \\ \mbox{$\bar{F}(3,1)-$ structure on \mathcal{V}} \end{array}$

The horizontal lift of a symmetric connection

Let $\nabla = (\Gamma_{ij}^k)$ be a symmetric connection and $\nabla_1 = (\Phi_{ij}^k)$ be a connection on M. Then an operator $\overline{\nabla}_1$ whose nonzero coefficients are given by

$$\bar{\nabla}_{1\,i}\frac{\partial}{\partial x^{j}} = \bar{\nabla}_{1\,j}\frac{\partial}{\partial x^{i}} = \left(\Gamma^{t}_{it|j} - \Phi^{r}_{ij}\Gamma^{t}_{rt}\right)\frac{\partial}{\partial x^{0}} + \Phi^{k}_{ij}\frac{\partial}{\partial x^{k}}$$

is a linear connection \mathcal{V} , which will be called the horizontal lift of the connection ∇_1 with respect to the connection ∇ .

 $\label{eq:constant} \begin{array}{c} \mbox{Introduction} \\ \mbox{The horizontal lift of a symmetric connection and its curvatures} \\ \mbox{Some properties of a horizontally lifted vector field} \\ \mbox{$\bar{F}(3,1)-$ structure on \mathcal{V}} \end{array}$

A curvature tensor on $\mathcal V$

Let $\bar{R} = (\bar{R}_{\alpha\beta\gamma}^{\delta})$ be the curvature tensor of the horizontal lift of the connection ∇_1 with respect to the connection ∇ . Then the nonzero coefficients of the tensor \bar{R} are giving by following formulas

$$\bar{R}_{ikj}^{s} = R_{ikj}^{s},$$
$$\bar{R}_{ikj}^{0} = -\Gamma_{rt}^{t}R_{ikj}^{r} + 2\Phi_{ik}^{d}\Gamma_{[jt|d]}^{t} + 2\Phi_{jk}^{d}\Gamma_{[dt|i]}^{t} + 2\Gamma_{[it|kj]}^{t},$$

where $R = (R_{ijk}^s)$ is the curvature tensor of the connection ∇_1 on M.

イロン イヨン イヨン イヨン

Introduction The horizontal lift of a symmetric connection and its curvatures Some properties of a horizontally lifted vector field $\bar{F}(3, 1)-$ structure on \mathcal{V}

A curvature tensor on \mathcal{V}

Let ∇ be a Riemannian connection on the Riemannian manifold (M, g) and ∇_1 be a connection on the manifold M. Then the nonzero coefficients of the curvature tensor $\bar{R} = (\bar{R}^{\delta}_{\alpha\beta\gamma})$ of the horizontally lifted connection $\bar{\nabla}_1$ with respect to the connection $\nabla = (\Gamma^k_{ij})$ are giving by

$$ar{R}^s_{ijk} = R^s_{ijk}, \ ar{R}^0_{ijk} = -\Gamma^t_{rt}R^r_{ijk},$$

where $R = (R_{ijk}^s)$ is the curvature tensor of the connection ∇_1 on M.

・ロ・ ・ 日 ・ ・ ヨ ・ ・ 日 ・

 $\label{eq:constraint} \begin{array}{l} \mbox{Introduction} \\ \mbox{The horizontal lift of a symmetric connection and its curvatures} \\ \mbox{Some properties of a horizontally lifted vector field} \\ \mbox{$\tilde{F}(3,1)-$ structure on \mathcal{V}} \end{array}$

Ricci tensor on ${\cal V}$

Let ∇ be a symmetric connection, ∇_1 be a connection on the manifold M and $(\bar{R}_{\alpha\beta})$ be the coefficients of a Ricci tensor \bar{R} of the horizontally lifted connection $\bar{\nabla}_1$ with respect to connection ∇ . Then the nonzero coefficients of \bar{R} are given by the formulas

$$\bar{R}_{ik}=R_{ik},$$

where (R_{ik}) are the coefficients of Ricci tensor R of the connection ∇_1 on the manifold M.

