Irreducible euclidean representations of the Fibonacci groups

Rafał Lutowski

Institute of Mathematics, University of Gdańsk
16th Andrzej Jankowski Memorial Lecture Mini Conference

Euclidean and affine maps in \mathbb{R}^{n}

- $E(n)=\operatorname{Iso}\left(\mathbb{R}^{n}\right)=\mathrm{O}(n) \ltimes \mathbb{R}^{n}$ - the group of isometries of the Euclidean space \mathbb{R}^{n}.
- $A(n)=\operatorname{Aff}\left(\mathbb{R}^{n}\right)=\mathrm{GL}_{n}(\mathbb{R}) \ltimes \mathbb{R}^{n}$ - the group of affine maps of \mathbb{R}^{n}.

Remark

(1) $E(n) \subset A(n)$.
(2) $A(n)=\left\{(A, a) \mid A \in \mathrm{GL}(n, \mathbb{R}), a \in \mathbb{R}^{n}\right\}$ and

$$
\forall_{(A, a),(B, b) \in A(n)}(A, a)(B, b)=(A B, A b+a) .
$$

(3) The action of the group $A(n)(E(n))$ on \mathbb{R}^{n} :

$$
\forall_{(A, a) \in A(n)} \forall_{x \in \mathbb{R}^{n}}(A, a) \cdot x=A x+a .
$$

Euclidean and affine maps in \mathbb{R}^{n}

Remark

(1) $E(n) \subset A(n)$.
(2) $A(n)=\left\{(A, a) \mid A \in \mathrm{GL}(n, \mathbb{R}), a \in \mathbb{R}^{n}\right\}$ and

$$
\forall_{(A, a),(B, b) \in A(n)}(A, a)(B, b)=(A B, A b+a) .
$$

(0) The action of the group $A(n)(E(n))$ on \mathbb{R}^{n} :

$$
\forall_{(A, a) \in A(n)} \forall_{x \in \mathbb{R}^{n}}(A, a) \cdot x=A x+a .
$$

Lemma

There is a faithful representation $A(n) \rightarrow \mathrm{GL}_{n+1}(\mathbb{R})$ given by

$$
\forall_{(A, a) \in A(n)}(A, a) \mapsto\left[\begin{array}{ll}
A & a \\
0 & 1
\end{array}\right] .
$$

Crystallographic and Bieberbach groups

Definition

A group Γ is an n-dimensional crystallographic group if it is a discrete and cocompact subgroup of $E(n)$. If in addition Γ is torsionfree then we call it a Bieberbach group.

Crystallographic and Bieberbach groups

Definition

A group Γ is an n-dimensional crystallographic group if it is a discrete and cocompact subgroup of $E(n)$. If in addition Γ is torsionfree then we call it a Bieberbach group.

Remark

If $\Gamma \subset E(n)$ is a Bieberbach group then $X=\mathbb{R}^{n} / \Gamma$ is a flat manifold and $\pi_{1}(X) \cong \Gamma$.

Two dimensional flat manifolds

Torus

$$
\Gamma_{1}=\left\langle\left(I, e_{1}\right),\left(I, e_{2}\right)\right\rangle
$$

$$
\mathbb{R}^{2} / \Gamma_{1}:
$$

Klein bottle

$$
\Gamma_{2}=\left\langle\left(\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{c}
\frac{1}{2} \\
0
\end{array}\right]\right),\left(I, e_{2}\right)\right\rangle
$$

$$
\mathbb{R}^{2} / \Gamma_{2}:
$$

Bieberbach theorems

Theorem (Bieberbach 1911, 1912)
(1) Let $\Gamma \subset E(n)$ be an n-dimensional crystallographic group. The subgroup $\Gamma \cap\left(1 \times \mathbb{R}^{n}\right)$ of pure translations of Γ is free abelian group of rank n. Moreover it is maximal abelian normal subgroup of Γ of finite index.For every $n \in \mathbb{N}$ there are a finite number of isomorphism classes of crystallogrpahic groups of dimension n.
(0) Two crystallographic groups of dimension n are isomorphic if and only if they are conjugate in the group $A(n)$.

Bieberbach theorems

Theorem (Bieberbach 1911, 1912)

(1) Let $\Gamma \subset E(n)$ be an n-dimensional crystallographic group. The subgroup $\Gamma \cap\left(1 \times \mathbb{R}^{n}\right)$ of pure translations of Γ is free abelian group of rank n. Moreover it is maximal abelian normal subgroup of Γ of finite index.
(2) For every $n \in \mathbb{N}$ there are a finite number of isomorphism classes of crystallogrpahic groups of dimension n.

- Two crystallographic groups of dimension n are isomorphic if and

Bieberbach theorems

Theorem (Bieberbach 1911, 1912)

(1) Let $\Gamma \subset E(n)$ be an n-dimensional crystallographic group. The subgroup $\Gamma \cap\left(1 \times \mathbb{R}^{n}\right)$ of pure translations of Γ is free abelian group of rank n. Moreover it is maximal abelian normal subgroup of Γ of finite index.
(2) For every $n \in \mathbb{N}$ there are a finite number of isomorphism classes of crystallogrpahic groups of dimension n.
(3) Two crystallographic groups of dimension n are isomorphic if and only if they are conjugate in the group $A(n)$.

