Spin structures on flat manifolds

Rafał Lutowski

Institute of Mathematics, University of Gdańsk

Andrzej Jankowski Memorial Lecture Mini Conference May 15 - 17, 2015

joint work with Bartosz Putrycz

Introduction

- Flat manifolds
- Clifford algebras and spin groups
- Spin structures on manifolds

Existence of spin structures on flat manifolds

- Algorithmic approach I
- Manifolds with 2-group holonomy
- Algorithmic approach II
- Example
- Dimensions 5 and 6

Bieberbach groups and flat manifolds

- $E(n) = O(n) \ltimes \mathbb{R}^n$ isometry group of the Euclidean space \mathbb{R}^n .
- Discrete and cocompact subgroup $\Gamma \subset E(n)$ crystallographic group.
- Torsionfree crystallographic $\Gamma \subset E(n)$ Bieberbach group.
 - X = ℝⁿ/Γ flat manifold (closed connected Riemannian *n*-manifold with zero sectional curvature).
 π₁(X) ≅ Γ.

Bieberbach groups and flat manifolds

- $E(n) = O(n) \ltimes \mathbb{R}^n$ isometry group of the Euclidean space \mathbb{R}^n .
- Discrete and cocompact subgroup $\Gamma \subset E(n)$ crystallographic group.
- Torsionfree crystallographic $\Gamma \subset E(n)$ Bieberbach group.
 - X = ℝⁿ/Γ − flat manifold (closed connected Riemannian n-manifold with zero sectional curvature).
 - $\pi_1(X) \cong \Gamma$.

Bieberbach theorems

Theorem (Bieberbach 1911, 1912)

Let $\Gamma \subset E(n)$ be a crystallographic group.

- The subgroup Γ ∩ (1 × ℝⁿ) of pure translations of Γ is free abelian group of rank n. Moreover it is maximal abelian normal subgroup of Γ of finite index.
- **2** A crystallographic group is isomorphic to Γ if and only if it is conjugate to Γ in the group $A(n) = \operatorname{GL}(n, \mathbb{R}) \ltimes \mathbb{R}^n$.
- There are a finite number of isomorphic classes of crystallographic groups in each dimension.

1st Bieberbach theorem

Γ fits into a short exact sequence

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1.$$

• $\pi \colon \Gamma \to \mathrm{SO}(n)$:

$$\forall_{(A,a)\in\Gamma} \pi(A,a) = A.$$

- $G = \pi(G)$ finite group holonomy group of $\Gamma(X)$.
- We get a holonomy representation $\varphi \colon G \to \operatorname{GL}(n, \mathbb{Z})$:

$$\varphi_g(z) = \overline{g} z \overline{g}^{-1},$$

where $z \in \mathbb{Z}^n \subset \Gamma, g \in G, \pi(\overline{g}) = g$. • φ is \mathbb{R} -equivalent to $id: G \to G \subset SO(n)$.

1st Bieberbach theorem

• Γ fits into a short exact sequence

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1.$$

• $\pi \colon \Gamma \to \mathrm{SO}(n)$:

$$\forall_{(A,a)\in\Gamma}\ \pi(A,a) = A.$$

- $G = \pi(G)$ finite group holonomy group of $\Gamma(X)$.
- We get a holonomy representation $\varphi \colon G \to \operatorname{GL}(n, \mathbb{Z})$:

$$\varphi_g(z) = \overline{g} z \overline{g}^{-1},$$

where $z \in \mathbb{Z}^n \subset \Gamma, g \in G, \pi(\overline{g}) = g$. • φ is \mathbb{R} -equivalent to $id: G \to G \subset SO(n)$.

1st Bieberbach theorem

• Γ fits into a short exact sequence

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1.$$

• $\pi \colon \Gamma \to \mathrm{SO}(n)$:

$$\forall_{(A,a)\in\Gamma}\ \pi(A,a) = A.$$

- $G = \pi(G)$ finite group holonomy group of Γ (X).
- We get a holonomy representation $\varphi \colon G \to \operatorname{GL}(n, \mathbb{Z})$:

$$\varphi_g(z) = \overline{g} z \overline{g}^{-1},$$

where $z \in \mathbb{Z}^n \subset \Gamma, g \in G, \pi(\overline{g}) = g$. • φ is \mathbb{R} -equivalent to $id: G \to G \subset SO(n)$.

