Irreducible euclidean representations of the Fibonacci groups

Rafał Lutowski

Institute of Mathematics, University of Gdańsk

16th Andrzej Jankowski Memorial Lecture Mini Conference

Rafał Lutowski (University of Gdańsk) Irreducible euclidean reps of the Fibonacci group

Euclidean and affine maps in \mathbb{R}^n

- $E(n) = \text{Iso}(\mathbb{R}^n) = O(n) \ltimes \mathbb{R}^n$ the group of isometries of the Euclidean space \mathbb{R}^n .
- $A(n) = Aff(\mathbb{R}^n) = GL_n(\mathbb{R}) \ltimes \mathbb{R}^n$ the group of affine maps of \mathbb{R}^n .

Remark

$$E(n) \subset A(n)$$

2
$$A(n) = \{(A, a) \mid A \in \operatorname{GL}(n, \mathbb{R}), a \in \mathbb{R}^n\}$$
 and

$$\forall_{(A,a),(B,b)\in A(n)}(A,a)(B,b)=(AB,Ab+a).$$

③ The action of the group A(n) (E(n)) on \mathbb{R}^n :

$$\forall_{(A,a)\in A(n)}\forall_{x\in\mathbb{R}^n}(A,a)\cdot x = Ax + a.$$

Euclidean and affine maps in \mathbb{R}^n

Remark

2
$$A(n) = \{(A, a) \mid A \in \operatorname{GL}(n, \mathbb{R}), a \in \mathbb{R}^n\}$$
 and

$$\forall_{(A,a),(B,b)\in A(n)}(A,a)(B,b)=(AB,Ab+a).$$

③ The action of the group A(n) (E(n)) on \mathbb{R}^n :

$$\forall_{(A,a)\in A(n)}\forall_{x\in\mathbb{R}^n}(A,a)\cdot x = Ax + a.$$

Lemma

There is a faithful representation $A(n) \to \operatorname{GL}_{n+1}(\mathbb{R})$ given by

$$\forall_{(A,a)\in A(n)} (A,a) \mapsto \begin{bmatrix} A & a \\ 0 & 1 \end{bmatrix}$$

Crystallographic and Bieberbach groups

Definition

A group Γ is an *n*-dimensional crystallographic group if it is a discrete and cocompact subgroup of E(n). If in addition Γ is torsionfree then we call it a Bieberbach group.

Remark

If $\Gamma \subset E(n)$ is a Bieberbach group then $X = \mathbb{R}^n / \Gamma$ is a flat manifold and $\pi_1(X) \cong \Gamma$.

Crystallographic and Bieberbach groups

Definition

A group Γ is an *n*-dimensional crystallographic group if it is a discrete and cocompact subgroup of E(n). If in addition Γ is torsionfree then we call it a Bieberbach group.

Remark

If $\Gamma \subset E(n)$ is a Bieberbach group then $X = \mathbb{R}^n / \Gamma$ is a flat manifold and $\pi_1(X) \cong \Gamma$.

Two dimensional flat manifolds

Bieberbach theorems

Theorem (Bieberbach 1911, 1912)

- Let Γ ⊂ E(n) be an n-dimensional crystallographic group. The subgroup Γ ∩ (1 × ℝⁿ) of pure translations of Γ is free abelian group of rank n. Moreover it is maximal abelian normal subgroup of Γ of finite index.
- ② For every n ∈ N there are a finite number of isomorphism classes of crystallogrpahic groups of dimension n.
- Two crystallographic groups of dimension n are isomorphic if and only if they are conjugate in the group A(n).

Bieberbach theorems

Theorem (Bieberbach 1911, 1912)

- Let Γ ⊂ E(n) be an n-dimensional crystallographic group. The subgroup Γ ∩ (1 × ℝⁿ) of pure translations of Γ is free abelian group of rank n. Moreover it is maximal abelian normal subgroup of Γ of finite index.
- **②** For every $n \in \mathbb{N}$ there are a finite number of isomorphism classes of crystallogrpahic groups of dimension n.
- Two crystallographic groups of dimension n are isomorphic if and only if they are conjugate in the group A(n).

Bieberbach theorems

Theorem (Bieberbach 1911, 1912)

- Let Γ ⊂ E(n) be an n-dimensional crystallographic group. The subgroup Γ ∩ (1 × ℝⁿ) of pure translations of Γ is free abelian group of rank n. Moreover it is maximal abelian normal subgroup of Γ of finite index.
- **2** For every $n \in \mathbb{N}$ there are a finite number of isomorphism classes of crystallogrpahic groups of dimension n.
- Solution Two crystallographic groups of dimension n are isomorphic if and only if they are conjugate in the group A(n).

Structure of Bieberbach groups

Let $\Gamma \subset E(n)$ be a Bieberbach group and $X = \mathbb{R}^n / \Gamma$.

Γ fits into a short exact sequence

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1.$$

- G finite group holonomy group of Γ (of X).
- We get a holonomy representation $\varphi \colon G \to \mathrm{GL}_n(\mathbb{Z})$:

$$\forall_{z \in \mathbb{Z}^n \subset \Gamma} \forall_{g \in G} \varphi_g(z) = \overline{g} z \overline{g}^{-1},$$

where $\pi(\overline{g}) = g$.