Structure of Bieberbach groups

Let $\Gamma \subset E(n)$ be a Bieberbach group and $X=\mathbb{R}^{n} / \Gamma$.

- Γ fits into a short exact sequence

$$
0 \longrightarrow \mathbb{Z}^{n} \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1
$$

- G - finite group - holonomy group of Γ (of X).
- We get a holonomy representation $\varphi: G \rightarrow \mathrm{GL}_{n}(\mathbb{Z})$:
where $\pi(\bar{g})=g$.
- φ is \mathbb{R}-equivalent to the holonomy representation of X.

Structure of Bieberbach groups

Let $\Gamma \subset E(n)$ be a Bieberbach group and $X=\mathbb{R}^{n} / \Gamma$.

- Γ fits into a short exact sequence

$$
0 \longrightarrow \mathbb{Z}^{n} \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1
$$

- G - finite group - holonomy group of Γ (of X).
- We get a holonomy representation $\varphi: G \rightarrow \mathrm{GL}_{n}(\mathbb{Z})$:

$$
\forall_{z \in \mathbb{Z}^{n} \subset \Gamma} \forall_{g \in G} \varphi_{g}(z)=\bar{g} z \bar{g}^{-1}
$$

where $\pi(\bar{g})=g$.

- φ is \mathbb{R}-equivalent to the holonomy representation of X.

Classical Hantzsche-Wendt manifold

$$
\Gamma=\left\langle\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right],\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
0
\end{array}\right]\right),\left(\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right],\left[\begin{array}{c}
0 \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]\right)\right\rangle \subset E(3)
$$

Classical Hantzsche-Wendt manifold

$$
\Gamma=\left\langle\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right],\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
0
\end{array}\right]\right),\left(\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right],\left[\begin{array}{c}
0 \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]\right)\right\rangle \subset E(3)
$$

Classical Hantzsche-Wendt manifold

$$
\Gamma=\left\langle\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right],\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
0
\end{array}\right]\right),\left(\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right],\left[\begin{array}{c}
0 \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]\right)\right\rangle \subset E(3)
$$

Classical Hantzsche-Wendt manifold

$$
\Gamma=\left\langle\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right],\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
0
\end{array}\right]\right),\left(\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right],\left[\begin{array}{c}
0 \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]\right)\right\rangle \subset E(3)
$$

Classical Hantzsche-Wendt manifold

$$
\Gamma=\left\langle\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right],\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
0
\end{array}\right]\right),\left(\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right],\left[\begin{array}{c}
0 \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]\right)\right\rangle \subset E(3)
$$

Classical Hantzsche-Wendt manifold

$$
\Gamma=\left\langle\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right],\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
0
\end{array}\right]\right),\left(\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right],\left[\begin{array}{c}
0 \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]\right)\right\rangle \subset E(3)
$$

Classical Hantzsche-Wendt manifold

$$
\Gamma=\left\langle\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right],\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
0
\end{array}\right]\right),\left(\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right],\left[\begin{array}{c}
0 \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]\right)\right\rangle \subset E(3)
$$

Classical Hantzsche-Wendt manifold

$$
\Gamma=\left\langle\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right],\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
0
\end{array}\right]\right),\left(\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right],\left[\begin{array}{c}
0 \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]\right)\right\rangle \subset E(3)
$$

Hantzsche-Wendt manifolds and groups

Definition

Let $n \in \mathbb{N}$ be odd. Let $\Gamma \subset E(n)$ be a Bieberbach group with holonomy group G and holonomy representation $\varphi: G \rightarrow \mathrm{GL}_{n}(\mathbb{Z})$. If

$$
G \cong\left(\mathbb{Z}_{2}\right)^{n-1} \quad \text { and } \quad \varphi(G) \subset \mathrm{SL}_{n}(\mathbb{Z})
$$

then Γ is called a Hantzsche-Wendt group (HW-group) and $X=\mathbb{R}^{n} / \Gamma$ - a Hantzsche-Wendt manifold (HW-manifold).

Structure of HW-groups

Theorem (Rosetti, Szczepański 2005)
Let $n \in \mathbb{N}$ be odd. Let Γ be an n dimensional HW-group. Then

$$
\Gamma \cong\left\langle\left(B_{i}, b_{i}\right) \mid i=1, \ldots, n\right\rangle \subset E(n),
$$

where

$$
B_{i}=\operatorname{diag}(\underbrace{-1, \ldots,-1}_{i-1}, 1,-1, \ldots,-1)
$$

and $b_{i} \in \frac{1}{2} \mathbb{Z}^{n}$ for $i=1, \ldots, n$.

