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1.1. From compact groups to Hilbert–Lie groups

Definition (Hilbert–Lie algebra)

A Hilbert–Lie algebra is a Lie algebra k which is a real Hilbert space whose
scalar product is invariant: ([x , y ], z) = (x , [y , z ]).
A Lie group K is a Hilbert–Lie group if L(K ) = k is a Hilbert–Lie algebra.

Finite dimensional Hilbert–Lie algebras are the compact Lie algebras.

Theorem (Schue, 1960/61; Structure of Hilbert–Lie algebrs)

k is an orthogonal direct sum k = z(k)⊕
⊕̂

j∈Jkj , where kj is simple.
If k is inf. dim. simple, then k ∼= u2(H) (skew-herm. Hilbert–Schmidt ops)
for a Hilbert space H over R, C or H with (x , y) = trR(xy∗) = − trR(xy).

Example

U2(H) = {g ∈ U(H) : ‖1− g‖2 <∞} is a Hilbert–Lie group with Lie
algebra L(U2(H)) = u2(H). Here ‖X‖2 =

√
tr(X ∗X ).
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1.2. Root data of simple Hilbert–Lie algebras

k simple Hilbert–Lie algebra
t ⊆ k maximal abelian (Cartan subalgebra), t ∼= `2(J,R)

kC = tC ⊕
⊕̂

α∈∆kαC (root decomposition), orthogonal direct sum
∆ = ∆(k, t) is a locally finite root system.

Theorem (Stumme ’99, Classif. of infinite locally finite root systems)

AJ = {εi − εj : i 6= j ∈ J}, BJ = {±εi ,±εi ± εj : i 6= j ∈ J}
CJ = {±2εi ,±εi ± εj : i 6= j ∈ J}, DJ = {±εi ± εj : i 6= j ∈ J}.

⇒ 4 iso-classes of pairs (k, t) (for each cardinality |J|):

AJ : K = C, k = u2(H)

BJ ,DJ : K = R, k = u2(H) =: o2(H), dim(ker(t)) ∈ {1, 0}
CJ : K = H, k = u2(H) =: sp2(H).

k = o2(H) has two conjugacy classes of Cartan subalgebras under Aut(k).
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2.1. Loop groups and twisted loop groups

Definition (Twisted loop groups)

For a Hilbert–Lie group K ,

L(K ) := {f ∈ C∞(R,K ) : (∀t ∈ R) f (t + 2π) = f (t)}

is called the corresponding loop group. For an automorphism ϕ ∈ Aut(K ),

Lϕ(K ) := {f ∈ C∞(R,K ) : (∀t ∈ R) f (t + 2π) = ϕ−1(f (t))}

is called the corresponding twisted loop group.

Lϕ(K ) is a Fréchet–Lie group with Lie algebra

Lϕ(k) := {ξ ∈ C∞(R, k) : (∀t ∈ R) ξ(t + 2π) = L(ϕ)−1ξ(t)}.

Note: Lϕ(K ) is the group of smooth sections of a K -Lie group bundle
K = (R× K )/ ∼ over S1 ∼= R/2πZ, where (t + 2π, k) ∼ (t, ϕ(k)).
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2.2. Loop groups with Hilbert targets

K -Lie group bundles over S1 correspond to Aut(K ) principal bundles,
hence are classified by

π0(Aut(K ))/conj.

Note: Aut(K ) ∼= Aut(k) if K is 1-connected.

Theorem

The automorphism groups of the infinite dimensional simple Hilbert–Lie
algebras are given by the connected groups

Aut(o2(H)) ∼= O(H)/{±1}, Aut(sp2(H)) ∼= Sp(H)/{±1}

(real and quaternionic case) and the 2-component group (complex case)

Aut(u2(H)) = PU(H) o {1, σ}, σ : H → H antilin. isom. involution.

We thus obtain 4 iso-classes of twisted loop algebras

L(o2(H)), L(u2(H)), L(sp2(H)) and Lσ(u2(H)).
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2.3. Double extensions

Definition (Double extensions)

For a Lie algebra g with invariant symmetric bilinear form κ (quadratic Lie
algebra) and a κ-skew-symmetric derivation D on g, the corresponding
double extension is the quadratic Lie algebra (ĝ, κ̂), where

ĝ := R× g× R

[(z1, x1, t1), (z2, x2, t2)] :=
(
κ(Dx1, x2), t1Dx2 − t2Dx1 + [x1, x2], 0

)
κ̂((z1, x1, t1), (z2, x2, t2)) := z1t2 + z2t1 + κ(x1, x2).

Note: g̃ := R× g is a central ext. with cocycle ωD(x1, x2) := κ(Dx1, x2).
ĝ ∼= g̃o

D̃
R for D̃(z , x) := (0,Dx).

