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Introduction Bieberbach groups

Euclidean and affine maps in Rn

E(n) = Iso(Rn) = O(n) nRn – the group of isometries of the
Euclidean space Rn.
A(n) = Aff(Rn) = GLn(R) nRn – the group of affine maps of Rn.

Remark
1 E(n) ⊂ A(n).
2 A(n) = {(A, a) | A ∈ GL(n,R), a ∈ Rn} and

∀(A,a),(B,b)∈A(n)(A, a)(B, b) = (AB,Ab+ a).

3 The action of the group A(n) (E(n)) on Rn:

∀(A,a)∈A(n)∀x∈Rn(A, a) · x = Ax+ a.
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∀(A,a),(B,b)∈A(n)(A, a)(B, b) = (AB,Ab+ a).

3 The action of the group A(n) (E(n)) on Rn:

∀(A,a)∈A(n)∀x∈Rn(A, a) · x = Ax+ a.

Lemma
There is a faithful representation A(n)→ GLn+1(R) given by

∀(A,a)∈A(n) (A, a) 7→
[
A a
0 1

]
.
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Introduction Bieberbach groups

Crystallographic and Bieberbach groups

Definition
A group Γ is an n-dimensional crystallographic group if it is a discrete
and cocompact subgroup of E(n). If in addition Γ is torsionfree then
we call it a Bieberbach group.

Remark
If Γ ⊂ E(n) is a Bieberbach group then X = Rn/Γ is a flat manifold
and π1(X) ∼= Γ.
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Introduction Bieberbach groups

Two dimensional flat manifolds

Torus Klein bottle

Γ1 = 〈(I, e1), (I, e2)〉 Γ2 =

〈([
1 0
0 −1

]
,

[
1
2

0

])
, (I, e2)

〉
R2/Γ1 : R2/Γ2 :
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Introduction Bieberbach groups

Bieberbach theorems

Theorem (Bieberbach 1911, 1912)
1 Let Γ ⊂ E(n) be an n-dimensional crystallographic group. The

subgroup Γ ∩ (1× Rn) of pure translations of Γ is free abelian
group of rank n. Moreover it is maximal abelian normal subgroup
of Γ of finite index.

2 For every n ∈ N there are a finite number of isomorphism classes
of crystallogrpahic groups of dimension n.

3 Two crystallographic groups of dimension n are isomorphic if and
only if they are conjugate in the group A(n).
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Introduction Bieberbach groups

Structure of Bieberbach groups

Let Γ ⊂ E(n) be a Bieberbach group and X = Rn/Γ.
Γ fits into a short exact sequence

0 −→ Zn −→ Γ
π−→ G −→ 1.

G – finite group – holonomy group of Γ (of X).
We get a holonomy representation ϕ : G→ GLn(Z):

∀z∈Zn⊂Γ∀g∈G ϕg(z) = gzg−1,

where π(g) = g.
ϕ is R-equivalent to the holonomy representation of X.
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Introduction Hantzsche-Wendt groups

Classical Hantzsche-Wendt manifold

Γ =

〈1 0 0
0 −1 0
0 0 −1

 ,
 1

2
1
2
0

 ,

−1 0 0
0 1 0
0 0 −1

 ,
0

1
2
1
2

〉 ⊂ E(3)
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Rafał Lutowski (University of Gdańsk) Irreducible euclidean reps of the Fibonacci groups 7 / 1



Introduction Hantzsche-Wendt groups

Classical Hantzsche-Wendt manifold

Γ =

〈1 0 0
0 −1 0
0 0 −1

 ,
 1

2
1
2
0

 ,

−1 0 0
0 1 0
0 0 −1

 ,
0

1
2
1
2

〉 ⊂ E(3)
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Rafał Lutowski (University of Gdańsk) Irreducible euclidean reps of the Fibonacci groups 7 / 1



Introduction Hantzsche-Wendt groups

Classical Hantzsche-Wendt manifold

Γ =

〈1 0 0
0 −1 0
0 0 −1

 ,
 1

2
1
2
0

 ,

−1 0 0
0 1 0
0 0 −1

 ,
0

1
2
1
2

〉 ⊂ E(3)
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Introduction Hantzsche-Wendt groups