Structure of HW-groups

Theorem (Rosetti, Szczepański 2005)
Let $n \in \mathbb{N}$ be odd. Let Γ be an n dimensional HW-group. Then

$$
\Gamma \cong\left\langle\left(B_{i}, b_{i}\right) \mid i=1, \ldots, n\right\rangle \subset E(n),
$$

where

$$
B_{i}=\operatorname{diag}(\underbrace{-1, \ldots,-1}_{i-1}, 1,-1, \ldots,-1)
$$

and $b_{i} \in \frac{1}{2} \mathbb{Z}^{n}$ for $i=1, \ldots, n$.

Remark

The group $\left\langle\left(B_{i}, b_{i}\right) \mid i=1, \ldots, n\right\rangle$ is a Bieberbach group, hence it is a HW-group.

Encoding HW-groups

- $\Gamma \subset E(n)$ - HW-group.
- $\Gamma \cong\left\langle\left(B_{i}, b_{i}\right) \mid i=1, \ldots, n\right\rangle$.

Corollary

Up to isomorphism every HW-group is defined by a matrix

$$
\left[\begin{array}{lll}
b_{1} & \ldots & b_{n}
\end{array}\right] \in M_{n}\left(\frac{1}{2} \mathbb{Z}\right)
$$

Fibonacci groups

Definition

Let $r, n \in \mathbb{N}$. The Fibonacci group $F(r, n)$ is a group with presentation

$$
\begin{aligned}
F(r, n)=\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right| & a_{0} a_{1} \ldots a_{r-1}=a_{r} \\
& a_{1} a_{2} \ldots a_{r}=a_{r+1} \\
& \\
& \left.a_{n-1} a_{0} \ldots a_{r-2}=a_{r-1}\right\rangle
\end{aligned}
$$

Fibonacci groups

Definition

Let $r, n \in \mathbb{N}$. The Fibonacci group $F(r, n)$ is a group with presentation

$$
\begin{aligned}
F(r, n)=\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right| & a_{0} a_{1} \ldots a_{r-1}=a_{r} \\
& a_{1} a_{2} \ldots a_{r}=a_{r+1} \\
& \vdots \\
& \left.a_{n-1} a_{0} \ldots a_{r-2}=a_{r-1}\right\rangle .
\end{aligned}
$$

Global assumption
The subscripts will always be taken modulo n.

Fibonacci groups in geometry

Proposition
 Let X be the 3 dimensional HW-manifold. Then

$$
\pi_{1}(X) \cong F(2,6) .
$$

> Theorem (Szczepański, Vesnin 2000)
> For odd $n \in \mathbb{N}$ the Fibonacci group $F(2, n)$ cannot be a fundamental group of any hyperbolic manifold of finite volume.

Fibonacci groups in geometry

Proposition

Let X be the 3 dimensional HW-manifold. Then

$$
\pi_{1}(X) \cong F(2,6) .
$$

Theorem (Helling, Kim, Mennicke 1998)
For $n \geq 4$ there exists a closed hyperbolic manifold X such that

$$
\pi_{1}(X) \cong F(2,2 n) .
$$

> Theorem (Szczepański, Vesnin 2000)
> For odd $n \in \mathbb{N}$ the Fibonacci group $F(2, n)$ cannot be a fundamental group of any hyperbolic manifold of finite volume.

Fibonacci groups in geometry

Proposition

Let X be the 3 dimensional HW-manifold. Then

$$
\pi_{1}(X) \cong F(2,6) .
$$

Theorem (Helling, Kim, Mennicke 1998)
For $n \geq 4$ there exists a closed hyperbolic manifold X such that

$$
\pi_{1}(X) \cong F(2,2 n) .
$$

Theorem (Szczepański, Vesnin 2000)
For odd $n \in \mathbb{N}$ the Fibonacci group $F(2, n)$ cannot be a fundamental group of any hyperbolic manifold of finite volume.

Fibonacci and Hantzsche-Wendt groups

Theorem (Szczepański 2001)
Let $n \in \mathbb{N}$ be odd, $n \geq 3$. Let $\Gamma \subset E(n)$ be a $H W$-group defined by the matrix

$$
\left[\begin{array}{cccccc}
\frac{1}{2} & 0 & \ldots & 0 & 0 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \ddots & \vdots & \vdots & 0 \\
0 & \frac{1}{2} & \ddots & 0 & 0 & \vdots \\
0 & 0 & \ddots & \frac{1}{2} & 0 & 0 \\
\vdots & \vdots & \ddots & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & \ldots & 0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right] .
$$

Then there exists an epimorphism

$$
\Phi: F(n-1,2 n) \rightarrow \Gamma .
$$

Cyclic HW-groups

Let $\Gamma \subset E(n)$ be as in the previous theorem.

- Γ is "cyclic" because of the form of the matrix which defines it.
- Γ is "cyclic" because it has generators which behave exactly as the generators of some Fibonacci group.

Question
Is every HW-group cyclic in the second sense?
More precisely:
Question
Is every HW-group an epimorphic image of some Fibonacci group?

Cyclic HW-groups

Let $\Gamma \subset E(n)$ be as in the previous theorem.

- Γ is "cyclic" because of the form of the matrix which defines it.
- Γ is "cyclic" because it has generators which behave exactly as the generators of some Fibonacci group.

