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Spin Structures: extrinsic point of view

@ Friedrich (1998) proved that

(M? g) = R> <= M? carries a generalized Killing spinor.

e Hijazi-Montiel-Zhang (2000): on the compact boundary of a
Spin manifold (M", g),
n—1.

inf H,
2 M

A1 2>

where H denotes the mean curvature of the boundary.

Application of the limiting case: an elementary Spin proof of
the Alexandrov theorem.
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The shift from Spin to Spin®

Seiberg-Witten theory (1994)

4

Donaldson theory (1982)

Applications

@ The calculus of the Yamabe invariant (LeBrun-Gursky 1997).

@ Topological restrictions on 4-dimensional Einstein manifolds
(LeBrun 1995).
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Spin© Structures

@ Spin, almost complex, complex, Kahler, Sasaki and some CR
manifolds have a canonical Spin® structure.

e Hijazi-Montiel-Urbano (2006): let (M2™ g) be a Kahler
Einstein manifold of nonnegative scalar curvature.

The restriction of Kahlerian Spin® Killing spinors to
Lagrangian submanifolds

4

Geometric and topological informations on these submanifolds.
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Definitions

Let (M", g) be an oriented (compact) Riemannian manifold.
@ M has a Spin structure <= w>(M) = 0.
e This condition is very restrictive (CP? is not Spin but Spin®).

@ M has a Spin® structure <= there exists a complex line
bundle L such that

WZ(M) = [Cl(L)]mod 2.
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Preliminaries

@ The Spin® bundle can be written:

1
2

M= ® L2.

M
-
the Spin bundle
A section ¢ € T(XM) is called a spinor field.

@ Given a connection on the auxiliary line bundle L, we can
define a (twisted) connection V on M. The (twisted) Dirac
operator is then defined by

D:T(EM) — T(TM)

Yy — D= e Vb
j=1



Results

3-dimensional homogeneous manifolds with

4-dimensional isometry group

@ The manifolds E(k, 7) are Riemannian fibration over a simply
connected 2-dimensional manifold M?(k) of curvature k.

@ These manifolds define the geometry of Thurston:

—_—~—

S?x R, H?> xR, Nily ,PSLy(R).

7=0,k=1 7=0,k=—1 7#£0,k=0 T7#0,k<0

Berger spheres
—_————

7#0,>0
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spinor 7 of Killing constant 7, i.e., a spinor field 1 satisfying,
for all vector fields X,
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Results

Restriction to a surface

@ The manifolds E(k, 7) are Spin® manifolds carrying a Killing
spinor 7 of Killing constant 7, i.e., a spinor field 1 satisfying,
for all vector fields X,

vw:gx.w.

@ Using the Spin® Gauss formula, the restriction of 1 to any
oriented surface gives a spinor field ¢ satisfying

1
Vxip = 5 1(X) ¢+ igx-a,

where p := p; — @_ is the conjugate of p = w4+ + @_ and I/
the second fundamental form of the immersion.



Theorem (with J. Roth, 2011)

The following statements are equivalent:

@ (M?,g) is isometrically immersed into E(x, ) with second
fundamental form A and mean curvature H.

@ There exists on M a spinor field ¢ satisfying

{ Vxp =—3AX) o +i3X B,

iQer, &) = —i(k — 472) < ¢, Isf|2 > .




Theorem (with J. Roth, 2011)

The following statements are equivalent:

@ (M?,g) is isometrically immersed into E(x, ) with second
fundamental form A and mean curvature H.

@ There exists on M a spinor field ¢ satisfying

iQer, &) = —i(k —47%) <, 55 > .

{ Vxep = —3AX)- o +i3X P,
l¢l2

© There exists on M a spinor field @ satisfying

Dp =Hp — itp,
|p| = constant, B
iQ(er, &) = —i(k — 412) < o, % > .




Results

A Lawson type correspondence

Theorem (with J. Roth, 2011)

There exists an isometric correspondence between simply
connected oriented surfaces minimal in Nils and simply connected
oriented surfaces immersed into H? x R of mean curvature %
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