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Hilbert 5-th problem

Hilbert 1900:

• We know that Lie groups can act on manifolds by homeos (or
diffeos).

• If a finite-dimensional (or just locally compact) topological group
G acts (faithfully) on a manifold M, does this force G to be a Lie
group ?

Answer: It is still open!

But it is known to hold if dim(M) = 2 (Montgomery-Zippin
1940’s) or 3 (J. Pardon 2012), and the general case is reduced to
determining whether Zp (the p-adic integers) can act faithfully on
a manifold or not (Hilbert-Smith conjecture).
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Hilbert 5-th problem

Special case of Hilbert’s question: Suppose G is a locally compact
group which is also a manifold. Does this force G to be a Lie
group ?

Answer: YES (1951 works of Gleason and Montgomery-Zippin).

Corollary (Montgomery-Zippin 1951): if G is locally compact and
acts (faithfully) transitively on a manifold M, then G is a Lie
group.
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Hilbert 5-th problem

In 1953, H. Yamabe (following work of Andrew Gleason) proved
the following theorem

Theorem (Gleason-Yamabe: Structure of locally compact groups)

Every locally compact group G is a generalized Lie group.

“generalized Lie group” means:

• there is G ′ 6 G , open subgroup, s.t.
• ∀U neighborhood of the identity in G ′, ∃N ⊂ U, with
• N = closed normal subgroup N of G ′ s.t. G ′/N is a Lie group
with finitely many connected components.
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Hilbert 5-th problem

Theorem (Gleason-Yamabe: Structure of locally compact groups)

Every locally compact group G is a generalized Lie group.

2 important special cases are easier and necessary for the proof of
the general case:

• when G is totally disconnected,

• when G is a compact group.
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Totally disconnected case

Theorem (Van Dantzig, 1920’s)

Every totally disconnected locally compact group has an open
compact subgroup.

compact totally disconnected group = profinite group = projective
limit of finite groups.

Let G 0 = the connected component of the identity in G .
From the exact sequence

1→ G 0 → G → G/G 0 → 1

and Van Dantzig’s result we see that we may assume that G/G 0 is
compact in proving the Gleason-Yamabe theorem.
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The compact case

Theorem (Gleason-Yamabe: Structure of locally compact groups)

Every locally compact group G is a generalized Lie group.

If G is compact, the Gleason-Yamabe theorem boils down to the
Peter-Weyl theorem.

Peter-Weyl (1930’s) classify unitary representations of compact
groups. Their main result asserts that:
• irreducible representations are finite dimensional, and
• they “separate”, i.e. the intersection of their kernels is trivial.

Peter-Weyl’s result is an application of the Spectral Theorem for
self-adjoint operators (here the convolution by a continuous
function on G on L2(G )).
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Proof strategy

Theorem (Gleason-Yamabe: Structure of locally compact groups)

Every locally compact group G is a generalized Lie group.

The original proof of this theorem was notoriously technical. It
roughly goes as follows:

Definition: Say that G is NSS if it has “No Small Subgroups”,
i.e. ∃U a neighborhood of the identity in G containing no
non-trivial subgroups.

show that G is a generalized NSS group (i.e. replace “Lie
group” by “NSS group” in the above statement)

show that NSS groups are Lie groups.
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Hilbert 5-th problem

Key to both steps are the so-called Gleason-Yamabe lemmas,
whose purpose is to show that the property for an element g ∈ G
of being close to the identity together with all its powers up to
some large number is closed under products.

One way to phrase it is in terms of escape norms:

||g ||U := inf{ 1

n + 1
; g i ∈ U for all i 6 n}.

where U is a compact neighborhood of {1}.
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One way to phrase it is in terms of escape norms:

||g ||U := inf{ 1

n + 1
; g i ∈ U for all i 6 n}.

then,

Lemma (Gleason-Yamabe lemmas)

If G is locally compact, then every neighborhood of the identity
contains a smaller neighborhood U such that for g , h ∈ U

(i) ||hgh−1||U 6 C ||g ||U

(ii) ||gh||U 6 C (||g ||U + ||h||U)

(iii) ||[g , h]||U 6 C ||g ||U ||h||U
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(ii) ||gh||U 6 C (||g ||U + ||h||U)

(iii) ||[g , h]||U 6 C ||g ||U ||h||U

From (i) and (ii), we get that H := {g ∈ U, ||g ||U = 0} is a
normal subgroup. And 〈U〉/H is NSS.