Question
Is every HW-group cyclic in the second sense?
More precisely:
Question
Is every HW-group an epimorphic image of some Fibonacci group?

Cyclic HW-groups

Let $\Gamma \subset E(n)$ be as in the previous theorem.

- Γ is "cyclic" because of the form of the matrix which defines it.
- Γ is "cyclic" because it has generators which behave exactly as the generators of some Fibonacci group.

Question
 Is every HW-group cyclic in the second sense?

More precisely:
Question
Is every HW-group an epimorphic image of some Fibonacci group?

Cyclic HW-groups

Let $\Gamma \subset E(n)$ be as in the previous theorem.

- Γ is "cyclic" because of the form of the matrix which defines it.
- Γ is "cyclic" because it has generators which behave exactly as the generators of some Fibonacci group.

Question

Is every HW-group cyclic in the second sense?
More precisely:
Question
Is every HW-group an epimorphic image of some Fibonacci group?

Cyclic HW-groups

Let $\Gamma \subset E(n)$ be as in the previous theorem.

- Γ is "cyclic" because of the form of the matrix which defines it.
- Γ is "cyclic" because it has generators which behave exactly as the generators of some Fibonacci group.

Question

Is every HW-group cyclic in the second sense?
More precisely:

Question

Is every HW-group an epimorphic image of some Fibonacci group?

Euclidean representation

Definition

An euclidean representation of a group G is any homomorphism $\varphi: G \rightarrow E(n)$ for some $n \in \mathbb{N}$.

Example
Let Γ be an n-dimensional cyclic HW-group. Then

is an euclidean representation of the Fibonacci group $F(n-1,2 n)$.

Euclidean representation

Definition

An euclidean representation of a group G is any homomorphism $\varphi: G \rightarrow E(n)$ for some $n \in \mathbb{N}$.

Example

Let Γ be an n-dimensional cyclic HW-group. Then

$$
\Phi: F(n-1,2 n) \rightarrow \Gamma \subset E(n)
$$

is an euclidean representation of the Fibonacci group $F(n-1,2 n)$.

Decomposability and irreducibility

Example

Let $G=\langle a, b \mid[a, b]=1\rangle$ be a free abelian group of rank 2. Let $\varphi_{1}, \varphi_{2}: G \rightarrow E(1)$ be euclidean representations of the group G defined by

$$
\begin{array}{ll}
\varphi_{1}(a)=(1,1), & \varphi_{1}(b)=(1,0), \\
\varphi_{2}(a)=(1,0), & \varphi_{1}(b)=(1,1) .
\end{array}
$$

We get an euclidean representation $\varphi_{1} \oplus \varphi_{2}: G \rightarrow E(2)$:

The above action of G on $V=\mathbb{R} \oplus \mathbb{R}$ is defined as a direct sum, but V does not have proper invariant subspace under this action!

Decomposability and irreducibility

Example

Let $G=\langle a, b \mid[a, b]=1\rangle$ be a free abelian group of rank 2. Let $\varphi_{1}, \varphi_{2}: G \rightarrow E(1)$ be euclidean representations of the group G defined by

$$
\begin{array}{ll}
\varphi_{1}(a)=(1,1), & \varphi_{1}(b)=(1,0), \\
\varphi_{2}(a)=(1,0), & \varphi_{1}(b)=(1,1) .
\end{array}
$$

We get an euclidean representation $\varphi_{1} \oplus \varphi_{2}: G \rightarrow E(2)$:

$$
\varphi_{1} \oplus \varphi_{2}(a)=\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right), \quad \varphi_{1} \oplus \varphi_{2}(b)=\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) .
$$

The above action of G on $V=\mathbb{R} \oplus \mathbb{R}$ is defined as a direct sum, but V does not have proper invariant subspace under this action!

Decomposability and irreducibility

Example

Let $G=\langle a, b \mid[a, b]=1\rangle$ be a free abelian group of rank 2. Let $\varphi_{1}, \varphi_{2}: G \rightarrow E(1)$ be euclidean representations of the group G defined by

$$
\begin{array}{ll}
\varphi_{1}(a)=(1,1), & \varphi_{1}(b)=(1,0), \\
\varphi_{2}(a)=(1,0), & \varphi_{1}(b)=(1,1) .
\end{array}
$$

We get an euclidean representation $\varphi_{1} \oplus \varphi_{2}: G \rightarrow E(2)$:

$$
\varphi_{1} \oplus \varphi_{2}(a)=\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right), \quad \varphi_{1} \oplus \varphi_{2}(b)=\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) .
$$

The above action of G on $V=\mathbb{R} \oplus \mathbb{R}$ is defined as a direct sum, but V does not have proper invariant subspace under this action!

Decomposition of euclidean representations

- $n \in \mathbb{N}$.
- $\pi: E(n) \rightarrow \mathrm{O}(n)$ - given by $\pi(B, b)=B,(B, b) \in E(n)$.
- $\varphi: G \rightarrow E(n)$ - euclidean representation of a group G.
- $\mathbb{R}^{n}=V_{1} \oplus \ldots \oplus V_{k}$ - decomposition of $\pi \varphi: G \rightarrow \mathrm{O}(n)$.
- $p_{i}: \mathbb{R}^{n} \rightarrow V_{i}$ - projections, $i=1, \ldots, n$.

