
1

Old and new on the exceptional Lie group G2

Prof. Dr. habil. Ilka Agricola
Philipps-Universität Marburg

March 2012, Braniewo
Literature: Notices of the AMS 55 (2008), 922-929



2

A mathematical expedition. . .
to the oeuvre of Killing, Engel, and others 1880-1900

• the mathematical world: was projective, and almost always complex;

hence, R5 = CP
5

• linear algebra was brand new, for example: [Alten, 4000 Jahre Algebra]

-1868: Karl Weierstraß publishes theory of ‘elementary divisors’ for matrices (Elementarteiler)

-1872: Camille Jordan describes the ‘Jordan normal form’

-1874: Leopold Kronecker proves the equivalence of normal forms of Weierstraß and Jordan

• no clear difference between Lie group and Lie algebra

• Lie groups were not objects on their own right, but transformation groups

with transitive actions on interesting spaces:

”
I find your point of view very interesting that to each transformation group should

belong a particular (‘besonders beschaffener’) space.“

letter nr. 3 from F. Engel to W. Killing, 9.11.1885

• the world being projective, the spaces of interest were mostly flag manifolds
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Killing’s goal (1884): Classification of all ‘space forms’  

classif. of complex simple Lie algebras

In this talk:

• History of the discovery and realisation of G2

• What was known about G2 by the ‘old masters’ ?

• Role (& life) of Killing, Engel, and his Ph.D. student Walter Reichel

• Significance for modern differential geometry

”
Moreover, we hereby obtain a direct definition of our 14-dimensional simple group

[G2] which is as elegant as one can wish for.“ Friedrich Engel, 1900.

”
Zudem ist hiermit eine direkte Definition unsrer vierzehngliedrigen einfachen Gruppe

gegeben, die an Eleganz nichts zu wünschen übrig lässt.“

Friedrich Engel, 1900.

Friedrich Engel in a note to his talk at the Royal Saxonian Academy of Sciences on June 11,

1900.
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Wilhelm Killing (1847–1923)

• 1872 thesis in Berlin on
‘Flächenbündel 2. Ordnung’ (advisor:
K. Weierstraß)

• 1882–1892 professor, later rec-
tor at the Lyceum Hosianum in
Braunsberg (now Braniewo/PL)

• 1884 Programmschrift [Studium der

Raumformen über ihre infinitesimalen Bewe-

gungen]

• 1892–1919 professor in Münster
(rector 18897-98)

• W. Killing, Die Zusammensetzung

der stetigen endlichen Transforma-

tionsgruppen, Math. Ann. 33 (1889),
1-48.
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Lyceum Hosianum Braunsberg (1565–1945)

• founded 1565 as a Jesuit collegium
by Stanislaus Hosius, cardinal & prince-
bishop of Warmia (Ermland) – one of
the biggest in Europe

• consisted of a gymnasium and a se-
minary for catholic priests; attempts to
turn it into a regular university up to
the 18th ct.

• 1821: foundation of a theological and
a philosophical faculty and awarded sa-
me rights as a university

• K. Weierstraß: teacher at the gymna-
sium 1848-1856, recommended Killing
as professor (. . . with extremely low
salary)
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Wir Wilhelm, von Gottes Gnaden König von

Preußen etc.

thun kund und fügen hiermit zu wissen, daß

wir allergnädigst geruht haben, den bisherigen

Oberlehrer an dem Gymnasium zu Brilon, Dr.

Wilhelm Killing zum ordentlichen Professor in

der philosophischen Fakultät des Lyceum Ho-

sianum in Braunsberg zu ernennen. Es ist dies

in dem Vertrauen geschehen, daß derselbe Uns

und Unserem kngl. Hause in unverbrüchlicher

Treue ergeben bleiben und die Pflichten des

ihm übertragenen Amtes in ihrem ganzen Um-

fange mit stets regem Eifer erfüllen und insbe-

sondere alle halbe Jahre [. . . ] Vorlesungen in

seinen Fächern ankündigen werde [. . . ].