1st Bieberbach theorem

• Γ fits into a short exact sequence

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1.$$

• $\pi \colon \Gamma \to \mathrm{SO}(n)$:

$$\forall_{(A,a)\in\Gamma} \pi(A,a) = A.$$

- $G = \pi(G)$ finite group holonomy group of Γ (X).
- We get a holonomy representation $\varphi \colon G \to \operatorname{GL}(n, \mathbb{Z})$:

$$\varphi_g(z) = \overline{g} z \overline{g}^{-1},$$

where $z \in \mathbb{Z}^n \subset \Gamma, g \in G, \pi(\overline{g}) = g$.

• φ is \mathbb{R} -equivalent to $id: G \to G \subset SO(n)$.

1st Bieberbach theorem

• Γ fits into a short exact sequence

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1.$$

• $\pi \colon \Gamma \to \mathrm{SO}(n)$: $\forall_{(A,a) \in \Gamma} \ \pi(A,a) = A.$

- $G = \pi(G)$ finite group holonomy group of $\Gamma(X)$.
- We get a holonomy representation $\varphi \colon G \to \operatorname{GL}(n, \mathbb{Z})$:

$$\varphi_g(z) = \overline{g} z \overline{g}^{-1},$$

where $z \in \mathbb{Z}^n \subset \Gamma, g \in G, \pi(\overline{g}) = g$.

• φ is \mathbb{R} -equivalent to $id: G \to G \subset SO(n)$.

3rd Bieberbach theorem

Dimension 2: 17 groups (proof of completeness in 1891); 2 Bieberbach groups.

Dimension 3: 219 groups (Fedorov and Schönflies 1890's); 10 Bieberbach groups.

Dimension 4: 4783 groups (Brown et al. 1978); 74 Bieberbach groups.

Dimension 5: 222 018 groups (Plesken, Schultz 2000); 1 060 Bieberbach groups.

3rd Bieberbach theorem

Dimension 2: 17 groups (proof of completeness in 1891); 2 Bieberbach groups.

Dimension 3: 219 groups (Fedorov and Schönflies 1890's); 10 Bieberbach groups.

Dimension 4: 4783 groups (Brown et al. 1978); 74 Bieberbach groups.

Dimension 5: 222 018 groups (Plesken, Schultz 2000); 1 060 Bieberbach groups.

3rd Bieberbach theorem

Dimension 2: 17 groups (proof of completeness in 1891); 2 Bieberbach groups.

Dimension 3: 219 groups (Fedorov and Schönflies 1890's); 10 Bieberbach groups.

Dimension 4: 4 783 groups (Brown et al. 1978); 74 Bieberbach groups.

Dimension 5: 222 018 groups (Plesken, Schultz 2000); 1 060 Bieberbach groups.

3rd Bieberbach theorem

Dimension 2: 17 groups (proof of completeness in 1891); 2 Bieberbach groups.

Dimension 3: 219 groups (Fedorov and Schönflies 1890's); 10 Bieberbach groups.

Dimension 4: 4 783 groups (Brown et al. 1978); 74 Bieberbach groups.

Dimension 5: 222 018 groups (Plesken, Schultz 2000); 1 060 Bieberbach groups.

3rd Bieberbach theorem

Dimension 2: 17 groups (proof of completeness in 1891); 2 Bieberbach groups.

Dimension 3: 219 groups (Fedorov and Schönflies 1890's); 10 Bieberbach groups.

Dimension 4: 4 783 groups (Brown et al. 1978); 74 Bieberbach groups.

Dimension 5: 222 018 groups (Plesken, Schultz 2000); 1 060 Bieberbach groups.