Ex: g = u2(H), Dx = [T , x ], T ∈ u(H), κ(Dx , y) = − tr(T [x , y ])

Rem: k Hilbert–Lie algebra ⇒ Any 2-cocycle ω can be written as
ω(x , y) = (Dx , y) with D ∈ der(k) ⇒ double extension k̂D .

ab
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2.4. Affine Kac–Moody groups

If k is a Hilbert–Lie algebra and ϕ ∈ Aut(k), then the loop algebra Lϕ(k)

carries the scalar product (ξ, η) :=
∫ 2π

0 (ξ(t), η(t)) dt and the derivation
Dξ = ξ′ is skew-symmetric. This leads to the double extension

L̂ϕ(k) = R⊕ Lϕ(k)⊕ R

[(z1, ξ1, t1), (z2, ξ2, t2)] :=
(
(ξ′1, ξ2), t1ξ

′
2 − t2ξ

′
1 + [ξ1, ξ2], 0

)
Theorem (N., ’02, N./Wockel ’09; Integrability Theorem)

If k is simple, then there exists a simply connected Fréchet–Lie group
L̂ϕ(K ) with Lie algebra L̂ϕ(k) and center T.

Definition

We call L̂ϕ(K ) the corresponding (affine) Kac–Moody group.

Goal: Understand unitary rep’s of L̂ϕ(K ) ⇒ We need root data.
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2.5. Root systems for Kac–Moody groups

Here are the candidates for root systems of L̂ϕ(k):

Theorem (Y. Yoshii, 2006)

The irreducible reduced locally affine root systems of infinite rank are the

following X
(1)
J := XJ × Z for XJ ∈ {AJ ,BJ ,CJ ,DJ}, J an infinite set, and

B
(2)
J := (BJ × 2Z)∪̇((BJ)sh × (2Z + 1)), where (BJ)sh = {±εj : j ∈ J}.

C
(2)
J := (CJ × 2Z)∪̇(DJ × (2Z + 1))

BC
(2)
J := (BJ × 2Z)∪̇(BCJ × (2Z + 1)), BCJ := BJ ∪ CJ .

These root systems contain no root bases ⇒ No Dynkin diagrams.
To obtain root decompositions of L̂ϕ(k), we assume:
k is simple, ϕ ∈ Aut(k) involution,

t ⊆ kϕ := {x ∈ k : ϕ(x) = x} is maximal abelian.
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Then t̂ := R× t× R ⊆ L̂ϕ(k) is maximal abelian.
For α : t→ iR and n ∈ Z we define (α, n) : t̂→ iR by

(α, n)(z , x , t) := α(x) + int.

Then the (anisotropic) root system ∆̂ := ∆(L̂ϕ(k), t̂) is

∆̂ = (∆+×2Z)∪̇(∆−×(2Z+1)) with ∆± := ∆(k±ϕ, t) t-(weights).

Theorem (Realization of the 7 locally affine root systems)

For ∆(k, t) = XJ we obtain ∆̂ = ∆(L̂(k), t̂) = X
(1)
J ,

and ∆̂ = ∆(L̂ϕ(k), t̂) = X
(2)
J is obtained for ϕ(x) = σxσ−1 as follows:

B
(2)
J for k = o2(H), σ orth. reflection in a hyperplane, t of type BJ .

C
(2)
J for k = u2(H), σ antilinear with σ2 = −1.

BC
(2)
J for k = u2(H), σ antilinear with σ2 = 1 and ker(t) 6= {0}.

Three root systems for L̂(o2(H)) ∼= L̂ϕ(o2(H)): B
(1)
J ,D

(1)
J and B

(2)
J .

Two root systems for L̂σ(u2(H)) (σ antilinear): C
(2)
J and BC

(2)
J .
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3.1. Bounded and semibounded representations

Definition

A unitary representation π : G → U(H) is called smooth if the space
H∞ := {v ∈ H : G → H, g 7→ π(g)v smooth} of smooth vectors is dense.

The derived representation: dπ(x)v = d
dt |t=0π(exp tx)v , v ∈ H∞, x ∈ g.

The support function: sπ : g→ R ∪ {∞}, sπ(x) := sup Spec(idπ(x))

Cone of semiboundedness: Wπ := {x ∈ g : sπ bounded in a nbhd of x}.

Definition

A smooth representation is called semibounded if Wπ 6= ∅.
It is called bounded if Wπ = g.

Theorem (N. ’08)

π bounded iff dπ : g→ u(H) continuous iff π : G → U(H) norm-cont.
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3.2. Automatic boundedness

Example

If K is compact, then every continuous unitary representation is a
direct sum of irreducible ones and irreducible reps are bounded.