Gegeben Schloß Babelsberg den 17ten August

1882
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1880-1885: simple complex Lie algebras so(n,C) and sl(n,C) were well-
known; Lie and Engel knew about sp(n,C), but nothing was published

In 1885, Wilhelm Killing starts a correspondence with Felix Klein, Sophus Lie
and, most importantly, Friedrich Engel

April 1886: Killing conjectures that so(n,C) and sl(n,C) are the only simple
complex Lie algebras (though Engel had told him that more simple algebras
could occur as isotropy groups)

March 1887: Killing discovers the root system of G2 and claims that it should
have a 5-dimensional ‘space form’

October 1887: Killing obtains the full classification, prepares a paper after
strong encouragements by Engel
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Thm (W. Killing, 1887). The only complex simple Lie algebras are
so(n,C), sp(n,C), sl(n,C) as well as five exceptional Lie algebras,

g2 := g14
2 , f524 , e786 , e1337 , e2488 .

(upper index: dimension, lower index: rank)

Killing’s proof contains some gaps and mistakes. In his thesis (1894), Élie Car-
tan gave a completely revised and polished presentation of the classification,
which has therefore become the standard reference for the result.

Notations:

• G2, g2: complex Lie group resp. Lie algebra

• Gc
2, gc

2: real compact form of G2, g2

• G∗
2, g∗2: real non compact form of G2, g2
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Cartan’s thesis

Last section: derives from weight lattice the lowest dimensional irreducible
representation of each simple complex Lie algebra

Result. g2 admits an irreducible representation on C7, and it has a g2-invariant
scalar product

β := x2
0 + x1y1 + x2y2 + x3y3.

Interpreted as a real scalar product, it has signature (4, 3): Cartan’s represen-
tation restricts to an irred. g∗2 representation inside so(4, 3).

Problem: direct construction of g2 and its real forms g∗2, g
c
2 ?
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First step: Engel & Cartan, 1893

In 1893, Engel & Cartan publish simultaneously a note in C. R. Acad. Sc.
Paris. They give the following construction:

Consider C5 and the 2-planes πa ⊂
TaC

5 defined by

dx3 = x1 dx2 − x2 dx1,
dx4 = x2 dx3 − x3 dx2,
dx5 = x3 dx1 − x1 dx3.

The 14 vector fields whose (local)
flows map the planes πa to each other
satisfy the commutator relations of
g2!

aa′

πa
π′

a

C5

TaC5Ta′C
5

Both give a second, non equivalent realisation of g2:

• Engel: through a contact transformation from the first

• Cartan: as symmetries of solution space of the 2nd order pde’s (f = f(x, y))

fxx =
4

3
(fyy)

3, fxy = (fyy)
2.
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Root system of g2 (II)

For a modern interpretation of the Cartan/Engel result, we need:

α1

α1

α2

α2

W

−α1

−α2

β1
β2

−β1

−β2

ω1

ω2

−ω1 −ω2

positive roots

negative roots

α1,2: simple roots

ω1,2: fundamental weights (ω1: 7-dim. rep., ω2: adjoint rep.)

W: Weyl chamber = cone spanned by ω1, ω2
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Parabolic subalgebras of g2

α1 α1

α2 α2

−α1

−α2

β1 β1
β2 β2ω1 ω1

ω2 ω2

p1: contains −α1
p2:
contains −α2

Every parabolic subalgebra contains all positive roots and (eventually) some
negative simple roots:

p1 = h ⊕ g−α1 ⊕ gα2 ⊕ gβ2 ⊕ gω2 ⊕ gω1 ⊕ gβ1 ⊕ gα1 [9-dimensional]

p2 = h ⊕ gα2 ⊕ gβ2 ⊕ gω2 ⊕ gω1 ⊕ gβ1 ⊕ gα1 ⊕ g−α2 [9-dimensional]

p1 ∩ p2 = h ⊕ gα2 ⊕ gβ2 ⊕ gω2 ⊕ gω1 ⊕ gβ1 ⊕ gα1 [8-dim. Borel alg.]
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Modern interpretation

The complex Lie group G2 has two maximal parabolic subgroups P1 and P2

(with Lie algebras p1 and p2)

⇒G2 acts on the two 5-dimensional compact homogeneous spaces

• M5
1 := G2/P1 = G · [vω1] ⊂ P(C7) = CP

6: a quadric

• M5
2 := G2/P2 = G · [vω2] ⊂ P(C14) = CP

13 ‘adjoint homogeneous variety’

where vω1, vω2 are h. w. vectors of the reps. with highest weight ω1, ω2.