From (ii) and (iii), one can derive that if X (t) and Y (t) are
one-parameter subgroups R 7→ G , then

X + Y := t 7→ lim
n

(X (
1

n
)Y (

1

n
))[nt]

is well-defined in G .
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From (ii) and (iii), one can derive that if X (t) and Y (t) are
one-parameter subgroups R 7→ G , then

X + Y := t 7→ lim
n

(X (
1

n
)Y (

1

n
))[nt]

is well-defined in G .
As a consequence:

Proposition

Let G be a locally compact group and L(G ) be the set of
one-parameter subgroups. Then L(G ) has naturally the structure
of a topological vector space.
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Proof of the Gleason-Yamabe lemmas

The Gleason-Yamabe lemmas are best proved using non-standard
analysis → J. Hirschfeld, L. van den Dries, I. Goldbring...

The only essential ingredients are :

(i) the existence of the Haar measure.

(ii) the Peter-Weyl theorem.
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Proof of the Gleason-Yamabe lemmas

Key idea: compare the escape norm ||g ||U to the L∞ norm of

∂gφ(x) := φ(g−1x)− φ(x),

where φ is a bump function around the identity.

It is clear that

||∂ghφ||∞ 6 ||∂gφ||∞ + ||∂hφ||∞

So one would like to prove that

||g ||U ' ||∂gφ||∞.
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Proof of the Gleason-Yamabe lemmas

So one would like to prove that

||g ||U ' ||∂gφ||∞.

Observation: If say φ(1) > 1 and φ is supported on U, then

||∂gφ||∞ < 1 implies g ∈ U.

• One side is then easy: ||g ||U 6 ||∂gφ||∞.

Indeed: if ||∂gφ||∞ 6 1
n , then ||∂g iφ||∞ 6 i

n < 1 if i 6 n, so

g i ∈ U and ||g ||U 6 1
n .
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Proof of the Gleason-Yamabe lemmas

Recall: one would like to prove that

||g ||U ' ||∂gφ||∞.

• For the other side, i.e. ||∂gφ||∞ 6 O(||g ||U), one writes the
following formal Taylor expansion:

∂gnφ = n∂gφ+
n∑

i=1

∂g i∂gφ

If the right hand side is negligible as long as g i ∈ U, for all
i = 1, . . . , n, then ||∂gφ||∞ 6 O( 1

n ), and ||∂gφ||∞ 6 O(||g ||U) as
desired.
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If φ were of class C 2, we would be done.

But G is only locally compact : no smooth structure assumed!
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Proof of the Gleason-Yamabe lemmas

If the right hand side is negligible as long as g i ∈ U, for all
i = 1, . . . , n, then ||∂gφ||∞ 6 O( 1

n ), and ||∂gφ||∞ 6 O(||g ||U) as
desired.

If φ were of class C 2, we would be done.

But G is only locally compact : no smooth structure assumed!

Key idea of Gleason: Choose φ of the form ψ1 ∗ ψ2, so as to get
bounds on 2nd derivatives from Lipschitz bounds on ψ1 and ψ2.
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Back to approximate groups and the main theorem

Recall our theorems from yesterday:

G = a group.
A ⊂ G a finite subset.

Theorem (BGT 2011 weak form)

Assume |AA| 6 K |A|. Then there is a virtually nilpotent subgroup
Γ 6 G and g ∈ G such that

|A ∩ gΓ| > |A|/OK (1).
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Γ 6 G and g ∈ G such that

|A ∩ gΓ| > |A|/OK (1).