Hantzsche-Wendt manifolds and groups

Definition
Let n ∈ N be odd. Let Γ ⊂ E(n) be a Bieberbach group with holonomy
group G and holonomy representation ϕ : G→ GLn(Z). If

G ∼= (Z2)n−1 and ϕ(G) ⊂ SLn(Z)

then Γ is called a Hantzsche-Wendt group (HW-group) and X = Rn/Γ
– a Hantzsche-Wendt manifold (HW-manifold).
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Introduction Hantzsche-Wendt groups

Structure of HW-groups

Theorem (Rosetti, Szczepański 2005)
Let n ∈ N be odd. Let Γ be an n dimensional HW-group. Then

Γ ∼= 〈(Bi, bi) | i = 1, . . . , n〉 ⊂ E(n),

where
Bi = diag(−1, . . . ,−1︸ ︷︷ ︸

i−1

, 1,−1, . . . ,−1)

and bi ∈ 1
2Z

n for i = 1, . . . , n.

Remark
The group 〈(Bi, bi) | i = 1, . . . , n〉 is a Bieberbach group, hence it is a
HW-group.
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Introduction Hantzsche-Wendt groups

Encoding HW-groups

Γ ⊂ E(n) – HW-group.
Γ ∼= 〈(Bi, bi) | i = 1, . . . , n〉.

Corollary
Up to isomorphism every HW-group is defined by a matrix[

b1 . . . bn
]
∈Mn(1

2Z).
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Introduction Fibonacci groups

Fibonacci groups

Definition
Let r, n ∈ N. The Fibonacci group F (r, n) is a group with presentation

F (r, n) = 〈a0, a1, . . . , an−1 | a0a1 . . . ar−1 = ar,

a1a2 . . . ar = ar+1,

...
an−1a0 . . . ar−2 = ar−1〉.

Global assumption
The subscripts will always be taken modulo n.
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Introduction Fibonacci groups

Fibonacci groups in geometry

Proposition
Let X be the 3 dimensional HW-manifold. Then

π1(X) ∼= F (2, 6).

Theorem (Helling, Kim, Mennicke 1998)
For n ≥ 4 there exists a closed hyperbolic manifold X such that

π1(X) ∼= F (2, 2n).

Theorem (Szczepański, Vesnin 2000)
For odd n ∈ N the Fibonacci group F (2, n) cannot be a fundamental
group of any hyperbolic manifold of finite volume.
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Introduction Fibonacci groups

Fibonacci and Hantzsche-Wendt groups

Theorem (Szczepański 2001)
Let n ∈ N be odd, n ≥ 3. Let Γ ⊂ E(n) be a HW-group defined by the
matrix 

1
2 0 . . . 0 0 1

2

1
2

1
2

. . .
...

... 0

0 1
2

. . . 0 0
...

0 0
. . . 1

2 0 0
...

...
. . . 1

2
1
2 0

0 0 . . . 0 1
2

1
2


.

Then there exists an epimorphism

Φ: F (n− 1, 2n)→ Γ.
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Introduction Fibonacci groups

Cyclic HW-groups

Let Γ ⊂ E(n) be as in the previous theorem.
Γ is "cyclic" because of the form of the matrix which defines it.
Γ is "cyclic" because it has generators which behave exactly as
the generators of some Fibonacci group.

Question
Is every HW-group cyclic in the second sense?

More precisely:
Question
Is every HW-group an epimorphic image of some Fibonacci group?
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Euclidean representations of the Fibonacci groups Irreducible euclidean representations

Euclidean representation

Definition
An euclidean representation of a group G is any homomorphism
ϕ : G→ E(n) for some n ∈ N.

Example
Let Γ be an n-dimensional cyclic HW-group. Then

Φ: F (n− 1, 2n)→ Γ ⊂ E(n)

is an euclidean representation of the Fibonacci group F (n− 1, 2n).
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Euclidean representations of the Fibonacci groups Irreducible euclidean representations

Decomposability and irreducibility

Example
Let G = 〈a, b | [a, b] = 1〉 be a free abelian group of rank 2. Let
ϕ1, ϕ2 : G→ E(1) be euclidean representations of the group G defined
by

ϕ1(a) = (1, 1), ϕ1(b) = (1, 0),

ϕ2(a) = (1, 0), ϕ1(b) = (1, 1).