Cartan and Engel described the action of g2 on some open subsets of M5
i .

Real situation: To Pi ⊂ G2 corresponds a real subgroup P ∗
i ⊂ G∗

2, hence the
split form G∗

2 has two real compact 5-dimensional homogeneous spaces on
which it acts.

However, Gc
2 has no 9-dim. subgroups! (max. subgroup: 8-dim. SU(3) ⊂ G2)

Q: Direct realisation of Gc
2 ?
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Élie Cartan (1869–1951)

• 1894 thesis at ENS (Paris), Sur la

structure des groupes de transforma-

tions finis et continus.

• 1894–1912 mâıtre de conférences in
Montpellier, Nancy, Lyon, Paris

• 1912-1940 Professor in Paris

• É. Cartan, Sur la structure des grou-

pes simples finis et continus, C. R.
Acad. Sc. 116 (1893), 784-786.

• É. Cartan, Nombres complexes, En-
cyclop. Sc. Math. 15, 1908, 329-468.

• É. Cartan, Les systèmes de Pfaff

à cinq variables et les équations aux

dérivées partielles du second ordre,
Ann. Éc. Norm. 27 (1910), 109-192.
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Friedrich Engel (1861–1941)

• 1883 thesis in Leipzig on contact
transformations

• 1885–1904 Privatdozent in Leipzig

• 1904–1913 Professor in Greifswald,
since 1913 in Gießen

• F. Engel, Sur un groupe simple à

quatorze paramètres, C. R. Acad. Sc.
116 (1893), 786-788.

• F. Engel, Ein neues, dem linearen

Complexe analoges Gebilde, Leipz.
Ber. 52 (1900), 63-76, 220-239.

• editor of the complete works of
S. Lie and H. Grassmann
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G2 and 3-forms in 7 variables

Non-degenerate 2-forms are at the base of symplectic geometry and define
the Lie groups Sp(n,C).

Q: Is there a geometry based on 3-forms ?

• Generic 3-forms (i. e. with dense GL(n,C) orbit inside Λ3Cn) exist only for
n ≤ 8.

• To do geometry, we need existence of a compatible inner product, i. e. we
want for generic ω ∈ Λ3Cn

Gω := {g ∈ GL(n,C) | ω = g∗ω} ⊂ SO(n,C).

This implies (dimension count!) n = 7, 8.

And indeed: for n = 7: Gω = G2, for n = 8: Gω = SL(3,C).
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In fact, Engel had had this idea already in 1886. From a letter to Killing (8.4.1886):

“There seem to be relatively few simple groups. Thus first of all, the two
types mentioned by you [SO(n,C) and SL(n,C]. If I am not mistaken,
the group of a linear complex in space of 2n − 1 dimensions (n > 1)
with (2n+1)2n/2 parameters [Sp(n,C)] is distinct from these. In 3-fold
space [CP

3] this group [Sp(4,C)] is isomorphic to that [SO(5,C)] of
a surface of second degree in 4-fold space. I do not know whether a
similar proposition holds in 5-fold space. The projective group of 4-fold
space [CP4] that leaves invariant a trilinear expression of the form

1...5
∑

ijk

aijk

∣

∣

∣

∣

∣

∣

xi yi zi

xk yk zk

xj yj zj

∣

∣

∣

∣

∣

∣

= 0

will probably also be simple. This group has 15 parameters, the corre-
sponding group in 5-fold space has 16, in 6-fold space [CP

6] has 14, in
7-fold space [CP7] has 8 parameters. In 8-fold space there is no such
group. These numbers are already interesting. Are the corresponding
groups simple? Probably this is worth investigating. But also Lie, who
long ago thought about similar things, has not yet done so.”
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Thm (Engel, 1900). A generic complex 3-form has precisely one GL(7,C)
orbit. One such 3-form is

ω0 := (e1e4 + e2e5 + e3e6)e7 − 2e1e2e3 + 2e4e5e6.

Every generic complex 3-form ω ∈ Λ3(C7)∗ satisfies:

1) The isotropy group Gω is isomorphic to the simple group G2;

2) ω defines a non degenerate symmetric BLF βω, which is cubic in the
coefficients of ω and the quadric M5

1 is its isotropic cone in CP
6. In particular,

Gω is contained in some SO(7,C).