Clifford algebra

Definition

Let $n \in \mathbb{N}$. The Clifford algebra C_n is a real associative algebra with one, generated by elements e_1, \ldots, e_n , which satisfy relations:

$$\forall_{1 \leq i < j \leq n} e_i^2 = -1 \text{ and } e_i e_j = -e_j e_i.$$

•
$$C_0 = \mathbb{R}, C_1 = \mathbb{C}, C_2 = \mathbb{H}.$$

• $\mathbb{R}^n = \operatorname{span}\{e_1, \dots, e_n\} \subset C_n$

Clifford algebra

Definition

Let $n \in \mathbb{N}$. The Clifford algebra C_n is a real associative algebra with one, generated by elements e_1, \ldots, e_n , which satisfy relations:

$$\forall_{1 \leq i < j \leq n} e_i^2 = -1 \text{ and } e_i e_j = -e_j e_i.$$

Three involutions

O Defined on the generators of the vector space C_n :

$$(e_{i_1}\ldots e_{i_k})^*=e_{i_k}\ldots e_{i_1}.$$

2 Defined on the generators of the algebra C_n :

$$e_i' = -e_i.$$

The composition of the above two:

$$\forall_{a\in C_n} \ \overline{a} = (a')^*.$$

Three involutions

• Defined on the generators of the vector space C_n :

$$(e_{i_1}\ldots e_{i_k})^* = e_{i_k}\ldots e_{i_1}.$$

2 Defined on the generators of the algebra C_n :

$$e_i' = -e_i.$$

The composition of the above two:

$$\forall_{a \in C_n} \ \overline{a} = (a')^*.$$

Three involutions

• Defined on the generators of the vector space C_n :

$$(e_{i_1}\ldots e_{i_k})^* = e_{i_k}\ldots e_{i_1}.$$

2 Defined on the generators of the algebra C_n :

$$e_i' = -e_i.$$

The composition of the above two:

$$\forall_{a \in C_n} \ \overline{a} = (a')^*.$$

Spin group

Definition

Let $n \in \mathbb{N}$.

$$\operatorname{Spin}(n) := \{ x \in C_n \mid x' = x \land x\overline{x} = 1 \}.$$

Spin group

Universal cover of special orthogonal group

Proposition

Let $n \in \mathbb{N}$. The map $\lambda_n \colon \operatorname{Spin}(n) \to \operatorname{SO}(n)$, defined by

 $\lambda_n(x)v = xv\overline{x},$

where $x \in \text{Spin}(n), v \in \mathbb{R}^n$ is a continuous group epimorphism.

For $n \ge 3$:

- $\operatorname{Spin}(n)$ universal cover of $\operatorname{SO}(n)$.
- $\pi_1(\mathrm{SO}(n)) \cong \mathbb{Z}/2\mathbb{Z}.$
- ker $\lambda_n = \{\pm 1\}$. We get a central extension

 $1 \longrightarrow \{\pm 1\} \longrightarrow \operatorname{Spin}(n) \xrightarrow{\lambda_n} \operatorname{SO}(n) \longrightarrow 1.$

Spin group

Universal cover of special orthogonal group

Proposition

Let $n \in \mathbb{N}$. The map $\lambda_n \colon \operatorname{Spin}(n) \to \operatorname{SO}(n)$, defined by

 $\lambda_n(x)v = xv\overline{x},$

where $x \in \text{Spin}(n), v \in \mathbb{R}^n$ is a continuous group epimorphism.

For $n \geq 3$:

- $\operatorname{Spin}(n)$ universal cover of $\operatorname{SO}(n)$.
- $\pi_1(\mathrm{SO}(n)) \cong \mathbb{Z}/2\mathbb{Z}.$
- ker $\lambda_n = \{\pm 1\}$. We get a central extension

$$1 \longrightarrow \{\pm 1\} \longrightarrow \operatorname{Spin}(n) \xrightarrow{\lambda_n} \operatorname{SO}(n) \longrightarrow 1.$$

Spin structures on manifolds

Spin structures on manifolds

- X orientable closed manifold of dimension n.
- Q principal SO(n)-tangent bundle of X.

Definition

A spin structure on X is a pair (P, Λ) :

- P principal Spin(n)-bundle over X;
- $\Lambda \colon P \to Q$ is a 2-fold covering with the commutative diagram:

(The maps in the rows are defined by the action of ${\rm Spin}(n)$ and ${\rm SO}(n)$ on P and Q respectively.)

Spin structures on manifolds

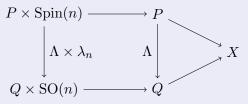
Spin structures on manifolds

- X orientable closed manifold of dimension n.
- Q principal SO(n)-tangent bundle of X.

Definition

A spin structure on X is a pair (P, Λ) :

- P principal Spin(n)-bundle over X;
- $\Lambda \colon P \to Q$ is a 2-fold covering with the commutative diagram:



(The maps in the rows are defined by the action of Spin(n) and SO(n) on P and Q respectively.)