We get an euclidean representation ϕ1 ⊕ ϕ2 : G→ E(2):

ϕ1 ⊕ ϕ2(a) =

([
1 0
0 1

]
,

[
1
0

])
, ϕ1 ⊕ ϕ2(b) =

([
1 0
0 1

]
,

[
0
1

])
.

The above action of G on V = R⊕ R is defined as a direct sum, but V
does not have proper invariant subspace under this action!
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Euclidean representations of the Fibonacci groups Irreducible euclidean representations

Decomposition of euclidean representations
n ∈ N.
π : E(n)→ O(n) – given by π(B, b) = B, (B, b) ∈ E(n).
ϕ : G→ E(n) – euclidean representation of a group G.
Rn = V1 ⊕ . . .⊕ Vk – decomposition of πϕ : G→ O(n).
pi : Rn → Vi – projections, i = 1, . . . , n.

Proposition
We have

ϕ = ϕ(1) ⊕ . . .⊕ ϕ(k),

where for every 1 ≤ i ≤ n, ϕ(i) : G→ Iso(Vi) is given by

∀v∈Vi ϕ(i)
g (v) = (A, pi(a))v = Av + pi(a),

where g ∈ G and (A, a) = ϕg.
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Rafał Lutowski (University of Gdańsk) Irreducible euclidean reps of the Fibonacci groups 17 / 1



Euclidean representations of the Fibonacci groups Irreducible euclidean representations

Decomposition of euclidean representations
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ϕ : G→ E(n) – euclidean representation of a group G.
Rn = V1 ⊕ . . .⊕ Vk – decomposition of πϕ : G→ O(n).
pi : Rn → Vi – projections, i = 1, . . . , n.
ϕ = ϕ(1) ⊕ . . .⊕ ϕ(k).

Remark
If G = Γ ⊂ E(n) is a crystallographic group, ϕ = idΓ, then πϕ(Γ) is a
finite group, hence the decomposition

Rn = V1 ⊕ . . .⊕ Vk

can be made in such a way that Vi is irreducible, for i = 1, . . . , k.
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Euclidean representations of the Fibonacci groups Irreducible euclidean representations

Decomposition of HW-groups

Corollary
Let n ∈ N be odd. Let Γ ⊂ E(n) be an n-dimensional HW-group
defined by a matrix [bij ]1≤i,j≤n. Then

idΓ = ϕ(1) ⊕ . . .⊕ ϕ(n),

where homomorphisms ϕ(i) : Γ→ E(1) are given by

∀1≤j≤n ϕ
(i)(Bj , bj) =

(
(−1)δij+1, bij

)
.
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Euclidean representations of the Fibonacci groups Irreducible euclidean representations

Decomposition of HW-groups

idΓ = ϕ(1) ⊕ . . .⊕ ϕ(n)





− 1
. . .

− 1
1
− 1

. . .
− 1


,



b1,j
...

bj−1,j

bj,j
bj+1,j

...
bn,j




q

(−1, b1,j)⊕ . . .⊕ (−1, bj−1,j)⊕ (1, bj,j)⊕ (−1, bj+1,j)⊕ . . .⊕ (−1, bn,j)
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...
bn,j




q

(−1, b1,j)⊕ . . .⊕ (−1, bj−1,j)⊕ (1, bj,j)⊕ (−1, bj+1,j)⊕ . . .⊕ (−1, bn,j)
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Euclidean representations of the Fibonacci groups Shift automorphism

Shift automorphism

Lemma
Let r, n ∈ N. Let F (r, n) be the Fibonacci group. Then the
homomorphism σ : F (r, n)→ F (r, n) defined by

∀0≤i≤n−1 σ(ai) = ai−1

is an automorphism of F (r, n).

