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The set-up

The Main Problem

Suppose that S is a simple centerless Lie group and that Γ is a
locally compact and σ-compact group. Suppose that

φ : Γ - S

is an ’abstract’ isomorphism.

What can be said about φ and Γ?

Equivalently, how unique is the group topology on S?

A Hausdorff space is σ-compact if it is a countable union of
compact sets. This condition excludes the discrete topology
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Some examples

Example 1 — The geometry of SO(3)

Suppose that S = SO(3). The 1-parameter subgroups are
centralizers of certain group elements, so they are definable in the
’abstract’ group. This group acts regularly on the real
3-dimensional projective space RP3.

The projective lines/geodesics in RP3 are the cosets of the
1-parameter subgroups.

By the (topological) Fundamental Theorem of Projective Geometry
there is just one compact topology on SO(3) such that the
projective lines are closed. Hence the compact topology on S is
unique.

The idea of using the FTPG is due to Cartan. The proof can be
adapted to show that any compact simple Lie group admits
precisely one compact group topology.
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Some examples

Example 2 — The complex numbers cause problems

Suppose that S = PSL(2,C). The field of complex numbers C
admits

22
ℵ0

non-continuous field automorphisms. Therefore PSL(2,C) carries
22

ℵ0 different Lie group topologies.
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Suppose that S = PSL(2,C). The field of complex numbers C
admits

22
ℵ0

non-continuous field automorphisms. Therefore PSL(2,C) carries
22

ℵ0 different Lie group topologies.

This follows by choosing a transcendence basis of C/Q.

4 / 17



Introduction Some history The new results Outlook/work in progress

Some examples

Example 2 — The complex numbers cause problems

Suppose that S = PSL(2,C). The field of complex numbers C
admits

22
ℵ0

non-continuous field automorphisms. Therefore PSL(2,C) carries
22

ℵ0 different Lie group topologies.

4 / 17



Introduction Some history The new results Outlook/work in progress

Some examples

Example 2 — The complex numbers cause problems

Suppose that S = PSL(2,C). The field of complex numbers C
admits

22
ℵ0

non-continuous field automorphisms. Therefore PSL(2,C) carries
22

ℵ0 different Lie group topologies.

However, they all look the same.

4 / 17



Introduction Some history The new results Outlook/work in progress

Some examples

Example 2 — The complex numbers cause problems

Suppose that S = PSL(2,C). The field of complex numbers C
admits

22
ℵ0

non-continuous field automorphisms. Therefore PSL(2,C) carries
22

ℵ0 different Lie group topologies.

However, they all look the same.

In the case of SO(3) the topology was unique. This is related to the
fact that the field R has a trivial automorphism group.
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Pictures

The early pioneers of Lie theory

Cartan van der Waerden Freudenthal

made already in the first half of the 20st century fundamental
contributions to this problem.
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Continuity of homomorphisms between Lie groups

Theorem [Cartan, van der Waerden]

Every abstract isomorphism between compact simple Lie groups is
continuous. (Comment. Math. Helv. 1930, Math. Z. 1933)

A real Lie group S is absolutely simple if the complexification of its
Lie algebra Lie(S)⊗R C is simple.

Theorem [Freudenthal]

Every abstract isomorphism between absolutely simple Lie groups
is continuous. (Ann. Math. 1941)

Freudenthal’s proof makes use of the advanced structure theory of
simple Lie groups. It is much more complicated than the compact
case.
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Generalizations to algebraic groups

Remarks

Borel and Tits generalized Freudenthal’s Theorem later and
classified the ’abstract’ isomorphisms between isotropic absolutely
simple algebraic groups over arbitrary fields. They also proved a
version of Freudenthal’s continuity result for simple Lie groups over
local fields, such as SL(n,Qp). (Ann. Math. 1973)

Peterzil, Pillay and Starchenko later gave a model-theoretic proof
of Freudenthal’s Theorem. (Trans. AMS 2000)
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Group topologies on compact Lie groups

The results by Cartan, van der Waerden, Freudenthal, Borel and
Tits all deal with the uniqueness of the Lie topology. The following
result generalizes the Theorems of Cartan and van der Waerden in
a different direction.