Rafał Lutowski (University of Gdańsk) Spin structures on flat manifolds

Spin structures on manifolds

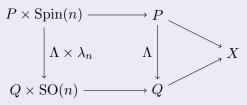
Spin structures on manifolds

- X orientable closed manifold of dimension n.
- Q principal SO(n)-tangent bundle of X.

Definition

A spin structure on X is a pair (P, Λ) :

- P principal Spin(n)-bundle over X;
- $\Lambda \colon P \to Q$ is a 2-fold covering with the commutative diagram:



(The maps in the rows are defined by the action of ${\rm Spin}(n)$ and ${\rm SO}(n)$ on P and Q respectively.)

Example

Every compact oriented 3 manifold admits a spin structure (it has trivial tangent bundle).

Proposition

An orientable closed manifold X has a spin structure if and only if its second Stiefel-Whitney class vanishes:

$$w_2(X) = 0.$$

Moreover in this case spin structures on M are classified by

 $H^1(X,\mathbb{Z}_2).$

Example

Every compact oriented 3 manifold admits a spin structure (it has trivial tangent bundle).

Proposition

An orientable closed manifold *X* has a spin structure if and only if its second Stiefel-Whitney class vanishes:

$$w_2(X) = 0.$$

Moreover in this case spin structures on M are classified by

 $H^1(X,\mathbb{Z}_2).$

Example

Every compact oriented 3 manifold admits a spin structure (it has trivial tangent bundle).

Proposition

An orientable closed manifold *X* has a spin structure if and only if its second Stiefel-Whitney class vanishes:

$$w_2(X) = 0.$$

Moreover in this case spin structures on M are classified by

 $H^1(X,\mathbb{Z}_2).$

Spin structures on flat manifolds

Algebraic condition

• $X = \mathbb{R}^n / \Gamma$ – orientable flat *n*-manifold:

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1.$$

• $\pi \colon \Gamma \to \mathrm{SO}(n).$

Proposition (Pfaffle 1999)

The set of spin structures on *X* is in bijection with the set of the homomorphisms of the form $\varepsilon \colon \Gamma \to \operatorname{Spin}(n)$ which satisfy $\lambda_n \varepsilon = \pi$:

Spin structures on flat manifolds

Algebraic condition

• $X = \mathbb{R}^n / \Gamma$ – orientable flat *n*-manifold:

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1.$$

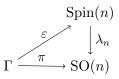
• $\pi \colon \Gamma \to \mathrm{SO}(n).$

Proposition (Pfaffle 1999)

The set of spin structures on *X* is in bijection with the set of the homomorphisms of the form $\varepsilon \colon \Gamma \to \operatorname{Spin}(n)$ which satisfy $\lambda_n \varepsilon = \pi$:

$$\begin{array}{c} \operatorname{Spin}(n) \\ \overbrace{}^{\varepsilon} & \downarrow \lambda_n \\ \overbrace{}^{\pi} & \to \operatorname{SO}(n) \end{array}$$

Determining spin structures



Every crystallographic group is finitely presented. Let

 $\Gamma = \langle S \mid R \rangle,$

be a presentation of Γ , with finite *S* and *R*.

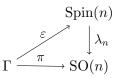
Determining spin structures

For every map $\varepsilon \colon S \to \operatorname{Spin}(n)$ for which $\lambda_n \varepsilon = \pi$ check if it preserves the relations of Γ :

$$r_1 \dots r_l \in R \stackrel{?}{\Rightarrow} \varepsilon(r_1) \dots \varepsilon(r_l) = 1,$$

where $r_1, ..., r_l \in S \cup S^{-1}$.

Determining spin structures



Every crystallographic group is finitely presented. Let

 $\Gamma = \langle S \mid R \rangle,$

be a presentation of Γ , with finite *S* and *R*.

Determining spin structures

For every map $\varepsilon \colon S \to \operatorname{Spin}(n)$ for which $\lambda_n \varepsilon = \pi$ check if it preserves the relations of Γ :

$$r_1 \dots r_l \in R \stackrel{?}{\Rightarrow} \varepsilon(r_1) \dots \varepsilon(r_l) = 1,$$

where $r_1, \ldots, r_l \in S \cup S^{-1}$.