Remark
Let’s call σ the left shift automorphism of F (r, n).
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Euclidean representations of the Fibonacci groups Representations of the Fibonacci groups

One dimensional euclidean representations

Theorem
Let n ∈ N be odd. Let Γ = 〈Ci | i = 0, . . . , n− 2〉 ⊂ E(1), where

C0 = (1, c0), C1 = (−1, c1), . . . , Cn−2 = (−1, cn−2)

and ci ∈ R for i = 0, . . . , n− 2. Then there exists an epimorphism

ϕ : F (n− 1, 2n)→ Γ

such that
ϕ(ai) = Ci

for i = 0, . . . , n− 2 and a0, . . . , a2n are the "cyclic" generators of
F (n− 1, 2n).
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Euclidean representations of the Fibonacci groups Representations of the Fibonacci groups

Proof
We will show that the sequence (Ci) of elements of Γ, defined
recursively by

∀i≥n−1Ci = Ci−n+1Ci−n+2 . . . Ci−1

is periodic with period 2n. For this to prove it is enough to show that

C2n = C0, C2n+1 = C1, . . . , C3n−2 = Cn−2.

Note that for i > n− 1 we have

Ci = Ci−n+1Ci−n+2 . . . Ci−1

= C−1
i−n(Ci−nCi−n+1Ci−n+2 . . . Ci−2)Ci−1 = Ci−nC

2
i−1.
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Euclidean representations of the Fibonacci groups Representations of the Fibonacci groups

Proof

∀i>n−1 Ci = Ci−nC
2
i−1.

Cn−1 = (1, c0)(−1, c1) . . . (−1, cn−2) = (−1, cn−1)

Cn = C−1
0 C2

n−1 = (1, c0)−1(−1, cn−1)2 = (1,−c0)

Cn+1 = C−1
1 C2

n = (−1, c1)(1,−2c0) = (−1, 2c0 + c1)

Cn+i = C−1
i C2

n+i−1 = Ci, 2 ≤ i ≤ n− 1

C2n = C−1
n C2

2n−1 = (1,−c0)−1 = C0

C2n+1 = C−1
n+1C

2
2n = (−1, 2c0 + c1)(1, 2c0) = C1

C2n+i = C−1
n+iC

2
2n+i−1 = Cn+i = Ci, 2 ≤ i ≤ n− 1

∀0≤i≤n−2 C2n+i = Ci.
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Rafał Lutowski (University of Gdańsk) Irreducible euclidean reps of the Fibonacci groups 21 / 1



Euclidean representations of the Fibonacci groups Representations of the Fibonacci groups

Proof

∀i>n−1 Ci = Ci−nC
2
i−1.

Cn−1 = (1, c0)(−1, c1) . . . (−1, cn−2) = (−1, cn−1)

Cn = C−1
0 C2

n−1 = (1, c0)−1(−1, cn−1)2 = (1,−c0)

Cn+1 = C−1
1 C2

n = (−1, c1)(1,−2c0) = (−1, 2c0 + c1)

Cn+i = C−1
i C2

n+i−1 = Ci, 2 ≤ i ≤ n− 1

C2n = C−1
n C2

2n−1 = (1,−c0)−1 = C0

C2n+1 = C−1
n+1C

2
2n = (−1, 2c0 + c1)(1, 2c0) = C1

C2n+i = C−1
n+iC

2
2n+i−1 = Cn+i = Ci, 2 ≤ i ≤ n− 1

∀0≤i≤n−2 C2n+i = Ci.
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Rafał Lutowski (University of Gdańsk) Irreducible euclidean reps of the Fibonacci groups 21 / 1



Euclidean representations of the Fibonacci groups Representations of the Fibonacci groups

Proof

∀i>n−1 Ci = Ci−nC
2
i−1.

Cn−1 = (1, c0)(−1, c1) . . . (−1, cn−2) = (−1, cn−1)

Cn = C−1
0 C2

n−1 = (1, c0)−1(−1, cn−1)2 = (1,−c0)

Cn+1 = C−1
1 C2

n = (−1, c1)(1,−2c0) = (−1, 2c0 + c1)

Cn+i = C−1
i C2

n+i−1 = Ci, 2 ≤ i ≤ n− 1

C2n = C−1
n C2

2n−1 = (1,−c0)−1 = C0

C2n+1 = C−1
n+1C

2
2n = (−1, 2c0 + c1)(1, 2c0) = C1

C2n+i = C−1
n+iC

2
2n+i−1 = Cn+i = Ci, 2 ≤ i ≤ n− 1

∀0≤i≤n−2 C2n+i = Ci.
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Euclidean representations of the Fibonacci groups Representations of the Fibonacci groups