• φ is \mathbb{R} -equivalent to the holonomy representation of *X*.

Structure of Bieberbach groups

Let $\Gamma \subset E(n)$ be a Bieberbach group and $X = \mathbb{R}^n / \Gamma$.

• Γ fits into a short exact sequence

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1.$$

- G finite group holonomy group of Γ (of X).
- We get a holonomy representation $\varphi \colon G \to \mathrm{GL}_n(\mathbb{Z})$:

$$\forall_{z\in\mathbb{Z}^n\subset\Gamma}\forall_{g\in G}\ \varphi_g(z)=\overline{g}z\overline{g}^{-1},$$

where $\pi(\overline{g}) = g$.

• φ is \mathbb{R} -equivalent to the holonomy representation of X.

$$\Gamma = \left\langle \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{bmatrix} \right), \left(\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \right) \right\rangle \subset E(3)$$

$$\Gamma = \left\langle \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{bmatrix} \right), \left(\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \right) \right\rangle \subset E(3)$$

$$\Gamma = \left\langle \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{bmatrix} \right), \left(\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \right) \right\rangle \subset E(3)$$

$$\Gamma = \left\langle \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{bmatrix} \right), \left(\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \right) \right\rangle \subset E(3)$$

$$\Gamma = \left\langle \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{bmatrix} \right), \left(\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \right) \right\rangle \subset E(3)$$

$$\Gamma = \left\langle \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{bmatrix} \right), \left(\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \right) \right\rangle \subset E(3)$$

$$\Gamma = \left\langle \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{bmatrix} \right), \left(\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \right) \right\rangle \subset E(3)$$

$$\Gamma = \left\langle \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{bmatrix} \right), \left(\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \right) \right\rangle \subset E(3)$$

Hantzsche-Wendt manifolds and groups

Definition

Let $n \in \mathbb{N}$ be odd. Let $\Gamma \subset E(n)$ be a Bieberbach group with holonomy group G and holonomy representation $\varphi \colon G \to \mathrm{GL}_n(\mathbb{Z})$. If

$$G \cong (\mathbb{Z}_2)^{n-1}$$
 and $\varphi(G) \subset \mathrm{SL}_n(\mathbb{Z})$

then Γ is called a Hantzsche-Wendt group (HW-group) and $X = \mathbb{R}^n/\Gamma$ – a Hantzsche-Wendt manifold (HW-manifold).

Structure of HW-groups

Theorem (Rosetti, Szczepański 2005)

Let $n \in \mathbb{N}$ be odd. Let Γ be an n dimensional HW-group. Then

$$\Gamma \cong \langle (B_i, b_i) \mid i = 1, \dots, n \rangle \subset E(n),$$

where

$$B_i = \text{diag}(\underbrace{-1, \dots, -1}_{i-1}, 1, -1, \dots, -1)$$

and $b_i \in \frac{1}{2}\mathbb{Z}^n$ for $i = 1, \ldots, n$.

Remark

The group $\langle (B_i, b_i) \mid i = 1, ..., n \rangle$ is a Bieberbach group, hence it is a HW-group.

Structure of HW-groups

Theorem (Rosetti, Szczepański 2005)

Let $n \in \mathbb{N}$ be odd. Let Γ be an n dimensional HW-group. Then

$$\Gamma \cong \langle (B_i, b_i) \mid i = 1, \dots, n \rangle \subset E(n),$$

where

$$B_i = \text{diag}(\underbrace{-1, \dots, -1}_{i-1}, 1, -1, \dots, -1)$$

and $b_i \in \frac{1}{2}\mathbb{Z}^n$ for $i = 1, \ldots, n$.

Remark

The group $\langle (B_i, b_i) \mid i = 1, ..., n \rangle$ is a Bieberbach group, hence it is a HW-group.

Encoding HW-groups

•
$$\Gamma \subset E(n)$$
 – HW-group.

• $\Gamma \cong \langle (B_i, b_i) \mid i = 1, \dots, n \rangle.$

Corollary

Up to isomorphism every HW-group is defined by a matrix

$$\begin{bmatrix} b_1 & \dots & b_n \end{bmatrix} \in M_n(\frac{1}{2}\mathbb{Z}).$$

Fibonacci groups

Fibonacci groups

Definition

Let $r, n \in \mathbb{N}$. The Fibonacci group F(r, n) is a group with presentation

$$F(r,n) = \langle a_0, a_1, \dots, a_{n-1} | a_0 a_1 \dots a_{r-1} = a_r, a_1 a_2 \dots a_r = a_{r+1}, \\\vdots \\a_{n-1} a_0 \dots a_{r-2} = a_{r-1}$$

Global assumption

The subscripts will always be taken modulo n.

).

Fibonacci groups

Fibonacci groups

Definition

Let $r, n \in \mathbb{N}$. The Fibonacci group F(r, n) is a group with presentation

$$F(r,n) = \langle a_0, a_1, \dots, a_{n-1} | a_0 a_1 \dots a_{r-1} = a_r, a_1 a_2 \dots a_r = a_{r+1}, \vdots a_{n-1} a_0 \dots a_{r-2} = a_{r-1} \rangle.$$

Global assumption

The subscripts will always be taken modulo n.