A (1) × A (2) × A (2) ×

Introduction The horizontal lift of a symmetric connection and its curvatures Some properties of a horizontally lifted vector field $\bar{F}(3, 1)-$ structure on \mathcal{V}

A scalar curvature on ${\cal V}$

Let g be a Riemannian metric on the manifold M and let \overline{g} be a horizontally lifted Riemannian metric on \mathcal{V} . If \overline{K} is a scalar curvature of the horizontally lifted connection $\overline{\nabla}_1$ with respect to the symmetric connection ∇ , then

$$\bar{K}=\frac{n-1}{n+1}K,$$

where K is a scalar curvature of the connection ∇ on M.

Introduction The horizontal lift of a symmetric connection and its curvatures Some properties of a horizontally lifted vector field $\bar{F}(3, 1)-$ structure on \mathcal{V}

π -conjugate connections (A. P. Norden, K. Radziszewski)

Let $\nabla = (\Gamma_{ij}^k)$ be the linear connection and let π be a non-singular tensor field of the type (0,2) on M. The connection $\nabla^* = (G_{ks}^i)$ which is given by

$$G_{ks}^i = \pi^{pi} \nabla_k \pi_{ps} + \Gamma_{ks}^i$$

is said to be a π -conjugate connection with respect to the connection ∇ .

ヘロト ヘヨト ヘヨト ヘヨト

 $\label{eq:constant} \begin{array}{c} \mbox{Introduction} \\ \mbox{The horizontal lift of a symmetric connection and its curvatures} \\ \mbox{Some properties of a horizontally lifted vector field} \\ \mbox{$\bar{F}(3,1)-$ structure on \mathcal{V}} \end{array}$

π -conjugate connections on \mathcal{V}

Let ∇_2 be a π -conjugate connection with respect to a connection ∇_1 on manifold M. Let $\overline{\nabla}_1$ and $\overline{\nabla}_2$ be horizontally lifted connections with respect to a connection ∇ on \mathcal{V} . Then $\overline{\nabla}_2$ is a $\overline{\pi}$ -conjugate connection with respect to a horizontally lifted connection $\overline{\nabla}_1$, where $\overline{\pi}$ is horizontal lift of π with respect to a connection ∇ .

Introduction The horizontal lift of a symmetric connection and its curvatures Some properties of a horizontally lifted vector field $\tilde{F}(3, 1)$ – structure on \mathcal{V}

A Killing vector field

Let (M,g) be a Riemannian manifold. If X is a vector field and ∇ is a symmetric locally volume preserving connection on M then the horizontally lifted vector field \overline{X} is a Killing vector field on $(\mathcal{V}, \overline{g})$ if and only if X is a Killing vector field on M.

Introduction The horizontal lift of a symmetric connection and its curvatures Some properties of a horizontally lifted vector field $\tilde{F}(3, 1) -$ structure on \mathcal{V}

Infinitesimal transformations

Let $\overline{\nabla}_1$ be the horizontal lift of the connection ∇_1 with respect to the symmetric connection ∇ on M and let \overline{X} be the horizontal lift of the vector field X on \mathcal{V} . Then

- 1) \bar{X} is an infinitesimal affine transformation of the horizontally lifted connection $\bar{\nabla}_1$ if and only if X is an infinitesimal affine transformation of the connection ∇_1 on M,
- 2) \bar{X} is a fibre-preserving infinitesimal transformation on \mathcal{V} ,
- 3) \bar{X} is never a conformal infinitesimal transformation on \mathcal{V} ,
- 4) \bar{X} is never the infinitesimal projective transformation on \mathcal{V} .

Introduction The horizontal lift of a symmetric connection and its curvatures Some properties of a horizontally lifted vector field $\tilde{F}(3, 1) -$ structure on \mathcal{V}

Horizontal lift of the tensor field of type (1,1)

Let F be a tensor field of type (1,1) which define the F(3,1)-structure on a manifold M and let ∇ be a linear connection on M. Then the horizontally lifted tensor field \overline{F} defines the $\overline{F}(3,1)$ -structure on the bundle of volume forms \mathcal{V} .