We have

where for every $1 \leq i \leq n, \varphi^{(i)}: G \rightarrow \operatorname{Iso}\left(V_{i}\right)$ is given by

Decomposition of euclidean representations

- $n \in \mathbb{N}$.
- $\pi: E(n) \rightarrow \mathrm{O}(n)$ - given by $\pi(B, b)=B,(B, b) \in E(n)$.
- $\varphi: G \rightarrow E(n)$ - euclidean representation of a group G.
- $\mathbb{R}^{n}=V_{1} \oplus \ldots \oplus V_{k}$ - decomposition of $\pi \varphi: G \rightarrow \mathrm{O}(n)$.
- $p_{i}: \mathbb{R}^{n} \rightarrow V_{i}$ - projections, $i=1, \ldots, n$.

Proposition

We have

$$
\varphi=\varphi^{(1)} \oplus \ldots \oplus \varphi^{(k)}
$$

where for every $1 \leq i \leq n, \varphi^{(i)}: G \rightarrow \operatorname{Iso}\left(V_{i}\right)$ is given by

$$
\forall_{v \in V_{i}} \varphi_{g}^{(i)}(v)=\left(A, p_{i}(a)\right) v=A v+p_{i}(a)
$$

where $g \in G$ and $(A, a)=\varphi_{g}$.

Decomposition of euclidean representations

- $n \in \mathbb{N}$.
- $\pi: E(n) \rightarrow \mathrm{O}(n)$ - given by $\pi(B, b)=B,(B, b) \in E(n)$.
- $\varphi: G \rightarrow E(n)$ - euclidean representation of a group G.
- $\mathbb{R}^{n}=V_{1} \oplus \ldots \oplus V_{k}$ - decomposition of $\pi \varphi: G \rightarrow \mathrm{O}(n)$.
- $p_{i}: \mathbb{R}^{n} \rightarrow V_{i}$ - projections, $i=1, \ldots, n$.
- $\varphi=\varphi^{(1)} \oplus \ldots \oplus \varphi^{(k)}$.

Remark

If $G=\Gamma \subset E(n)$ is a crystallographic group, $\varphi=i d_{\Gamma}$, then $\pi \varphi(\Gamma)$ is a finite group, hence the decomposition

$$
\mathbb{R}^{n}=V_{1} \oplus \ldots \oplus V_{k}
$$

can be made in such a way that V_{i} is irreducible, for $i=1, \ldots, k$.

Decomposition of HW-groups

Corollary

Let $n \in \mathbb{N}$ be odd. Let $\Gamma \subset E(n)$ be an n-dimensional HW-group defined by a matrix $\left[b_{i j}\right]_{1 \leq i, j \leq n}$. Then

$$
i d_{\Gamma}=\varphi^{(1)} \oplus \ldots \oplus \varphi^{(n)},
$$

where homomorphisms $\varphi^{(i)}: \Gamma \rightarrow E(1)$ are given by

$$
\forall_{1 \leq j \leq n} \varphi^{(i)}\left(B_{j}, b_{j}\right)=\left((-1)^{\delta_{i j}+1}, b_{i j}\right) .
$$

Decomposition of HW-groups

$$
\begin{gathered}
i d_{\Gamma}=\varphi^{(1)} \oplus \ldots \oplus \varphi^{(n)} \\
\left(\left[\begin{array}{lllllll}
-1 & & & & & & \\
& \ddots & & & & & \\
& & -1 & & & & \\
& & & 1 & & & \\
& & & & -1 & & \\
& & & & & & \ddots \\
& & & & & & \\
& & & & \\
& & & \\
\left(-1, b_{1, j}\right) \oplus \ldots \oplus\left(-1, b_{j-1, j}\right) \oplus\left(1, b_{j, j}\right) \oplus\left(-1, b_{j+1, j}\right) \oplus \ldots \oplus\left(-1, b_{n, j}\right)
\end{array}\right],\left[\begin{array}{c}
b_{1, j} \\
\vdots \\
b_{j-1, j} \\
b_{j, j} \\
b_{j+1, j} \\
\vdots \\
b_{n, j}
\end{array}\right]\right)
\end{gathered}
$$

Decomposition of HW-groups

$$
i d_{\Gamma}=\varphi^{(1)} \oplus \ldots \oplus \varphi^{(n)}
$$

II
$\left(-1, b_{1, j}\right)$

Decomposition of HW-groups

$$
i d_{\Gamma}=\varphi^{(1)} \oplus \ldots \oplus \varphi^{(n)}
$$

II

Decomposition of HW-groups

$$
i d_{\Gamma}=\varphi^{(1)} \oplus \ldots \oplus \varphi^{(n)}
$$

II

Decomposition of HW-groups

$$
i d_{\Gamma}=\varphi^{(1)} \oplus \ldots \oplus \varphi^{(n)}
$$

II

$$
\left(-1, b_{1, j}\right) \oplus \cdots \oplus\left(-1, b_{j-1, j}\right) \oplus\left(1, b_{j, j}\right) \oplus\left(-1, b_{j+1, j}\right)
$$