Fibonacci groups in geometry

Proposition

Let X be the 3 dimensional HW-manifold. Then

 $\pi_1(X) \cong F(2,6).$

Theorem (Helling, Kim, Mennicke 1998)

For $n \ge 4$ there exists a closed hyperbolic manifold X such that

 $\pi_1(X) \cong F(2,2n).$

Theorem (Szczepański, Vesnin 2000)

For odd $n \in \mathbb{N}$ the Fibonacci group F(2, n) cannot be a fundamental group of any hyperbolic manifold of finite volume.

Fibonacci groups in geometry

Proposition

Let X be the 3 dimensional HW-manifold. Then

 $\pi_1(X) \cong F(2,6).$

Theorem (Helling, Kim, Mennicke 1998)

For $n \ge 4$ there exists a closed hyperbolic manifold X such that

 $\pi_1(X) \cong F(2,2n).$

Theorem (Szczepański, Vesnin 2000)

For odd $n \in \mathbb{N}$ the Fibonacci group F(2, n) cannot be a fundamental group of any hyperbolic manifold of finite volume.

Fibonacci groups in geometry

Proposition

Let X be the 3 dimensional HW-manifold. Then

 $\pi_1(X) \cong F(2,6).$

Theorem (Helling, Kim, Mennicke 1998)

For $n \ge 4$ there exists a closed hyperbolic manifold X such that

 $\pi_1(X) \cong F(2,2n).$

Theorem (Szczepański, Vesnin 2000)

For odd $n \in \mathbb{N}$ the Fibonacci group F(2, n) cannot be a fundamental group of any hyperbolic manifold of finite volume.

Fibonacci and Hantzsche-Wendt groups

Theorem (Szczepański 2001)

Let $n \in \mathbb{N}$ be odd, $n \ge 3$. Let $\Gamma \subset E(n)$ be a HW-group defined by the matrix

$$\begin{bmatrix} \frac{1}{2} & 0 & \dots & 0 & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \ddots & \vdots & \vdots & 0 \\ 0 & \frac{1}{2} & \ddots & 0 & 0 & \vdots \\ 0 & 0 & \ddots & \frac{1}{2} & 0 & 0 \\ \vdots & \vdots & \ddots & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \dots & 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Then there exists an epimorphism

$$\Phi \colon F(n-1,2n) \to \Gamma.$$

Let $\Gamma \subset E(n)$ be as in the previous theorem.

- Γ is "cyclic" because of the form of the matrix which defines it.
- Γ is "cyclic" because it has generators which behave exactly as the generators of some Fibonacci group.

Question

Is every HW-group cyclic in the second sense?

More precisely:

Question

Let $\Gamma \subset E(n)$ be as in the previous theorem.

• Γ is "cyclic" because of the form of the matrix which defines it.

• Γ is "cyclic" because it has generators which behave exactly as the generators of some Fibonacci group.

Question

Is every HW-group cyclic in the second sense?

More precisely:

Question

Let $\Gamma \subset E(n)$ be as in the previous theorem.

- Γ is "cyclic" because of the form of the matrix which defines it.
- Γ is "cyclic" because it has generators which behave exactly as the generators of some Fibonacci group.

Question

Is every HW-group cyclic in the second sense?

More precisely:

Question

Let $\Gamma \subset E(n)$ be as in the previous theorem.

- Γ is "cyclic" because of the form of the matrix which defines it.
- Γ is "cyclic" because it has generators which behave exactly as the generators of some Fibonacci group.

Question

Is every HW-group cyclic in the second sense?

More precisely:

Question

Let $\Gamma \subset E(n)$ be as in the previous theorem.

- Γ is "cyclic" because of the form of the matrix which defines it.
- Γ is "cyclic" because it has generators which behave exactly as the generators of some Fibonacci group.

Question

Is every HW-group cyclic in the second sense?

More precisely:

Question

Euclidean representation

Definition

An euclidean representation of a group *G* is any homomorphism $\varphi \colon G \to E(n)$ for some $n \in \mathbb{N}$.

Example

Let Γ be an *n*-dimensional cyclic HW-group. Then

$$\Phi \colon F(n-1,2n) \to \Gamma \subset E(n)$$

is an euclidean representation of the Fibonacci group F(n-1, 2n).
Euclidean representation

Definition

An euclidean representation of a group *G* is any homomorphism $\varphi \colon G \to E(n)$ for some $n \in \mathbb{N}$.

Example

Let Γ be an *n*-dimensional cyclic HW-group. Then

$$\Phi \colon F(n-1,2n) \to \Gamma \subset E(n)$$

is an euclidean representation of the Fibonacci group F(n-1, 2n).