A question

Question

How to determine $\varepsilon(S) \subset \lambda_n^{-1}(G)$?

• $G = \pi(\Gamma) \subset SO(n)$ – finite group.

• For $n \ge 3 \ker \lambda_n = \{\pm 1\}$: for every $x \in \operatorname{Spin}(n), g \in \operatorname{SO}(n)$ we get

$$\lambda_n(x) = g \Rightarrow \lambda_n^{-1}(g) = \{\pm x\}.$$

Remark

From now on we assume $n \geq 3$.

A question

Question

How to determine $\varepsilon(S) \subset \lambda_n^{-1}(G)$?

• $G = \pi(\Gamma) \subset SO(n)$ – finite group.

• For $n \ge 3 \ker \lambda_n = \{\pm 1\}$: for every $x \in \operatorname{Spin}(n), g \in \operatorname{SO}(n)$ we get

$$\lambda_n(x) = g \Rightarrow \lambda_n^{-1}(g) = \{\pm x\}.$$

Remark

From now on we assume $n \geq 3$.

A question

Question

How to determine $\varepsilon(S) \subset \lambda_n^{-1}(G)$?

- $G = \pi(\Gamma) \subset SO(n)$ finite group.
- For $n \ge 3 \ker \lambda_n = \{\pm 1\}$: for every $x \in \operatorname{Spin}(n), g \in \operatorname{SO}(n)$ we get

$$\lambda_n(x) = g \Rightarrow \lambda_n^{-1}(g) = \{\pm x\}.$$

Remark

From now on we assume $n \geq 3$.

A question

Question

How to determine $\varepsilon(S) \subset \lambda_n^{-1}(G)$?

• $G = \pi(\Gamma) \subset SO(n)$ – finite group.

• For $n \ge 3 \ker \lambda_n = \{\pm 1\}$: for every $x \in \operatorname{Spin}(n), g \in \operatorname{SO}(n)$ we get

$$\lambda_n(x) = g \Rightarrow \lambda_n^{-1}(g) = \{\pm x\}.$$

Remark

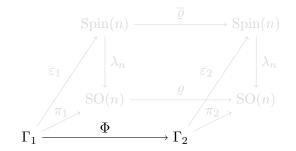
From now on we assume $n \geq 3$.

Proposition (Hiss, Szczepański 2008)

Let $\Gamma_1, \Gamma_2 \subset E(n)$ be isomorphic Bieberbach groups. Then the set of spin structures of \mathbb{R}^n/Γ_1 is in bijection with the set of spin structures of \mathbb{R}^n/Γ_2 .

Proposition (Hiss, Szczepański 2008)

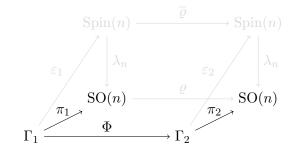
Let $\Gamma_1, \Gamma_2 \subset E(n)$ be isomorphic Bieberbach groups. Then the set of spin structures of \mathbb{R}^n/Γ_1 is in bijection with the set of spin structures of \mathbb{R}^n/Γ_2 .



• Φ – the isomorphism: conjugation by $(A, a) \in A(n)$.

Proposition (Hiss, Szczepański 2008)

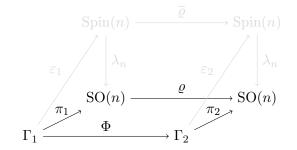
Let $\Gamma_1, \Gamma_2 \subset E(n)$ be isomorphic Bieberbach groups. Then the set of spin structures of \mathbb{R}^n/Γ_1 is in bijection with the set of spin structures of \mathbb{R}^n/Γ_2 .



• π_1, π_2 – the projections.

Proposition (Hiss, Szczepański 2008)

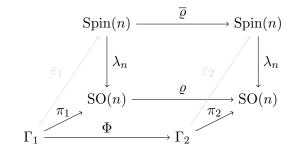
Let $\Gamma_1, \Gamma_2 \subset E(n)$ be isomorphic Bieberbach groups. Then the set of spin structures of \mathbb{R}^n/Γ_1 is in bijection with the set of spin structures of \mathbb{R}^n/Γ_2 .



• ρ – conjugation by $A \in GL(n, \mathbb{R})$.