3) There exists a G2-invariant polynomial λω 6= 0, which is of degree 7 in the
coefficients of ω.

”
Zudem ist hiermit eine direkte Definition unsrer vierzehngliedrigen einfa-

chen Gruppe gegeben, die an Eleganz nichts zu wünschen übrig lässt.“

F. Engel, 1900
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In modern notation: Set V = C
7. Then

βω : V × V → Λ7V ∗, βω(X,Y ) := (X ω) ∧ (Y ω) ∧ ω

is a symmetric BLF with values in the 1-dim. space Λ7(C7)∗ [R. Bryant, 1987]

Hence βω defines a map Kω : V → V ∗ ⊗ Λ7V ∗, and

detKω ∈ (Λ7V )∗ ⊗ Λ7(V ∗ ⊗ Λ7V ∗) = Λ9(Λ7V ∗).

Assume V is oriented ⇒ fix an element (detKω)1/9 ∈ Λ7V ∗ and set

gω := βω

(det Kω)1/9: this is a true scalar product, and gω = g−ω.

det gω := λ3
ω for an element of ‘order’ 7 in ω

λω 6= 0 ⇔ ω is generic ⇔ gω is nondegenerate
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This allows a more concise description of the 2nd homogeneous space G2/P2:

Consider

G7
0(2, 7) = {π2 ⊂ C

7 : βω

∣

∣

π2 = 0} ⊂ G10(2, 7) ⊂ P(Λ2
C

7) (Plücker emb.)

Then G2/P2 = {π2 ⊂ G7
0(2, 7) : π2 ω = 0}

On the other hand, we know that

G2/P2 = G · [vω2] ⊂ P(g2) ⊂ P(Λ2V ) (because Λ2V = g2 ⊕ V )

→ turns out: G2/P2 = G10(2, 7) ∩ P(g2) inside P(Λ2V )

[Landsberg-Manivel, 2002/04]

Facts:

• G2/P2 has degree 18

• a smooth complete intersection of G2/P2 with 3 hyperplanes is a K3 surface
of genus 10. [Borcea, Mukai]
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Walter Reichel’s thesis (Greifs-
wald, 1907)

• complete system of invariants for
complex 3-forms in 6 und 7 variables
through Study’s symbolic method

• normal forms for 3-forms under
GL(6,C),GL(7,C).

n = 7: vanishing of λω for non generic
3-forms and rank of βω play a decisice
role

• Lie-Algebra gω for any 3-form ω
expressed in terms of its coefficients
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Over R, there are two GL(7,R) orbits of generic 3-forms!

⇒ Reichel’s formulas allow to compute the isotropy Lie group on both orbits,
and indeed:

• one isotropy group is G∗
2, and the scalar product βω has signature (4, 3)

• the other isotropy group is Gc
2, and the scalar product βω is positive definite.

Hence, Walter Reichel’s thesis establishes for the first time a geometric
realisation of Gc

2 – in fact, the one which explains its importance in modern
geometry.

N.B. Gc
2 and the octonians:

• 1908 and 1914, É. Cartan: observes that Gc
2
∼= AutO

• this approach becomes popular by the work of H. Freudenthal (after 1951)

In fact, the 3-form approach and the the octonian picture are equivalent (a
third equivalent description is through ‘vector cross products’)

[see J. Baez, 2002, for a modern account]
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G2 and spinors

The projective point of view lead Engel to further deep insights:

l = [x : y]6 := [x0 : . . . : x3 : y1 : . . . : y3] homogeneous coords. of CP
6,

M5
1 = {l ∈ CP

6|βω(l, l) = 0} = {[x : y]6 ∈ CP
6 |x2

0+x1y1+x2y2+x3y3 = 0}

Prop. A smooth quadric of dim.2n + 1 contains an irred. (n+1)(n+2)
2 -dim.

family of n-planes. [Griffiths-Harris, Ch.6]

⇒ M5
1 contains a 6-dim. family of 2-planes, check:

∀ [a : b]6 ∈M5
1 , the 8 eqs. (i, j, k cyclic perm. of 1, 2, 3)

biyk − bkyi + a0xj − ajx0 = 0, a0x0 + a1y1 + a2y2 + a3y3 = 0

aixk − akxi + a0yj − bjx0 = 0, a0x0 + b1x1 + b2x2 + b3x3 = 0

define a 2-plane πa,b ⊂M5
1 invariant under G2.
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Now introduce a further coord. y0 and homog. coords. on CP
7

[x : y]7 := [x0 : . . . : x3 : y0 : y1 : . . . : y3]

Every plane πa,b defines a unique point [a : b]7 ∈ CP7 by

a0b0 + a1b1 + a2b2 + a3b3 = 0 and the 8 eqs.

biyk − bkyi + a0xj − ajx0 = 0, a0x0 + a1y1 + a2y2 + a3y3 = 0

aixk − akxi + b0yj − bjx0 = 0, b0x0 + b1x1 + b2x2 + b3x3 = 0

To conclude: g : {πa,b | [a : b]6 ∈ M5
1} −→ CP7, πa,b 7−→ [a : b]7 ∈ CP7,

and im g is a smooth quadric Q6 ⊂ CP
7.

Thm. (Engel, 1900)

1) The map g is so(7)-equivariant, and extends to an irreducible so(7)-
representation on CP

7;

2) The stabilizer of [a0 : 0 : 0 : 0 : −a0 : 0 : 0 : 0] (not on Q6) is G2.
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Modern description

Consider spin representation κC : Spin(7) → End(∆C
7 ), ∆C

7
∼= C

8.

In dim.7, this turns out to be complexification of 8-dim. real rep.,

κ : Spin(7) → End(∆7), ∆7
∼= R

8.

and for a generic spinor ψ ∈ ∆7: Gc
2 = {A ∈ Spin(7) | Aψ = ψ}

⇒ explains physicists’ interest in Gc
2.

The work of Engel, Killing, and Reichel on G2 and the description of Gc
2

- as a stabilizer of a generic 3-form ∈ Λ3(R7)

- as a stabilizer of a generic spinor in ∆7

was forgotten for more than 60 years.

Work in progress: Engel sketches how the algebraic geometry of Q6 ⊂ CP7

gives an analogon of Plücker’s line complexes (CP
3 ⊃ π1 7−→ l ∈ Q ⊂ CP

5,
Q: Klein quadric, 2-forms ∼= Plücker coords.)
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Holonomy group of a connection ∇

Thm (Berger [& Simons], ≥ 1955).

The reduced holonomy Hol0(M ;∇g) of
the LC connection ∇g is either that of a
symmetric space or

Sp(n)Sp(1) [qK], U(n) [K], SU(n) [CY],
Sp(n) [hK], Gc

2, Spin(7).
p

TpMPγ

γ
M

However, Berger missed that [Bonan, 1966]

• manifolds with holonomy Gc
2 have a ∇g-parallel 3-form,

• manifolds with holonomy Spin(7) have a ∇g-parallel 4-form,

and, in consequence, both have to be Ricci-flat.

This is—up to our knowledge—the first reappearance of the 3-form defining
a Gc

2 structure after Engel and Reichel.
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Weak holonomy (A. Gray, 1971):

Idea: Enlarge the successful holonomy concept to wider classes of manifolds
(contact manifolds, almost Hermitian manifolds etc.)

Dfn. ‘nearly parallel Gc
2-manifold’: has structure group Gc

2, but 3-form
ω is not parallel, but rather satisfies

dω = λ ∗ ω for some λ 6= 0.

Fernandez-Gray, 1982: Show that there are 4 basic classes of manifolds with
Gc

2-structure and construct first examples:

S7 = Spin(7)/Gc
2, SU(3)/S1 (Aloff-Wallach sp.), ext. of Heisenberg

groups. . .