Decomposability and irreducibility

Example

Let $G = \langle a, b \mid [a, b] = 1 \rangle$ be a free abelian group of rank 2. Let $\varphi_1, \varphi_2 \colon G \to E(1)$ be euclidean representations of the group G defined bv

$$\varphi_1(a) = (1,1), \quad \varphi_1(b) = (1,0),$$

 $\varphi_2(a) = (1,0), \quad \varphi_1(b) = (1,1).$

$$\varphi_1 \oplus \varphi_2(a) = \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right), \quad \varphi_1 \oplus \varphi_2(b) = \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$$

Irreducible euclidean representations

Decomposability and irreducibility

Example

Let $G = \langle a, b \mid [a, b] = 1 \rangle$ be a free abelian group of rank 2. Let $\varphi_1, \varphi_2: G \to E(1)$ be euclidean representations of the group G defined by

$$\varphi_1(a) = (1,1), \quad \varphi_1(b) = (1,0),$$

 $\varphi_2(a) = (1,0), \quad \varphi_1(b) = (1,1).$

We get an euclidean representation $\varphi_1 \oplus \varphi_2 \colon G \to E(2)$:

$$arphi_1 \oplus arphi_2(a) = \left(egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}, egin{bmatrix} 1 \ 0 \end{bmatrix}
ight), \quad arphi_1 \oplus arphi_2(b) = \left(egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}, egin{bmatrix} 0 \ 1 \end{bmatrix}
ight),$$

Decomposability and irreducibility

Example

Let $G = \langle a, b \mid [a, b] = 1 \rangle$ be a free abelian group of rank 2. Let $\varphi_1, \varphi_2 \colon G \to E(1)$ be euclidean representations of the group G defined by

$$\varphi_1(a) = (1,1), \quad \varphi_1(b) = (1,0),$$

 $\varphi_2(a) = (1,0), \quad \varphi_1(b) = (1,1).$

We get an euclidean representation $\varphi_1 \oplus \varphi_2 \colon G \to E(2)$:

$$\varphi_1 \oplus \varphi_2(a) = \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right), \quad \varphi_1 \oplus \varphi_2(b) = \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$$

The above action of G on $V = \mathbb{R} \oplus \mathbb{R}$ is defined as a direct sum, but V does not have proper invariant subspace under this action!

Decomposition of euclidean representations

• $n \in \mathbb{N}$.

•
$$\pi \colon E(n) \to O(n)$$
 – given by $\pi(B, b) = B$, $(B, b) \in E(n)$.

- $\varphi \colon G \to E(n)$ euclidean representation of a group G.
- $\mathbb{R}^n = V_1 \oplus \ldots \oplus V_k$ decomposition of $\pi \varphi \colon G \to O(n)$.

•
$$p_i \colon \mathbb{R}^n \to V_i$$
 – projections, $i = 1, \ldots, n$.

Proposition

We have

$$\varphi = \varphi^{(1)} \oplus \ldots \oplus \varphi^{(k)},$$

where for every $1 \le i \le n$, $\varphi^{(i)} : G \to \text{Iso}(V_i)$ is given by

$$\forall_{v \in V_i} \varphi_g^{(i)}(v) = (A, p_i(a))v = Av + p_i(a),$$

where $g \in G$ and $(A, a) = \varphi_g$.

Decomposition of euclidean representations

• $n \in \mathbb{N}$.

•
$$\pi \colon E(n) \to O(n)$$
 – given by $\pi(B, b) = B$, $(B, b) \in E(n)$.

- $\varphi \colon G \to E(n)$ euclidean representation of a group G.
- $\mathbb{R}^n = V_1 \oplus \ldots \oplus V_k$ decomposition of $\pi \varphi \colon G \to O(n)$.

•
$$p_i \colon \mathbb{R}^n \to V_i$$
 – projections, $i = 1, \ldots, n$.

Proposition

We have

$$\varphi = \varphi^{(1)} \oplus \ldots \oplus \varphi^{(k)},$$

where for every $1 \le i \le n$, $\varphi^{(i)} \colon G \to \operatorname{Iso}(V_i)$ is given by

$$\forall_{v \in V_i} \varphi_g^{(i)}(v) = (A, p_i(a))v = Av + p_i(a),$$

where $g \in G$ and $(A, a) = \varphi_g$.

Decomposition of euclidean representations

• $n \in \mathbb{N}$.

•
$$\pi \colon E(n) \to O(n)$$
 – given by $\pi(B, b) = B, (B, b) \in E(n)$.

- $\varphi \colon G \to E(n)$ euclidean representation of a group G.
- $\mathbb{R}^n = V_1 \oplus \ldots \oplus V_k$ decomposition of $\pi \varphi \colon G \to O(n)$.

•
$$p_i : \mathbb{R}^n \to V_i$$
 - projections, $i = 1, \dots, n$.

•
$$\varphi = \varphi^{(1)} \oplus \ldots \oplus \varphi^{(k)}$$
.

Remark

If $G = \Gamma \subset E(n)$ is a crystallographic group, $\varphi = id_{\Gamma}$, then $\pi \varphi(\Gamma)$ is a finite group, hence the decomposition

$$\mathbb{R}^n = V_1 \oplus \ldots \oplus V_k$$

can be made in such a way that V_i is irreducible, for i = 1, ..., k.