Every HW-group is cyclic

Theorem
Let n ∈ N be odd. Let Γ ⊂ E(n) be a HW-group. Then there exists an
epimorphism

Φ: F (n− 1, 2n)→ Γ.
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Euclidean representations of the Fibonacci groups Representations of the Fibonacci groups

Proof
Decomposition of HW-group

Let [
bij
]
0≤i,j<n

be a matrix of Γ.
Let

idΓ = ϕ(0) ⊕ . . .⊕ ϕ(n−1)

be the euclidean decomposition of idΓ.
For every 0 ≤ i < n there exists epimorphism

fi : F (n− 1, 2n)→ ϕ(i)(Γ) ⊂ E(1)

given by

fi(a0) = (1, bii), fi(a1) = (−1, bi,i+1), . . . , fi(an−1) = (−1, bi,i+n−1).

Rafał Lutowski (University of Gdańsk) Irreducible euclidean reps of the Fibonacci groups 23 / 1



Euclidean representations of the Fibonacci groups Representations of the Fibonacci groups

Proof
Decomposition of HW-group

Let [
bij
]
0≤i,j<n

be a matrix of Γ.
Let

idΓ = ϕ(0) ⊕ . . .⊕ ϕ(n−1)

be the euclidean decomposition of idΓ.
For every 0 ≤ i < n there exists epimorphism

fi : F (n− 1, 2n)→ ϕ(i)(Γ) ⊂ E(1)

given by

fi(a0) = (1, bii), fi(a1) = (−1, bi,i+1), . . . , fi(an−1) = (−1, bi,i+n−1).
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be a matrix of Γ.
Let

idΓ = ϕ(0) ⊕ . . .⊕ ϕ(n−1)

be the euclidean decomposition of idΓ.
For every 0 ≤ i < n there exists epimorphism

fi : F (n− 1, 2n)→ ϕ(i)(Γ) ⊂ E(1)

given by
∀0≤j<n fi(aj) =

(
(−1)1+δi,i+j , bi,i+j

)

Rafał Lutowski (University of Gdańsk) Irreducible euclidean reps of the Fibonacci groups 23 / 1



Euclidean representations of the Fibonacci groups Representations of the Fibonacci groups

Proof
Left shift automorphism

σ ∈ Aut(F (n− 1, 2n)) – left shift automorphism.
fiσ

i : F (n− 1, 2n)→ ϕ(i)(Γ) ⊂ E(1) for every 0 ≤ i < n.

∀0≤i,j<n fiσ
i(aj) = fi(aj−i) =

(
(−1)1+δi,j , bi,j

)




− 1
. . .

− 1
1
− 1

. . .
− 1


,



b1,j
...

bj−1,j

bj,j
bj+1,j

...
bn,j
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Rafał Lutowski (University of Gdańsk) Irreducible euclidean reps of the Fibonacci groups 24 / 1



Euclidean representations of the Fibonacci groups Representations of the Fibonacci groups

Proof
Left shift automorphism

σ ∈ Aut(F (n− 1, 2n)) – left shift automorphism.
fiσ

i : F (n− 1, 2n)→ ϕ(i)(Γ) ⊂ E(1) for every 0 ≤ i < n.

∀0≤i,j<n fiσ
i(aj) = fi(aj−i) =

(
(−1)1+δi,j , bi,j

)




− 1
. . .

− 1
1
− 1

. . .
− 1


,



b1,j
...

bj−1,j

bj,j
bj+1,j

...
bn,j
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fnσ

n(aj)
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Euclidean representations of the Fibonacci groups Representations of the Fibonacci groups

Proof
The epimorphism

The map

Φ =

n−1⊕
i=0

fiσ
i

is the desired epimorphism:

∀0≤j<n Φ(aj) =

n−1⊕
i=0

fiσ
i(aj)

=(−1, b0,j)⊕ . . . (−1, bj−1,j)⊕ (1, bj,j)⊕
⊕ (−1, bj+1,j)⊕ . . .⊕ (−1, bn,j)

=(Bj , bj).
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Thank you!