Progress in the parallel Gc
2 case:

• 1987-89, R. Bryant and S. Salamon: local complete metrics with Riemannian
holonomy Gc

2

• 1996, D. Joyce: existence of compact Riemannian 7-dimensional manifolds
with Riemannian holonomy Gc

2
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Today’s general philosophy:

Given a mnfd Mn with G-structure (G ⊂ SO(n)), replace ∇g by a metric

connection ∇ with torsion that preserves the geometric structure!

torsion: T (X,Y,Z) := g(∇XY −∇YX − [X,Y ], Z)

Special case: require T ∈ Λ3(Mn) (⇔ same geodesics as ∇g)

⇒ g(∇XY,Z) = g(∇g
XY,Z) + 1

2 T (X,Y,Z)

• representation theory yields

- a clear answer which G-structures admit such a connection; if existent, it’s
unique and called the ‘characteristic connection’

- a classification scheme for G-structures with characteristic connection:
Tx ∈ Λ3(TxM)

G
= V1 ⊕ . . .⊕ Vp

• study Dirac operator /D of the metric connection with torsion T/3: ‘charac-

teristic Dirac operator’ (generalizes the Dolbeault operator, Kostant’s cubic
Dirac operator) [IA-TF et.al. since 2003]
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Gc
2-manifolds

Dfn: mnfds with reduction of the frame bundle to G2; reduction induces
3-form and hence a metric, automatically spin

• ∃ char. connection ∇ ⇔ ∃ VF β s. t. δω = −β ω, torsion:

T = − ∗ dω − 1
6(dω, ∗ω)ω + ∗(β ∧ ω) [TF-Ivanov, 2002]

• ∇ω3 = 0, at least on spinor field with ∇ψ = 0 and Hol0(∇) ⊂ G2 ⊂ SO(7)

Superstring theory:

torsion ∼= field, ∇-parallel spinor ∼= supersymmetry transformation.

Duality:

T = 0: ’vacuum solutions’ of superstring theory −→ algebraic geometry (K3
surfaces, Calabi-Yau manifolds. . . )

T 6= 0: ’non vacuum solutions’ of superstring theory −→ differential geometry,
connections with torsion
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Exceptional Gc
2-manifolds—the flat case

Suppose (M, g) Riemannian, ∇ metric with torsion T ∈ Λ3(M)

Q: What are the manifolds with a flat metric connection with skew torsion?

⇒ (M, g) is parallelisable (and therefore spin): take any frame in p ∈ M and transport it

to all other points

Example 1: Lie groups

Let M = G be a connected Lie group, g a biinvariant metric

Ansatz: T proportional to [, ], i. e. ∇XY := λ[X,Y ]

• torsion: T∇(X,Y ) = (2λ− 1)[X,Y ] (T ∈ Λ3(G)⇔ g biinv.), ∇T = 0

• curvature:

R∇(X,Y )Z = λ(1 − λ)[Z, [X,Y ]] =

{

1
4[Z, [X,Y ]] for LC conn.(λ = 1

2)
0 for λ = 0, 1

[±-connection, Cartan-Schouten, 1926]
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Example 2: S7

• only parallelisable sphere that is not a Lie group (but almost. . . )

Consider spin representation κ : Spin(7) → End(∆7), ∆7
∼= R

8

κ is in fact a repr. of the Clifford algebra over R
7 (Spin(7) ⊂ Cl(R7)!),

κ : R7 ⊂ Cl(R7) → End(∆7).

Choose e1, . . . , e7 an ON basis of R
7, and set κi = κ(ei).

• Embed S7 ⊂ ∆7 as spinors of length 1,

• the VFs Vi(x) = κi · x for all x ∈ S7 ⊂ ∆7 realize ON trivialization of S7

• the connection ∇ defined by ∇Vi = 0 is metric, flat, and with torsion

T (Vi, Vj, Vk)(x) = −〈[Vi, Vj], Vk〉 = 2〈κiκjκkx, x〉 ∈ Λ3(S7)

• ∇T 6= 0 (check that T does not have constant coefficients)

• ∇ is a G2 connection of Fernandez-Gray type X1 ⊕ X3 ⊕ X4



32

Classification

Goal: Show that any irreducible, complete, and simply connected M with a
flat, metric connection with antisymmetric torsion T ∈ Λ3(M) is one of these
examples.

• 1926: Cartan-Schouten “On manifolds with absolute parallelism” – wrong
proof.

• 1968: d’Atri-Nickerson “On the existence of special orthonormal frames” –
when does (M, g) admit an ONF of Killing vectors?

This is mainly an equivalent problem:

V is Killing VF ⇔ g(∇g
XV, Y ) + g(X,∇Y V ) = 0 (∗)

If V is parallel for ∇ with torsion T , then ∇g
XV = −1

2T (X,V ), hence

(∗) ⇔ g(T (X,V ), Y ) + g(X,T (Y, V )) = 0 ⇔ T ∈ Λ3(M)

• 1972: J. Wolf “On the geometry and classification of absolute parallelisms”
– 2 long papers in J. Diff.Geom.