Corollary

Let $n \in \mathbb{N}$ be odd. Let $\Gamma \subset E(n)$ be an *n*-dimensional HW-group defined by a matrix $[b_{ij}]_{1 \le i,j \le n}$. Then

$$id_{\Gamma} = \varphi^{(1)} \oplus \ldots \oplus \varphi^{(n)},$$

where homomorphisms $\varphi^{(i)} \colon \Gamma \to E(1)$ are given by

$$\forall_{1 \le j \le n} \varphi^{(i)}(B_j, b_j) = \left((-1)^{\delta_{ij}+1}, b_{ij} \right).$$

$$id_{\Gamma} = \varphi^{(1)} \oplus \ldots \oplus \varphi^{(n)}$$

Shift automorphism

Lemma

Let $r, n \in \mathbb{N}$. Let F(r, n) be the Fibonacci group. Then the homomorphism $\sigma \colon F(r, n) \to F(r, n)$ defined by

 $\forall_{0 \le i \le n-1} \ \sigma(a_i) = a_{i-1}$

is an automorphism of F(r, n).

Remark

Let's call σ the left shift automorphism of F(r, n).

One dimensional euclidean representations

Theorem

Let $n \in \mathbb{N}$ be odd. Let $\Gamma = \langle C_i \mid i = 0, \dots, n-2 \rangle \subset E(1)$, where

$$C_0 = (1, c_0), C_1 = (-1, c_1), \dots, C_{n-2} = (-1, c_{n-2})$$

and $c_i \in \mathbb{R}$ for i = 0, ..., n - 2. Then there exists an epimorphism

$$\varphi \colon F(n-1,2n) \to \Gamma$$

such that

$$\varphi(a_i) = C_i$$

for i = 0, ..., n - 2 and $a_0, ..., a_{2n}$ are the "cyclic" generators of F(n-1, 2n).

We will show that the sequence (C_i) of elements of Γ , defined recursively by

$$\forall_{i\geq n-1}C_i = C_{i-n+1}C_{i-n+2}\dots C_{i-1}$$

is periodic with period 2n. For this to prove it is enough to show that

$$C_{2n} = C_0, C_{2n+1} = C_1, \dots, C_{3n-2} = C_{n-2}.$$

Note that for i > n - 1 we have

$$C_{i} = C_{i-n+1}C_{i-n+2}\dots C_{i-1}$$

= $C_{i-n}^{-1}(C_{i-n}C_{i-n+1}C_{i-n+2}\dots C_{i-2})C_{i-1} = C_{i-n}C_{i-1}^{2}$.

We will show that the sequence (C_i) of elements of Γ , defined recursively by

$$\forall_{i\geq n-1}C_i = C_{i-n+1}C_{i-n+2}\dots C_{i-1}$$

is periodic with period 2n. For this to prove it is enough to show that

$$C_{2n} = C_0, C_{2n+1} = C_1, \dots, C_{3n-2} = C_{n-2}.$$

Note that for i > n - 1 we have

$$C_{i} = C_{i-n+1}C_{i-n+2}\dots C_{i-1}$$

= $C_{i-n}^{-1}(C_{i-n}C_{i-n+1}C_{i-n+2}\dots C_{i-2})C_{i-1} = C_{i-n}C_{i-1}^{2}$.

$$\forall_{i>n-1} C_i = C_{i-n} C_{i-1}^2.$$

$$\begin{array}{rcl} C_{n-1} &=& (1,c_0)(-1,c_1)\dots(-1,c_{n-2}) &=& (-1,c_{n-1}) \\ C_n &=& C_0^{-1}C_{n-1}^2 = (1,c_0)^{-1}(-1,c_{n-1})^2 &=& (1,-c_0) \\ C_{n+1} &=& C_1^{-1}C_n^2 = (-1,c_1)(1,-2c_0) &=& (-1,2c_0+c_1) \\ C_{n+i} &=& C_i^{-1}C_{n+i-1}^2 &=& C_i, \ 2 \leq i \leq n-1 \\ C_{2n} &=& C_n^{-1}C_{2n-1}^2 = (1,-c_0)^{-1} &=& C_0 \\ C_{2n+1} &=& C_{n+1}^{-1}C_{2n}^2 = (-1,2c_0+c_1)(1,2c_0) &=& C_1 \\ C_{2n+i} &=& C_{n+i}^{-1}C_{2n+i-1}^2 = C_{n+i} &=& C_i, \ 2 \leq i \leq n-1 \end{array}$$

$$\forall_{0 \le i \le n-2} \ C_{2n+i} = C_i.$$

$$\forall_{i>n-1} C_i = C_{i-n} C_{i-1}^2.$$

$$\begin{array}{rcl} C_{n-1} &=& (1,c_0)(-1,c_1)\dots(-1,c_{n-2}) &=& (-1,c_{n-1}) \\ C_n &=& C_0^{-1}C_{n-1}^2 = (1,c_0)^{-1}(-1,c_{n-1})^2 &=& (1,-c_0) \\ C_{n+1} &=& C_1^{-1}C_n^2 = (-1,c_1)(1,-2c_0) &=& (-1,2c_0+c_1) \\ C_{n+i} &=& C_i^{-1}C_{n+i-1}^2 &=& C_i, \ 2 \leq i \leq n-1 \\ C_{2n} &=& C_n^{-1}C_{2n-1}^2 = (1,-c_0)^{-1} &=& C_0 \\ C_{2n+1} &=& C_{n+1}^{-1}C_{2n}^2 = (-1,2c_0+c_1)(1,2c_0) &=& C_1 \\ C_{2n+i} &=& C_{n+i}^{-1}C_{2n+i-1}^2 = C_{n+i} &=& C_i, \ 2 \leq i \leq n-1 \end{array}$$