Decomposition of HW-groups

$$
i d_{\Gamma}=\varphi^{(1)} \oplus \ldots \oplus \varphi^{(n)}
$$

II

Decomposition of HW-groups

$$
\begin{gathered}
i d_{\Gamma}=\varphi^{(1)} \oplus \ldots \oplus \varphi^{(n)} \\
\left(\left[\begin{array}{lllllll}
-1 & & & & & & \\
& \ddots & & & & & \\
& & -1 & & & & \\
& & & 1 & & & \\
& & & & -1 & & \\
& & & & & & \ddots \\
& & & & & & \\
& & & & \\
& & & \\
\left(-1, b_{1, j}\right) \oplus \ldots \oplus\left(-1, b_{j-1, j}\right) \oplus\left(1, b_{j, j}\right) \oplus\left(-1, b_{j+1, j}\right) \oplus \ldots \oplus\left(-1, b_{n, j}\right)
\end{array}\right],\left[\begin{array}{c}
b_{1, j} \\
\vdots \\
b_{j-1, j} \\
b_{j, j} \\
b_{j+1, j} \\
\vdots \\
b_{n, j}
\end{array}\right]\right)
\end{gathered}
$$

Shift automorphism

Lemma

Let $r, n \in \mathbb{N}$. Let $F(r, n)$ be the Fibonacci group. Then the homomorphism $\sigma: F(r, n) \rightarrow F(r, n)$ defined by

$$
\forall_{0 \leq i \leq n-1} \sigma\left(a_{i}\right)=a_{i-1}
$$

is an automorphism of $F(r, n)$.

Remark

Let's call σ the left shift automorphism of $F(r, n)$.

One dimensional euclidean representations

Theorem
Let $n \in \mathbb{N}$ be odd. Let $\Gamma=\left\langle C_{i} \mid i=0, \ldots, n-2\right\rangle \subset E(1)$, where

$$
C_{0}=\left(1, c_{0}\right), C_{1}=\left(-1, c_{1}\right), \ldots, C_{n-2}=\left(-1, c_{n-2}\right)
$$

and $c_{i} \in \mathbb{R}$ for $i=0, \ldots, n-2$. Then there exists an epimorphism

$$
\varphi: F(n-1,2 n) \rightarrow \Gamma
$$

such that

$$
\varphi\left(a_{i}\right)=C_{i}
$$

for $i=0, \ldots, n-2$ and $a_{0}, \ldots, a_{2 n}$ are the "cyclic" generators of $F(n-1,2 n)$.

Proof

We will show that the sequence $\left(C_{i}\right)$ of elements of Γ, defined recursively by

$$
\forall_{i \geq n-1} C_{i}=C_{i-n+1} C_{i-n+2} \ldots C_{i-1}
$$

is periodic with period $2 n$. For this to prove it is enough to show that

$$
C_{2 n}=C_{0}, C_{2 n+1}=C_{1}, \ldots, C_{3 n-2}=C_{n-2}
$$

Note that for $i>n-1$ we have

Proof

We will show that the sequence $\left(C_{i}\right)$ of elements of Γ, defined recursively by

$$
\forall_{i \geq n-1} C_{i}=C_{i-n+1} C_{i-n+2} \ldots C_{i-1}
$$

is periodic with period $2 n$. For this to prove it is enough to show that

$$
C_{2 n}=C_{0}, C_{2 n+1}=C_{1}, \ldots, C_{3 n-2}=C_{n-2}
$$

Note that for $i>n-1$ we have

$$
\begin{aligned}
C_{i} & =C_{i-n+1} C_{i-n+2} \ldots C_{i-1} \\
& =C_{i-n}^{-1}\left(C_{i-n} C_{i-n+1} C_{i-n+2} \ldots C_{i-2}\right) C_{i-1}=C_{i-n} C_{i-1}^{2} .
\end{aligned}
$$