Proposition (Hiss, Szczepański 2008)

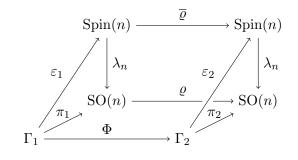
Let $\Gamma_1, \Gamma_2 \subset E(n)$ be isomorphic Bieberbach groups. Then the set of spin structures of \mathbb{R}^n/Γ_1 is in bijection with the set of spin structures of \mathbb{R}^n/Γ_2 .



• $\overline{\varrho}$ – conjugation by $\overline{A} \in ML(n, \mathbb{R})$.

Proposition (Hiss, Szczepański 2008)

Let $\Gamma_1, \Gamma_2 \subset E(n)$ be isomorphic Bieberbach groups. Then the set of spin structures of \mathbb{R}^n/Γ_1 is in bijection with the set of spin structures of \mathbb{R}^n/Γ_2 .



$$\varepsilon_2 = \overline{\varrho} \varepsilon_1 \Phi^{-1}$$

Algebraic condition II

• $X = \mathbb{R}^n / \Gamma$ – orientable flat *n*-manifold:

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1.$$

• $\pi \colon \Gamma \to \mathrm{SO}(n).$

Corollary

The set of spin structures on *X* is in bijection with the set of the homomorphisms of the form $\varepsilon \colon \Gamma \to \operatorname{Spin}(n)$ which satisfy $\lambda_n \varepsilon = \rho \pi$

where $\varrho \colon G \to SO(n)$ is a representation of G which is \mathbb{R} -equivalent to $id \colon G \to G \subset SO(n)$.

Algebraic condition II

• $X = \mathbb{R}^n / \Gamma$ – orientable flat *n*-manifold:

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1.$$

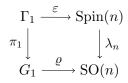
• $\pi \colon \Gamma \to \mathrm{SO}(n).$

Corollary

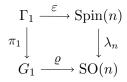
The set of spin structures on *X* is in bijection with the set of the homomorphisms of the form $\varepsilon \colon \Gamma \to \operatorname{Spin}(n)$ which satisfy $\lambda_n \varepsilon = \varrho \pi$:

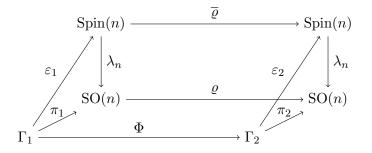
where $\rho: G \to SO(n)$ is a representation of G which is \mathbb{R} -equivalent to $id: G \to G \subset SO(n)$.

Algebraic condition II

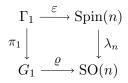


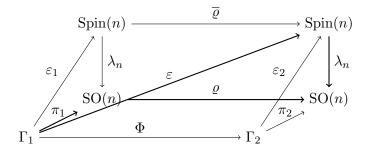
Algebraic condition II





Algebraic condition II





Existence of spin structures on flat manifolds

Necessary and sufficient condition

Lemma

Let Γ be an *n*-dimensional Bieberbach group with holonomy group G:

 $0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1$

Let $F \subset G$ be a Sylow 2-subgroup of G. Then \mathbb{R}^n/Γ has a spin structure if and only if $\mathbb{R}^n/\pi^{-1}(F)$ has one.

Existence of spin structures on flat manifolds

Necessary and sufficient condition

Lemma

Let Γ be an *n*-dimensional Bieberbach group with holonomy group G:

 $0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1.$

Let $F \subset G$ be a Sylow 2-subgroup of G. Then \mathbb{R}^n/Γ has a spin structure if and only if $\mathbb{R}^n/\pi^{-1}(F)$ has one.

Corollary

It is enough to find a "good" representation $\varrho \colon G \to SO(n)$ with assumption that *G* is a 2-group.

Existence of spin structures on flat manifolds

Necessary and sufficient condition

Corollary

It is enough to find a "good" representation $\varrho \colon G \to SO(n)$ with assumption that *G* is a 2-group.

Theorem (Putrycz, Szczepański 2010)

24 out of the 27 oriented flat 4-manifolds have a spin structure.