$$\forall_{0 \le i \le n-2} \ C_{2n+i} = C_i.$$

$$\forall_{i>n-1} C_i = C_{i-n} C_{i-1}^2.$$

$$C_{n-1} = (1, c_0)(-1, c_1) \dots (-1, c_{n-2}) = (-1, c_{n-1})$$

$$C_n = C_0^{-1} C_{n-1}^2 = (1, c_0)^{-1} (-1, c_{n-1})^2 = (1, -c_0)$$

$$C_{n+1} = C_1^{-1} C_n^2 = (-1, c_1)(1, -2c_0) = (-1, 2c_0 + c_1)$$

$$C_{n+i} = C_i^{-1} C_{n+i-1}^2 = C_i, 2 \le i \le n-1$$

$$C_{2n} = C_n^{-1} C_{2n-1}^2 = (1, -c_0)^{-1} = C_0$$

$$C_{2n+1} = C_{n+1}^{-1} C_{2n}^2 = (-1, 2c_0 + c_1)(1, 2c_0) = C_1$$

$$C_{2n+i} = C_{n+i}^{-1} C_{2n+i-1}^2 = C_{n+i} = C_i, 2 \le i \le n-1$$

$$\forall_{0 \le i \le n-2} \ C_{2n+i} = C_i.$$

$$\forall_{i>n-1} C_i = C_{i-n} C_{i-1}^2.$$

$$C_{n-1} = (1, c_0)(-1, c_1) \dots (-1, c_{n-2}) = (-1, c_{n-1})$$

$$C_n = C_0^{-1}C_{n-1}^2 = (1, c_0)^{-1}(-1, c_{n-1})^2 = (1, -c_0)$$

$$C_{n+1} = C_1^{-1}C_n^2 = (-1, c_1)(1, -2c_0) = (-1, 2c_0 + c_1)$$

$$C_{n+i} = C_i^{-1}C_{n+i-1}^2 = (1, -c_0)^{-1} = C_i, \ 2 \le i \le n-1$$

$$C_{2n} = C_n^{-1}C_{2n-1}^2 = (-1, 2c_0 + c_1)(1, 2c_0) = C_1$$

$$C_{2n+i} = C_{n+i}^{-1}C_{2n+i-1}^2 = C_{n+i} = C_i, \ 2 \le i \le n-1$$

$$\forall_{0 \le i \le n-2} \ C_{2n+i} = C_i.$$

$$\forall_{i>n-1} C_i = C_{i-n} C_{i-1}^2.$$

$$\begin{array}{rcl} C_{n-1} &=& (1,c_0)(-1,c_1)\dots(-1,c_{n-2}) &=& (-1,c_{n-1}) \\ C_n &=& C_0^{-1}C_{n-1}^2 = (1,c_0)^{-1}(-1,c_{n-1})^2 &=& (1,-c_0) \\ C_{n+1} &=& C_1^{-1}C_n^2 = (-1,c_1)(1,-2c_0) &=& (-1,2c_0+c_1) \\ \mathbf{C_{n+i}} &=& \mathbf{C_i^{-1}C_{n+i-1}^2} &=& \mathbf{C_i}, \ 2 \leq i \leq n-1 \\ C_{2n} &=& C_n^{-1}C_{2n-1}^2 = (1,-c_0)^{-1} &=& C_0 \\ C_{2n+1} &=& C_{n+1}^{-1}C_{2n}^2 = (-1,2c_0+c_1)(1,2c_0) &=& C_1 \\ C_{2n+i} &=& C_{n+i}^{-1}C_{2n+i-1}^2 = C_{n+i} &=& C_i, \ 2 \leq i \leq n-1 \end{array}$$