Proof

$$
\forall_{i>n-1} C_{i}=C_{i-n} C_{i-1}^{2}
$$

Proof

$$
\forall_{i>n-1} C_{i}=C_{i-n} C_{i-1}^{2}
$$

Proof

$$
\forall_{i>n-1} C_{i}=C_{i-n} C_{i-1}^{2}
$$

Proof

$$
\forall_{i>n-1} C_{i}=C_{i-n} C_{i-1}^{2}
$$

Proof

$$
\forall_{i>n-1} C_{i}=C_{i-n} C_{i-1}^{2}
$$

Proof

$$
\forall_{i>n-1} C_{i}=C_{i-n} C_{i-1}^{2}
$$

Proof

$$
\forall_{i>n-1} C_{i}=C_{i-n} C_{i-1}^{2}
$$

Proof

$$
\forall_{i>n-1} C_{i}=C_{i-n} C_{i-1}^{2}
$$

$C_{n-1}=\left(1, c_{0}\right)\left(-1, c_{1}\right) \cdots\left(-1, c_{n-2}\right)$	$=\left(-1, c_{n-1}\right)$	
C_{n}	$=C_{0}^{-1} C_{n-1}^{2}=\left(1, c_{0}\right)^{-1}\left(-1, c_{n-1}\right)^{2}$	$=\left(1,-c_{0}\right)$
$C_{n+1}=C_{1}^{-1} C_{n}^{2}=\left(-1, c_{1}\right)\left(1,-2 c_{0}\right)$		$=\left(-1,2 c_{0}+c_{1}\right)$
$C_{n+i}=C_{i}^{-1} C_{n+i-1}^{2}$	$=C_{i}, 2 \leq i \leq n-1$	
$C_{2 n}=C_{n}^{-1} C_{2 n-1}^{2}=\left(1,-c_{0}\right)^{-1}$	$=C_{0}$	
$C_{2 n+1}=C_{n+1}^{-1} C_{2 n}^{2}=\left(-1,2 c_{0}+c_{1}\right)\left(1,2 c_{0}\right)$	$=C_{1}$	
$C_{2 n+i}=C_{n+i}^{-1} C_{2 n+i-1}^{2}=C_{n+i}$	$=C_{i}, 2 \leq i \leq n-1$	

Proof

$$
\begin{array}{ll}
C_{2 n}=C_{n}^{-1} C_{2 n-1}^{2}=\left(1,-c_{0}\right)^{-1} & =C_{0} \\
C_{2 n+1}=C_{n+1}^{-1} C_{2 n}^{2}=\left(-1,2 c_{0}+c_{1}\right)\left(1,2 c_{0}\right) & =C_{1} \\
C_{2 n+i}=C_{n+i}^{-1} C_{2 n+i-1}^{2}=C_{n+i} & =C_{i}, 2 \leq i \leq n-1
\end{array}
$$

$$
\forall_{0 \leq i \leq n-2} C_{2 n+i}=C_{i} .
$$

Every HW-group is cyclic

Theorem
Let $n \in \mathbb{N}$ be odd. Let $\Gamma \subset E(n)$ be a HW-group. Then there exists an epimorphism

$$
\Phi: F(n-1,2 n) \rightarrow \Gamma .
$$

Proof

Decomposition of HW-group

- Let

$$
\left[b_{i j}\right]_{0 \leq i, j<n}
$$

be a matrix of Γ.

- Let

be the euclidean decomposition of $i d_{\Gamma}$.
- For every $0 \leq i<n$ there exists epimorphism

$$
f_{i}: F(n-1,2 n) \rightarrow \varphi^{(i)}(\Gamma) \subset E(1)
$$

given by
$f_{i}\left(a_{0}\right)=\left(1, b_{i i}\right), f_{i}\left(a_{1}\right)=\left(-1, b_{i, i+1}\right), \ldots, f_{i}\left(a_{n-1}\right)=\left(-1, b_{i, i+n-1}\right)$.

Proof

Decomposition of HW-group

- Let

$$
\left[b_{i j}\right]_{0 \leq i, j<n}
$$

be a matrix of Γ.

- Let

$$
i d_{\Gamma}=\varphi^{(0)} \oplus \ldots \oplus \varphi^{(n-1)}
$$

be the euclidean decomposition of $i d_{\Gamma}$.

- For every $0 \leq i<n$ there exists epimorphism

$$
f_{i}: F(n-1,2 n) \rightarrow \varphi^{(i)}(\Gamma) \subset E(1)
$$

given by

Proof

Decomposition of HW-group

- Let

$$
\left[b_{i j}\right]_{0 \leq i, j<n}
$$

be a matrix of Γ.

- Let

$$
i d_{\Gamma}=\varphi^{(0)} \oplus \ldots \oplus \varphi^{(n-1)}
$$

be the euclidean decomposition of $i d_{\Gamma}$.

- For every $0 \leq i<n$ there exists epimorphism

$$
f_{i}: F(n-1,2 n) \rightarrow \varphi^{(i)}(\Gamma) \subset E(1)
$$

given by

$$
f_{i}\left(a_{0}\right)=\left(1, b_{i i}\right), f_{i}\left(a_{1}\right)=\left(-1, b_{i, i+1}\right), \ldots, f_{i}\left(a_{n-1}\right)=\left(-1, b_{i, i+n-1}\right)
$$

Proof

Decomposition of HW-group

- Let

$$
\left[b_{i j}\right]_{0 \leq i, j<n}
$$

be a matrix of Γ.

- Let

$$
i d_{\Gamma}=\varphi^{(0)} \oplus \ldots \oplus \varphi^{(n-1)}
$$

be the euclidean decomposition of $i d_{\Gamma}$.