Theorem (BGT strong form: structure of approximate groups)

Assume A ⊂ G a finite K -approximate subgroup. Then

A ⊂ XP,

where

|X | 6 OK (1),

P is a coset nilprogression of rank and step OK (1),

P ⊂ A4.
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Back to approximate groups and the main theorem

To prove the main theorem one works at the “ultra-level”.

Pick Gn a sequence of groups, and An 6 Gn any sequence of finite
K -approximate subgroups. Then form the ultra-product:

A :=
∏
U

An

This is still a K -approximate group, albeit infinite. We call it an
ultra-approximate group.

There are 3 main steps in the proof of the main theorem.
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Step 1, build a locally compact topology

This step is due to E. Hrushovski. It is based on the following
lemma due to Croot-Sisask, Sanders and Hrushovski
(independently):

Lemma (Square roots of approximate groups)

If A is a finite K-approximate group, then for every k > 2, there is
S ⊂ A4 with 1 ∈ S = S−1 such that Sk ⊂ A4 and
|S | > |A|/Ok,K (1).

Pick Sk,n 6 A4
n as above and set Sk :=

∏
U Sk,n. This defines a

base of neighborhoods for a locally compact topology on 〈A〉.
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The Hrushovski Lie group

The Gleason-Yamabe theorem then allows to define the Hrushovski
Lie group L associated to A. It is the (unique) local quotient of
〈A〉 with no non-trivial compact subgroups.

Corollary (Hrushovski)

If L is trivial, then there are finite subgroups Hn 6 A4
n such that

|Hn|/|An| is bounded (above and below).

This already allowed Hrushovski to prove a weak form of our
theorem: e.g. he showed that A has a subset A′ with
|A′| > |A|/OK (1), which is stable under group commutators, i.e.
[A′,A′] ⊂ A′.
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Step 2: adapt the Gleason-Yamabe lemmas

We prove a version of the Gleason-Yamabe lemmas for finite
approximate groups. Again, the escape norm for any U ⊂ A4 is
defined as:

||g ||U := inf{ 1

n + 1
; g i ∈ U for all i 6 n}.

Lemma (Gleason-Yamabe for approximate groups)

If A is a finite K-approximate group, then A4 contains an
approximate subgroup U with |A| 6 OK (1)|U| such that for
g , h ∈ U

(i) ||hgh−1||U 6 CK ||g ||U

(ii) ||gh||U 6 CK (||g ||U + ||h||U)

(iii) ||[g , h]||U 6 CK ||g ||U ||h||U
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Consequences of the G-Y lemmas for approximate groups

Lemma (Gleason-Yamabe for approximate groups)

If A is a finite K-approximate group, then A4 contains an
approximate subgroup U with |A| 6 OK (1)|U| such that for
g , h ∈ U

(i) ||hgh−1||U 6 CK ||g ||U

(ii) ||gh||U 6 CK (||g ||U + ||h||U)

(iii) ||[g , h]||U 6 CK ||g ||U ||h||U

from (i) and (ii) we see that H := {g ∈ U; ||g ||U = 0} is a
subgroup normalized by U.

from (ii) and (iii) we see that the element e with smallest non
zero norm ||e||U = inf{||g ||U 6= 0, g ∈ U} is centralized by U
modulo H.
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Step 3: build the nilprogression and conclude

(1) Define A′n 6 A4
n as the set Un obtained in the Gleason-Yamabe

lemmas, and quotient out Hn 6 A′n to obtain A′′n := A′n/Hn. Then
form the ultra-product.

(2) The cyclic group generated by the smallest element en ∈ A′n
will be central in A′′n, giving rise to a central one-parameter
subgroup of the Hrushovski Lie group L.

(3) Quotient it out and induct on dim L.

At the end the Hrushovski Lie group L of any ultra-approximate
group A is shown to be nilpotent and we have exhibited the coset
nilprogression.
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Dziȩkujȩ bardzo!
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