$$\forall_{0 \le i \le n-2} \ C_{2n+i} = C_i.$$

$$\forall_{i>n-1} C_i = C_{i-n} C_{i-1}^2.$$

$$C_{n-1} = (1, c_0)(-1, c_1) \dots (-1, c_{n-2}) = (-1, c_{n-1})$$

$$C_n = C_0^{-1}C_{n-1}^2 = (1, c_0)^{-1}(-1, c_{n-1})^2 = (1, -c_0)$$

$$C_{n+1} = C_1^{-1}C_n^2 = (-1, c_1)(1, -2c_0) = (-1, 2c_0 + c_1)$$

$$C_{n+i} = C_i^{-1}C_{n+i-1}^2 = C_i, \ 2 \le i \le n-1$$

$$C_{2n} = C_n^{-1}C_{2n-1}^2 = (1, -c_0)^{-1} = C_0$$

$$C_{2n+1} = C_{n+1}^{-1}C_{2n}^2 = (-1, 2c_0 + c_1)(1, 2c_0) = C_1$$

$$C_{2n+i} = C_{n+i}^{-1}C_{2n+i-1}^2 = C_{n+i} = C_i, \ 2 \le i \le n-1$$

$$\forall_{0 \le i \le n-2} \ C_{2n+i} = C_i.$$

$$\forall_{i>n-1} C_i = C_{i-n} C_{i-1}^2.$$

$$C_{n-1} = (1, c_0)(-1, c_1) \dots (-1, c_{n-2}) = (-1, c_{n-1})$$

$$C_n = C_0^{-1} C_{n-1}^2 = (1, c_0)^{-1} (-1, c_{n-1})^2 = (1, -c_0)$$

$$C_{n+1} = C_1^{-1} C_n^2 = (-1, c_1)(1, -2c_0) = (-1, 2c_0 + c_1)$$

$$C_{n+i} = C_i^{-1} C_{n+i-1}^2 = C_i, \ 2 \le i \le n-1$$

$$C_{2n} = C_n^{-1} C_{2n-1}^2 = (-1, 2c_0 + c_1)(1, 2c_0) = C_1$$

$$C_{2n+i} = C_{n+i}^{-1} C_{2n+i-1}^2 = C_{n+i} = C_i, \ 2 \le i \le n-1$$

$$\forall_{0 \le i \le n-2} \ C_{2n+i} = C_i.$$

$$\forall_{i>n-1} C_i = C_{i-n} C_{i-1}^2.$$

$$\begin{array}{lll} C_{n-1} &=& (1,c_0)(-1,c_1)\dots(-1,c_{n-2}) &=& (-1,c_{n-1}) \\ C_n &=& C_0^{-1}C_{n-1}^2 = (1,c_0)^{-1}(-1,c_{n-1})^2 &=& (1,-c_0) \\ C_{n+1} &=& C_1^{-1}C_n^2 = (-1,c_1)(1,-2c_0) &=& (-1,2c_0+c_1) \\ C_{n+i} &=& C_i^{-1}C_{n+i-1}^2 &=& C_i, \ 2 \leq i \leq n-1 \\ C_{2n} &=& C_n^{-1}C_{2n-1}^2 = (1,-c_0)^{-1} &=& C_0 \\ C_{2n+1} &=& C_{n+1}^{-1}C_{2n}^2 = (-1,2c_0+c_1)(1,2c_0) &=& C_1 \\ C_{2n+i} &=& C_{n+i}^{-1}C_{2n+i-1}^2 = C_{n+i} &=& C_i, \ 2 \leq i \leq n-1 \end{array}$$

$$\forall_{0 \le i \le n-2} \ C_{2n+i} = C_i.$$

$$\forall_{i>n-1} C_i = C_{i-n} C_{i-1}^2.$$

$$\begin{array}{rcl} C_{n-1} &=& (1,c_0)(-1,c_1)\dots(-1,c_{n-2}) &=& (-1,c_{n-1}) \\ C_n &=& C_0^{-1}C_{n-1}^2 = (1,c_0)^{-1}(-1,c_{n-1})^2 &=& (1,-c_0) \\ C_{n+1} &=& C_1^{-1}C_n^2 = (-1,c_1)(1,-2c_0) &=& (-1,2c_0+c_1) \\ C_{n+i} &=& C_i^{-1}C_{n+i-1}^2 &=& C_i, \ 2 \leq i \leq n-1 \\ C_{2n} &=& C_n^{-1}C_{2n-1}^2 = (1,-c_0)^{-1} &=& C_0 \\ C_{2n+1} &=& C_{n+1}^{-1}C_{2n}^2 = (-1,2c_0+c_1)(1,2c_0) &=& C_1 \\ C_{2n+i} &=& C_{n+i}^{-1}C_{2n+i-1}^2 = C_{n+i} &=& C_i, \ 2 \leq i \leq n-1 \end{array}$$

$$\forall_{0 \le i \le n-2} \ C_{2n+i} = C_i.$$

Every HW-group is cyclic

Theorem

Let $n \in \mathbb{N}$ be odd. Let $\Gamma \subset E(n)$ be a HW-group. Then there exists an epimorphism

 $\Phi \colon F(n-1,2n) \to \Gamma.$

Decomposition of HW-group

Let

$$\left[b_{ij}\right]_{0 \le i,j < n}$$

be a matrix of Γ .

Let

$$id_{\Gamma} = \varphi^{(0)} \oplus \ldots \oplus \varphi^{(n-1)}$$

be the euclidean decomposition of id_{Γ} .

• For every $0 \le i < n$ there exists epimorphism

$$f_i: F(n-1,2n) \to \varphi^{(i)}(\Gamma) \subset E(1)$$

given by

$$f_i(a_0) = (1, b_{ii}), f_i(a_1) = (-1, b_{i,i+1}), \dots, f_i(a_{n-1}) = (-1, b_{i,i+n-1}).$$

Decomposition of HW-group

Let

$$\left[b_{ij}\right]_{0 \le i,j < n}$$

be a matrix of Γ .

Let

$$id_{\Gamma} = \varphi^{(0)} \oplus \ldots \oplus \varphi^{(n-1)}$$

be the euclidean decomposition of id_{Γ} .

• For every $0 \le i < n$ there exists epimorphism

$$f_i: F(n-1,2n) \to \varphi^{(i)}(\Gamma) \subset E(1)$$

$$f_i(a_0) = (1, b_{ii}), f_i(a_1) = (-1, b_{i,i+1}), \dots, f_i(a_{n-1}) = (-1, b_{i,i+n-1}).$$

Decomposition of HW-group

Let

$$\left[b_{ij}\right]_{0 \le i,j < n}$$

be a matrix of Γ .