- For every $0 \leq i<n$ there exists epimorphism

$$
f_{i}: F(n-1,2 n) \rightarrow \varphi^{(i)}(\Gamma) \subset E(1)
$$

given by

$$
\forall_{0 \leq j<n} f_{i}\left(a_{j}\right)=\left((-1)^{1+\delta_{i, i+j}}, b_{i, i+j}\right)
$$

Proof

Left shift automorphism

- $\sigma \in \operatorname{Aut}(F(n-1,2 n))$ - left shift automorphism.

$$
\forall_{0 \leq i, j<n} f_{i} \sigma^{i}\left(a_{j}\right)=f_{i}\left(a_{j-i}\right)=\left((-1)^{1+\delta_{i, j}}, b_{i, j}\right)
$$

Proof

Left shift automorphism

- $\sigma \in \operatorname{Aut}(F(n-1,2 n))$ - left shift automorphism.
- $f_{i} \sigma^{i}: F(n-1,2 n) \rightarrow \varphi^{(i)}(\Gamma) \subset E(1)$ for every $0 \leq i<n$.

$$
\forall_{0 \leq i, j<n} f_{i} \sigma^{i}\left(a_{j}\right)=f_{i}\left(a_{j-i}\right)=\left((-1)^{1+\delta_{i, j}}, b_{i, j}\right)
$$

Proof

Left shift automorphism

- $\sigma \in \operatorname{Aut}(F(n-1,2 n))$ - left shift automorphism.
- $f_{i} \sigma^{i}: F(n-1,2 n) \rightarrow \varphi^{(i)}(\Gamma) \subset E(1)$ for every $0 \leq i<n$.

$$
\forall_{0 \leq i, j<n} f_{i} \sigma^{i}\left(a_{j}\right)=f_{i}\left(a_{j-i}\right)=\left((-1)^{1+\delta_{i, j}}, b_{i, j}\right)
$$

Proof

Left shift automorphism

- $\sigma \in \operatorname{Aut}(F(n-1,2 n))$ - left shift automorphism.
- $f_{i} \sigma^{i}: F(n-1,2 n) \rightarrow \varphi^{(i)}(\Gamma) \subset E(1)$ for every $0 \leq i<n$.

$$
\forall_{0 \leq i, j<n} f_{i} \sigma^{i}\left(a_{j}\right)=f_{i}\left(a_{j-i}\right)=\left((-1)^{1+\delta_{i, j}}, b_{i, j}\right)
$$

$$
\left(\left[\begin{array}{ccccccc}
-1 & & & & & & \\
& \ddots & & & & & \\
& & -1 & & & & \\
& & & 1 & & & \\
& & & & -1 & & \\
& & & & & \ddots & \\
& & & & & & -1
\end{array}\right],\left[\begin{array}{c}
b_{1, j} \\
\vdots \\
b_{j-1, j} \\
b_{j, j} \\
b_{j+1, j} \\
\vdots \\
b_{n, j}
\end{array}\right]\right)
$$

Proof

Left shift automorphism

- $\sigma \in \operatorname{Aut}(F(n-1,2 n))$ - left shift automorphism.
- $f_{i} \sigma^{i}: F(n-1,2 n) \rightarrow \varphi^{(i)}(\Gamma) \subset E(1)$ for every $0 \leq i<n$.

$$
\forall_{0 \leq i, j<n} f_{i} \sigma^{i}\left(a_{j}\right)=f_{i}\left(a_{j-i}\right)=\left((-1)^{1+\delta_{i, j}}, b_{i, j}\right)
$$

Proof

Left shift automorphism

- $\sigma \in \operatorname{Aut}(F(n-1,2 n))$ - left shift automorphism.
- $f_{i} \sigma^{i}: F(n-1,2 n) \rightarrow \varphi^{(i)}(\Gamma) \subset E(1)$ for every $0 \leq i<n$.

$$
\forall_{0 \leq i, j<n} f_{i} \sigma^{i}\left(a_{j}\right)=f_{i}\left(a_{j-i}\right)=\left((-1)^{1+\delta_{i, j}}, b_{i, j}\right)
$$

Proof

Left shift automorphism

- $\sigma \in \operatorname{Aut}(F(n-1,2 n))$ - left shift automorphism.
- $f_{i} \sigma^{i}: F(n-1,2 n) \rightarrow \varphi^{(i)}(\Gamma) \subset E(1)$ for every $0 \leq i<n$.

$$
\forall_{0 \leq i, j<n} f_{i} \sigma^{i}\left(a_{j}\right)=f_{i}\left(a_{j-i}\right)=\left((-1)^{1+\delta_{i, j}}, b_{i, j}\right)
$$

- 1

Proof

The epimorphism

The map

$$
\Phi=\bigoplus_{i=0}^{n-1} f_{i} \sigma^{i}
$$

is the desired epimorphism:

$$
\begin{aligned}
\forall_{0 \leq j<n} \Phi\left(a_{j}\right)= & \bigoplus_{i=0}^{n-1} f_{i} \sigma^{i}\left(a_{j}\right) \\
= & \left(-1, b_{0, j}\right) \oplus \ldots\left(-1, b_{j-1, j}\right) \oplus\left(1, b_{j, j}\right) \oplus \\
& \oplus\left(-1, b_{j+1, j}\right) \oplus \ldots \oplus\left(-1, b_{n, j}\right) \\
= & \left(B_{j}, b_{j}\right)
\end{aligned}
$$