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Introduction The horizontal lift of a symmetric connection and its curvatures Some properties of a horizontally lifted vector field $\tilde{F}(3, 1) -$ structure on $\mathcal V$

Horizontal lift of the tensor field of type (1,1)

Let F be a tensor field of type (1, 1) which define the F(3, 1)-structure on manifold the M and let ∇ be a linear volume-preserving connection on M. Then the horizontally lifted tensor field \overline{F} defines an integrable $\overline{F}(3, 1)$ -structure on \mathcal{V} if and only if the F(3, 1)-structure is integrable on M.

Introduction The horizontal lift of a symmetric connection and its curvatures Some properties of a horizontally lifted vector field $\tilde{F}(3, 1) -$ structure on $\mathcal V$

Some special substructure of *F*-structure on *M* (Singh, K. D., Singh, R., 1977)

1) Let F be a tensor field of type (1,1) which define the $F(3,\varepsilon)$ -structure on a manifold M, where $\varepsilon = \pm 1$.

2) Let
$$A = 1 - \varepsilon F^2$$
.

- On F(3, ε)-manifold always exists a Riemannian metric g satisfying a condition g(X, Y) = g(FX, FY) + g(AX, Y), (Ishihara, S., Yano, K., 1965). This metric is called the Ishihara-Yano metric.
- 4) We define the tensor field G of type (0,2) by the following form G(X, Y) = g(FX, Y), (Yano, 1963).

A D D A D D A D D A D D A

Introduction The horizontal lift of a symmetric connection and its curvatures Some properties of a horizontally lifted vector field $\tilde{F}(3,1) -$ structure on $\mathcal V$

Some special substructure of *F*-structure on *M* (Singh, K. D., Singh, R., 1977)

Let ∇ be a metric connection of the Ishihara-Yano metric g on the manifold M. Then the tensor field F of type (1,1) define

- 1) *FK*-structure if and only if $\nabla_{FX}(F) = 0$,
- 2) FAK-structure if and only if dS(FX, FY, FZ) = 0, where S(X, Y) = -S(Y, X) = g(FX, Y),
- 3) FNK-structure if and only if $\nabla_{FX}(G)(FY, FZ) - \varepsilon \nabla_{FY}(G)(FX, FZ) = 0,$
- 4) FQK-structure if and only if

$$2\nabla_{FX}(G)(FY,FZ) + (1-\varepsilon)\nabla_{F^2X}(G)(F^2Y,FZ) = (1+\varepsilon) \left[\nabla_{F^2Z}(G)(FX,F^2Y) - \nabla_{F^2Y}(G)(FZ,F^2X)\right],$$

5) FH-structure if and only if N(FX, FY) = 0.

Introduction The horizontal lift of a symmetric connection and tis curvatures Some properties of a horizontally lifted vector field $\tilde{F}(3, 1) -$ structure on $\mathcal V$

Some special substructure of *F*-structure on \mathcal{V}

Let F be a tensor field of type (1,1) which defines a $F(3,\varepsilon)$ -structure and ∇ be the Levi-Civita connection on a Riemannian manifold (M,g). Let \overline{g} be the horizontally lifted Riemannian metric and let $\widetilde{\nabla}$ be the Levi-Civita connection on the Riemannian manifold $(\mathcal{V},\overline{g})$. Then the horizontal lift \overline{F} of the tensor field F defines

- 1) the $\overline{F}QK$ -structure on \mathcal{V} if and only if the tensor field F defines the FQK-structure on M,
- 2) the FK, FAK, FNK-structure on V if and only if the tensor F defines the FK, FAK, FNK-structure on the M, respectively,
- 3) the $\overline{F}H$ -structure on \mathcal{V} if and only if the tensor field F defines a FH-structure on M.

Introduction The horizontal lift of a symmetric connection and its curvatures Some properties of a horizontally lifted vector field $\tilde{F}(3, 1) -$ structure on \mathcal{V}

The end

Thank you for your attention.