Theorem [Kallman]

A compact simple Lie group S admits only one locally compact and
σ-compact group topology. (Adv. Math. 1974)

Our aim is to prove such a uniqueness result for simple Lie groups
in general.

8 / 17
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Our main theorem

Uniqueness Theorem [K]

Suppose that S is a simple Lie group.

(a) If S is absolutely simple, then S admits only one locally
compact and σ-compact group topology.

(b) If S is complex, then all locally compact and σ-compact group
topologies on S are conjugate under the automorphism group of C.
(Adv. Math. 2011)
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Our main theorem

Uniqueness Theorem [K]

Suppose that S is a simple Lie group.

(a) If S is absolutely simple, then S admits only one locally
compact and σ-compact group topology.

(b) If S is complex, then all locally compact and σ-compact group
topologies on S are conjugate under the automorphism group of C.
(Adv. Math. 2011)

We have seen before that such a result is not true for the group
PSL(2,C), which is not absolutely simple.
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Our main theorem

Uniqueness Theorem [K]

Suppose that S is a simple Lie group.

(a) If S is absolutely simple, then S admits only one locally
compact and σ-compact group topology.

(b) If S is complex, then all locally compact and σ-compact group
topologies on S are conjugate under the automorphism group of C.
(Adv. Math. 2011)

The continuity results by Cartan, van der Waerden and Freudenthal
are special cases of this result.
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The main ideas for the proof

The main ingredient in our proof is the following result.

Technical Lemma

Let S be a simple Lie group. Let L be its topology as a Lie group
and let T be a locally compact and σ-compact group topology on
S. Suppose that there exists a subvariety C ⊆ S of positive
dimension which is compact in the Lie topology L and which is
σ-compact in the unknown topology T. Then

L = T.

10 / 17
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The main ideas for the proof

Proof of the Technical Lemma.

Put m = dim(S). Recall that L denotes the Lie group topology
and that C is a compact subvariety of positive dimension.

(i) There exist elements a0, . . . ,am ∈ S such that
D = a0Ca1C · · ·Cam is an L-neighborhood of 1.
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and that C is a compact subvariety of positive dimension.

(i) There exist elements a0, . . . ,am ∈ S such that
D = a0Ca1C · · ·Cam is an L-neighborhood of 1.

Proof. There is a smooth curve in C whose tangent vector we
may translate to 1. Since S acts irreducibly on its Lie algebra,
we find m conjugates of this vector which span the Lie
algebra. The claim follows now from the inverse function
theorem.
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elements b1, . . . ,bm ∈ S such that E = [b1,D] · · · [bm,D] ⊆ U
is an L-neighborhood of 1.

Proof. By continuity we have E ⊆ U if the bk are close
enough to 1. A similar argument as in the proof of Step (i),
using the inverse function theorem and the irreducibility of the
adjoint representation, shows that we can choose the bk at
the same time in such a way that the image is a neighborhood
of 1. (This argument is due to van der Waerden.)
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E as in (ii). Therefore W is a Borel set with respect to the
unknown topology T, i.e. the identity is a Borel map.
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(iii) The set E is σ-compact in the unknown topology T.

(iv) Every L-open set W is a countable union of translates of sets
E as in (ii). Therefore W is a Borel set with respect to the
unknown topology T, i.e. the identity is a Borel map.

(v) Borel homomorphisms are in this situation continuous and, by
the open mapping theorem, open. Therefore L = T.
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1st Application: The proof of Kallman’s Theorem

We use this to prove Kallman’s Theorem. Recall the following:

Technical Lemma

Let S be a simple Lie group. Let L be its topology as a Lie group
and let T be a locally compact and σ-compact group topology on
S. Suppose that there exists a subvariety C ⊆ S of positive
dimension which is compact in the Lie topology L and which is
σ-compact in the unknown topology T. Then L = T.

Theorem [Kallman]

A compact simple Lie group S admits only one locally compact and
σ-compact group topology.

Proof. Apply the Technical Lemma with C = S.
(This is in fact Kallman’s proof)
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2nd Application: The case of non quasi-split simple groups

Now we consider the noncompact case.