Remark

(a) If π is semibounded, then Wπ is an open Ad(G )-invariant convex
cone in g.

(b) If all open invariant cones in g/z(g) are trivial, then every
semibounded irreducible representation of G is bounded.

(c) All open invariant cones in g/z(g) are trivial iff all open invariant
cones in g intersect z(g) (=fixed points of Ad(G )).

Examples

Lie algebras g for which open invariant cones in g/z(g) are trivial:
(a) g semisimple Hilbert–Lie algebra (Bruhat–Tits Fixed Point Thm)
(b) u(H), H Hilbert space over R,C,H.
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4. Bounded representations of Hilbert–Lie groups

k simple Hilbert–Lie algebra, t ⊆ k maximal abelian, ∆ corresp. roots
Coroots: α̌ ∈ it ∩ [kαC, k

−α
C ] with α(α̌) = 2, for α ∈ ∆

K the 1-connected Lie group with Lie algebra k; T := exp(t)
PT := {λ ∈ it′ : (∀α ∈ ∆)λ(α̌) ∈ Z} ∼= Hom(T ,T) ⊆ it′ (T -weights)
Weyl group: W = 〈rα : α ∈ ∆〉 ⊆ GL(tC), rα(x) = x − α(x)α̌.

Theorem (Classification Theorem, N. ’98, ’11)

Bounded unitary representations of K are direct sums of irreducible ones.
The irreducible bounded reps πλ are characterized by their T -weight set

conv(Wλ) ∩ (λ+Q), Q = 〈∆〉grp ⊆ PT (root group).

Classification of bounded irreps by PT/W (every λ ∈ PT occurs).

Remark

(a) Bounded reps of K behave like reps of a compact group.
(b) The continuous representation theory of K is not type I (Boyer ’80)
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5.Semibounded representations of Kac–Moody groups

G = L̂ϕ(K ) (1-connected) as above (7 types), d := (0, 0,−i) ∈ iL̂ϕ(k)

π irreducible semibounded rep of G ⇒ i · d ∈Wπ ∪ −Wπ

(positive/negative energy representations if ±dπ(d) bounded below).

We use that kϕ is simple, hence all its open inv. cones are trivial.

On the minimal/maximal eigenspace of dπ(d) we find a bounded
irreducible representation ρλ of ZG (d) ∼= T× Kϕ × R

Theorem (Classification Theorem, Part 1)

Irreducible semibounded representations πλ of L̂ϕ(K ) are extremal weight
representations characterized by their t̂-weight set

Pλ := conv(Ŵλ) ∩ (λ+ Q̂) with Ext(conv(Pλ)) = Ŵλ

(Ŵ is the Weyl group of ∆̂). The set of occurring extremal weights λ is

P± := {µ ∈ P
T̂ϕ : ± (Ŵµ)(d) bounded from below}.
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Let P±d ⊆ P
± denote those elements µ for which µ(d) is

minimal/maximal in Ŵµ. With c := µ(i , 0, 0) (central charge), the
elements µ ∈ P+

d are characterized by:

c ≥ 0, |µ(α̌)| ≤ 2c

(α, α)
, |µ(β̌)| ≤ 4c

(β, β)
for (α, 1), (β, 2) ∈ ∆̂.

Theorem (Classification Theorem, Part 2)

Classification of semibounded irreps: P±/Ŵ ∼= P±d /W.

Methods:

Convex geometry of Ŵ-orbits (local Coxeter theory).

Complex geometry: Realization of πλ in holomorphic sections of a
complex Hilbert bundle with fiber representation ρλ of ZG (d) over the
complex manifold G/ZG (d) ∼= Lϕ(K )/Kϕ (holomorphic induction).

Harmonic analysis: Locally defined operator-valued analytic positive
definite functions; automatic extension.
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6. Semibounded projective reps of Hilbert–Lie groups

Problem: Boundedness of representations of a Hilbert–Lie group K is
rather restrictive. It excludes important representations like “infinite wedge
representations”. These lead to projective representations, hence to central
extensions and further to double extensions.
Setup: k simple Hilbert–Lie algebra, t ⊆ k maximal abelian, ∆̌ ⊆ it coroots
A t-invariant continuous cocycle ω(x , y) on k can be represented by
D ∈ der(k) via ω(x , y) = (Dx , y) and there exists a linear functional
λ : t ∩ [k, k]→ iR with

ω(x , y) = iλ([x , y ]) for x , y ∈ k.

We call λ a bounded weight if λ(α̌) ∈ Z for α ∈ ∆; Pb set of bd weights.