Let

$$id_{\Gamma} = \varphi^{(0)} \oplus \ldots \oplus \varphi^{(n-1)}$$

be the euclidean decomposition of id_{Γ} .

• For every $0 \le i < n$ there exists epimorphism

$$f_i \colon F(n-1,2n) \to \varphi^{(i)}(\Gamma) \subset E(1)$$

given by

$$f_i(a_0) = (1, b_{ii}), f_i(a_1) = (-1, b_{i,i+1}), \dots, f_i(a_{n-1}) = (-1, b_{i,i+n-1}).$$

Decomposition of HW-group

Let

$$\left[b_{ij}\right]_{0 \le i,j < n}$$

be a matrix of Γ .

Let

$$id_{\Gamma} = \varphi^{(0)} \oplus \ldots \oplus \varphi^{(n-1)}$$

be the euclidean decomposition of id_{Γ} .

• For every $0 \le i < n$ there exists epimorphism

$$f_i: F(n-1,2n) \to \varphi^{(i)}(\Gamma) \subset E(1)$$

given by

$$\forall_{0 \le j < n} f_i(a_j) = \left((-1)^{1 + \delta_{i,i+j}}, b_{i,i+j} \right)$$

Left shift automorphism

- $\sigma \in \operatorname{Aut}(F(n-1,2n))$ left shift automorphism.
- $f_i \sigma^i \colon F(n-1,2n) \to \varphi^{(i)}(\Gamma) \subset E(1)$ for every $0 \le i < n$.

$$\forall_{0 \le i,j < n} f_i \sigma^i(a_j) = f_i(a_{j-i}) = \left((-1)^{1+\delta_{i,j}}, b_{i,j} \right)$$

Left shift automorphism

- $\sigma \in \operatorname{Aut}(F(n-1,2n))$ left shift automorphism.
- $f_i \sigma^i \colon F(n-1,2n) \to \varphi^{(i)}(\Gamma) \subset E(1)$ for every $0 \le i < n$.

$$\forall_{0 \le i,j < n} f_i \sigma^i(a_j) = f_i(a_{j-i}) = \left((-1)^{1+\delta_{i,j}}, b_{i,j} \right)$$

Left shift automorphism

- $\sigma \in \operatorname{Aut}(F(n-1,2n))$ left shift automorphism.
- $f_i \sigma^i \colon F(n-1,2n) \to \varphi^{(i)}(\Gamma) \subset E(1)$ for every $0 \le i < n$.

$$\forall_{0 \le i,j < n} f_i \sigma^i(a_j) = f_i(a_{j-i}) = \left((-1)^{1+\delta_{i,j}}, b_{i,j} \right)$$

- $\sigma \in \operatorname{Aut}(F(n-1,2n))$ left shift automorphism.
- $f_i \sigma^i \colon F(n-1,2n) \to \varphi^{(i)}(\Gamma) \subset E(1)$ for every $0 \le i < n$.

$$\forall_{0 \le i,j < n} f_i \sigma^i(a_j) = f_i(a_{j-i}) = \left((-1)^{1+\delta_{i,j}}, b_{i,j} \right)$$

- $\sigma \in \operatorname{Aut}(F(n-1,2n))$ left shift automorphism.
- $f_i \sigma^i \colon F(n-1,2n) \to \varphi^{(i)}(\Gamma) \subset E(1)$ for every $0 \le i < n$.

$$\forall_{0 \le i,j < n} f_i \sigma^i(a_j) = f_i(a_{j-i}) = \left((-1)^{1+\delta_{i,j}}, b_{i,j} \right)$$

- $\sigma \in \operatorname{Aut}(F(n-1,2n))$ left shift automorphism.
- $f_i \sigma^i \colon F(n-1,2n) \to \varphi^{(i)}(\Gamma) \subset E(1)$ for every $0 \le i < n$.

$$\forall_{0 \le i,j < n} f_i \sigma^i(a_j) = f_i(a_{j-i}) = \left((-1)^{1+\delta_{i,j}}, b_{i,j} \right)$$

- $\sigma \in Aut(F(n-1,2n))$ left shift automorphism.
- $f_i \sigma^i \colon F(n-1,2n) \to \varphi^{(i)}(\Gamma) \subset E(1)$ for every $0 \le i < n$.

$$\forall_{0 \le i,j < n} f_i \sigma^i(a_j) = f_i(a_{j-i}) = \left((-1)^{1+\delta_{i,j}}, b_{i,j} \right)$$

Proof The epimorphism

The map

$$\Phi = \bigoplus_{i=0}^{n-1} f_i \sigma^i$$

is the desired epimorphism:

$$\forall_{0 \le j < n} \ \Phi(a_j) = \bigoplus_{i=0}^{n-1} f_i \sigma^i(a_j)$$

= (-1, b_{0,j}) $\oplus \dots (-1, b_{j-1,j}) \oplus (1, b_{j,j}) \oplus$
 $\oplus (-1, b_{j+1,j}) \oplus \dots \oplus (-1, b_{n,j})$
= (B_j, b_j).

Thank you!