Q: Both proofs rely on classification of symmetric spaces. Direct proof?
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Sketch of proof

(1) General identities: [common to all authors]

• Ricg(X,Y ) = 1
4

∑

i〈T (X, ei), T (Y, ei)〉, (⇒ Ricg(X,X) ≥ 0)

• Kg(X,Y ) = ‖T (X,Y )‖2

4[‖X‖2‖Y ‖2−〈X,Y 〉2]
≥ 0 (sectional curvature)

• δT = 0 (= antisymmetric part of Ric∇)

(2) General tools: σT = 1
2

∑

i(ei T ) ∧ (ei T ) ∈ Λ4(M) satisfies

• T 2 = −2σT + ‖T‖2 (as endomorphisms on ∆7)

• ∇T = 0 implies dT = 2σT [recall: true for G, wrong for S7]

• All spinors with constant coeff. are parallel ⇒ 3dT = 2σT (SL formula)

• Bianchi I:

X,Y,Z

S R(X,Y,Z, V ) = dT (X,Y,Z, V ) − σT (X,Y,Z, V ) + (∇V T )(X,Y,Z)
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(3) Rescaling of connection: [implicit in Cartan]

Consider the rescaled connection ∇1/3,

∇1/3
XY = ∇g

XY +
1

6
T (X,Y )

– ∇1/3 plays a prominent role for Dirac operators with torsion

Thm.

• ∇1/3T = 0 (⇔ ∇V T = −1
3V σT ⇔ ∇g

V T = 1
6V σT )

In particular, ‖T‖ and the scalar curvature are constant, and for any tensor
field T polynomial in T :

∇T = −2∇gT ; in particular: ∇T = 0 ⇔ ∇gT = 0

• ∇1/3Rg = 0

By the Ambrose-Singer Thm, M is a naturally reductive space (in

particular, homogeneous).
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(4) Splitting principle:

Thm. Let M = M1 ×M2 be a mnfd with a flat metric connection ∇ with
torsion T ∈ Λ3(M). Then T = T1 + T2 with Ti ∈ Λ3(Mi).

(5) Type of M :

Thm. Let e1, . . . , en be a ONF of ∇-parallel VFs. Then:

• Rg(ei, ej)ek = −1
4[[ei, ej], ek] [⇒ M is Einstein]

• em〈[ei, ej], ek〉 = −(∇emT )(ei, ej, ek) = −1
3σT (ei, ej, ek, em) (∗)

Cor. ei(Rjklm) = 0, hence ∇gRg = 0 and, by (2), ∇Rg = 0 and

(∇X −∇g
X)Rg = [X T,Rg] = 0 (∗∗)

Cor. (M, g) is a compact symmetric Einstein space.

1st case: σT = 0. (∗) ⇒ all 〈[ei, ej], ek〉 = const ⇒ M is Lie group
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2nd case: σT 6= 0 (n > 4). Consider the Lie algebra

gT (p) := Lie〈X T |X ∈ TpM〉 ⊂ Λ2TpM ∼= so(TpM).

By the splitting principle, may assume: gT (p) acts irreducibly on TpM .

Idea: Let GT (p) be a Lie group with Lie algebra gT (p) and consider its action
on unit sphere S ⊂ TpM .

Thm (Skew holonomy theorem). There are only two possible cases:

(1) GT (p) does not act not transitively on S:

T (X,Y ) =: [X,Y ] defines a Lie bracket and M is a Lie group,

(2) or GT (p) acts transitively on S:

gT (p) = so(TpM).

dfn of gT (p): AF. (1): Olmos-Reggiani;

(2): AF indirectly if one uses the classification of transitive sphere actions, except for the qK

case (OR); or OR for a more systematic proof.
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Cor. If M is not a Lie group, gT (p) = so(TpM) and

(∗∗) ⇒ Rg = c · Id ⇒ Kg(X,Y ) = c · Id

⇒ M is a sphere

⇒ formula for Kg(X,Y ) states that T defines a vector cross product

⇒ M = S7