Definition

For λ ∈ Pb we write k̂λ = R⊕ k⊕ R for the corresp. double extension.
t̂ := R⊕ t⊕ R ⊆ k̂λ is maximal abelian.
K̂λ is the corresponding 1-connected group; T̂ := exp t̂ ⊆ K̂λ.
P
T̂
⊆ Hom(̂t, iR) (group of T̂ -weights).
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Theorem (Classification Theorem, N. ’11)

Irreducible semibounded representations πµ of K̂λ are extremal weight
representations characterized by their t̂-weight set

Pµ := conv(Wµ) ∩ (µ+Q) with Ext(conv(Pµ)) =Wµ.

Put d := (0, 0,−i) ∈ i t̂. The set of occurring extremal weights is

P± := {µ ∈ P
T̂

: ± (Wµ)(d) bounded from below}.

By minimizing/maximizing, we get the d-extremal weights

P±d = {µ ∈ P
T̂

: (∀α ∈ ∆)λ(α̌) > 0⇒ ±µ(α̌) ≥ 0}.

Classification: P±/W ∼= P±d /Wλ, where Wλ ⊆ W is the stabilizer of λ.

Remark: (a) Representations of K̂λ are projective representations of K .
(b) For K = U2(H) we cover in particular infinite wedge representations.
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7. Semibounded projective reps of Kac–Moody groups

Again, projective representations of L̂ϕ(K ) lead to double extensions of

g = L̂ϕ(k), hence to iterated double extensions
̂̂Lϕ(k). Here the cocycle is

of the form

ω((z1, ξ1, t1), (z2, ξ2, t2)) :=
1

2π

∫ 2π

0
iλ([ξ1(t), ξ2(t)]) dt

for some bounded weight λ ∈ Pb for (k, t). Corresponding Lie groupŝ̂Lϕ(K ) exist, and for d = (0, 0,−i) ∈ iL̂ϕ(k) we have

Zg(d) = R⊕ (R⊕ kϕ ⊕ R)⊕ R = R⊕ k̂ϕλ ⊕ R.

Semibounded representations of
̂̂Lϕ(K ) now lead to semibounded

representations of the double extension (K̂ϕ)λ. These representations are
classified!
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Conjecture

Irreducible semibounded representations πµ of
̂̂Lϕ(K ) are extremal weight

representations characterized by their ̂̂t-weight set

Pµ := conv(
̂̂Wµ) ∩ (µ+

̂̂Q) with Ext(conv(Pµ)) =
̂̂Wµ.

The set of occurring extremal weights is

P± := {µ ∈ P̂̂
T

: ± (
̂̂Wµ)(d) bounded from below}.

By minimizing/maximizing, we get the d-extremal weights P±d .

Classification of semibounded irreps: P±/̂̂W ∼= P±d /Ŵd .

Problems: (a) The complex geometric Banach methods (holomorphic
induction) break down because the representations of K̂λ are unbounded.
We need a weaker notion of a complex Hilbert bundle.
(b) The iterated double extension creates 2 “d-elements”, but
semiboundedness should be controlled by the first one. This requires
refined information on convexity properties of coadjoint orbits.
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Positive energy vs. semiboundedness

Semiboundedness is stronger than the positive energy condition
dπ(d) bd. below. It is crucial that semiboundedness implies
boundedness of the K -representation on the minimal energy space.
This is automatic if K is compact. In general K has many irreducible
unbounded representations which are harder to control, f.i., Boyer’s
factor representations of U2(H). We do not expect that the positive
energy condition implies semiboundedness in general.

Semiboundedness is intrinsic, it does not refer to the specification of
an element d ∈ g, such as the positive energy condition. It also does
not refer to a specific Cartan subalgebra.

Our classification results hold for each of the 7 types of root systems
of the 4 classes of Lie algebras. For different root systems, resp.,
conjugacy classes of Cartan subalgebras, we obtain different
parameters for the same representations.
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Concluding remarks

Non-connected loop groups: π0(L(K )) ∼= π1(K ) is non-trivial in
general. Which semibounded representations extend to non-connected
groups?

We need a better understanding of the concept of a Cartan
subalgebra for L̂ϕ(k). Are there finitely many conjugacy classes?

Describe the automorphism group of Lϕ(k).

Are there also semibounded representations for double extensions of
mapping groups C∞(M,K ), where dim M > 1? The corresponding
derivations should correspond to divergence free vector fields on M.
Possibly one has to consider n-fold iterated double extensions, where
n = dim M. Here M = T2 is the natural testing case.

For K = U2(H), H complex, we have Aut(K )0
∼= PU(H), so that

K -group bundles with this structure group over X are classified by
their Dixmier–Douady classes in

[X ,B PU(H)] = [X ,K (Z, 3)] ∼= H3(X ,Z).
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