Uniqueness Theorem — Part 1

An absolutely simple noncompact Lie group S admits only one
locally compact and σ-compact group topology.

Outline of the proof.
We fix an Iwasawa decomposition S = KAN, with K maximal
compact, A diagonal and N nilpotent. We put M = CenK(A) and
L = CenS(A). Then L =M×A.
If M is not abelian (i.e. if S is not quasi-split) we choose c ∈M
such that the class C = cM = cL is compact and of positive
dimension.
By construction C is σ-compact in the unknown topology T.
Therefore we may apply the Technical Lemma.
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3rd Application: The case of quasi-split absolutely simple groups

If M is abelian, then S is quasi-split and we have to work harder.
In this case we need the assumption that S is absolutely simple.

Part 2 — The case where S is quasi-split.

Suppose that S = KAN is quasi-split and has real rank 1, i.e. that
A is 1-dimensional. There are only three such groups:

PSL(2,R), PSU2,1(C), and PSL(2,C)

In the first two groups, K has a 1-dimensional center. This center
can be used to construct the compact subvariety C.
If dim(A) > 1 and if S is absolutely simple and quasi-split, one can
find inside of S a copy of one of the first two groups, and this
suffices to construct C. Now we apply again the Technical Lemma.

This can be proved from the Tits diagrams, without using tables.
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The case of a complex Lie group

The case of PSL(2,C)

We use the action on of the group on the projective line CP1. The
field (C,+, ·, 0, 1) is visible in CP1, and all locally compact
σ-compact field topologies on C are conjugate under the group
Aut(C). It follows that the subgroup

U =
{(

1 z
0 1

)
| z ∈ C

}
∼= (C,+)

carries the standard topology, up to Aut(C). Now we may apply
the Technical Lemma, where C is, for example, the unit circle in U.
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1 z
0 1

)
| z ∈ C

}
∼= (C,+)

carries the standard topology, up to Aut(C). Now we may apply
the Technical Lemma, where C is, for example, the unit circle in U.

This follows from Weil’s classification of local fields.
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The case of a complex Lie group

The case of PSL(2,C)

We use the action on of the group on the projective line CP1. The
field (C,+, ·, 0, 1) is definable in CP1, and all locally compact
σ-compact field topologies on C are conjugate under the group
Aut(C). It follows that the subgroup

U =
{(

1 z
0 1

)
| z ∈ C

}
∼= (C,+)

carries the standard topology, up to Aut(C). Now we may apply
the Technical Lemma, where C is, for example, the unit circle in U.

For complex Lie groups of higher rank we use the rank 1 case and
the action of S on the Tits building of S.
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The following results about totally disconnected groups still have to be written up

Rupert McCallum and I look presently at the case of totally
disconnected groups.
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disconnected groups.

Theorem [McCallum 2012]

The automorphism group of a locally finite regular tree admits only
one locally compact and σ-compact group topology.

Corollary [Tits]

The automorphism groups of two non-isomorphic locally finite
regular trees are not isomorphic.

The vertices of the tree correspond to maximal compact subgroups
of the automorphism group. Hence the tree is encoded in the group
topology.
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The following results about totally disconnected groups still have to be written up

Rupert McCallum and I look presently at the case of totally
disconnected groups.

Theorem [McCallum 2012]

The automorphism group of a locally finite regular tree admits only
one locally compact and σ-compact group topology.

Corollary [Tits]

The automorphism groups of two non-isomorphic locally finite
regular trees are not isomorphic.

Theorem [K-McCallum 2012]

A simple isotropic algebraic group over Qp, such as PSL(n,Qp),
admits only one locally compact and σ-compact group topology.
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Summary

Summary

Absolutely simple Lie groups over R and Qp are rigid: they
admit a unique locally compact and σ-compact group
topology.

In the case of complex simple Lie groups, non-continuous field
automorphisms have to be taken into account, but the
topology is still unique up to conjugation.

We conjecture that all simple locally compact and σ-compact
groups are rigid in this sense.

All known proofs in this area use a mixture of advanced
structure theory of the groups, functional analysis, and
projective geometry/buildings.

The infinite-dimensional situation, for example the case of
Kac-Moody groups, seems to be different.
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