 $\mathcal{O}(n,\mathbb{Z}):=\mathrm{GL}(n,\mathbb{Z})\cap O(n),\quad \mathcal{SO}(n,\mathbb{Z}):=\mathrm{GL}(n,\mathbb{Z})\cap \mathcal{SO}(n)$

D ⊂ GL(n, Z) – subgroup of diagonal matrices (±1 on diagonal).
P_σ ∈ GL(n, Z) – matrix of a permutation σ ∈ S_n.

Lemma

We have the following split exact sequence

$$1 \longrightarrow \mathcal{D} \longrightarrow \mathcal{O}(n, \mathbb{Z}) \longrightarrow S_n \longrightarrow 1$$

with splitting homomorphism defined by

 $\sigma \mapsto P_{\sigma}.$

$$\forall_{A \in \mathcal{O}(n,\mathbb{Z})} \exists_{D \in \mathcal{D}} \exists_{\sigma \in S_n} A = DP_{\sigma}$$

 $\mathcal{O}(n,\mathbb{Z}):=\mathrm{GL}(n,\mathbb{Z})\cap O(n),\quad \mathcal{SO}(n,\mathbb{Z}):=\mathrm{GL}(n,\mathbb{Z})\cap \mathcal{SO}(n)$

D ⊂ GL(n, Z) – subgroup of diagonal matrices (±1 on diagonal).
P_σ ∈ GL(n, Z) – matrix of a permutation σ ∈ S_n.

Lemma

We have the following split exact sequence

$$1 \longrightarrow \mathcal{D} \longrightarrow \mathcal{O}(n, \mathbb{Z}) \longrightarrow S_n \longrightarrow 1$$

with splitting homomorphism defined by

 $\sigma \mapsto P_{\sigma}.$

$$\forall_{A \in \mathcal{O}(n,\mathbb{Z})} \exists_{D \in \mathcal{D}} \exists_{\sigma \in S_n} A = DP_{\sigma}$$

 $\mathcal{O}(n,\mathbb{Z}):=\mathrm{GL}(n,\mathbb{Z})\cap O(n),\quad \mathcal{SO}(n,\mathbb{Z}):=\mathrm{GL}(n,\mathbb{Z})\cap \mathcal{SO}(n)$

- $\mathcal{D} \subset \operatorname{GL}(n, \mathbb{Z})$ subgroup of diagonal matrices (±1 on diagonal).
- $P_{\sigma} \in \operatorname{GL}(n, \mathbb{Z})$ matrix of a permutation $\sigma \in S_n$.

Lemma

We have the following split exact sequence

$$1 \longrightarrow \mathcal{D} \longrightarrow \mathcal{O}(n, \mathbb{Z}) \longrightarrow S_n \longrightarrow 1$$

with splitting homomorphism defined by

 $\sigma \mapsto P_{\sigma}.$

$$\forall_{A \in \mathcal{O}(n,\mathbb{Z})} \exists_{D \in \mathcal{D}} \exists_{\sigma \in S_n} A = DP_{\sigma}$$

 $\mathcal{O}(n,\mathbb{Z}):=\mathrm{GL}(n,\mathbb{Z})\cap O(n),\quad \mathcal{SO}(n,\mathbb{Z}):=\mathrm{GL}(n,\mathbb{Z})\cap \mathcal{SO}(n)$

- $\mathcal{D} \subset \operatorname{GL}(n, \mathbb{Z})$ subgroup of diagonal matrices (±1 on diagonal).
- $P_{\sigma} \in \operatorname{GL}(n, \mathbb{Z})$ matrix of a permutation $\sigma \in S_n$.

Lemma

We have the following split exact sequence

$$1 \longrightarrow \mathcal{D} \longrightarrow \mathcal{O}(n, \mathbb{Z}) \longrightarrow S_n \longrightarrow 1$$

with splitting homomorphism defined by

$$\sigma \mapsto P_{\sigma}.$$

$$\forall_{A \in \mathcal{O}(n,\mathbb{Z})} \exists_{D \in \mathcal{D}} \exists_{\sigma \in S_n} A = DP_{\sigma}$$

Rafał Lutowski (University of Gdańsk) Spin structures on flat manifolds

$$\forall_{A \in \mathcal{O}(n,\mathbb{Z})} \exists_{D \in \mathcal{D}} \exists_{\sigma \in S_n} A = DP_{\sigma}$$

P_(ij) – matrix of the transposition (i j) with −1 instead of 1 in the ith row, where 1 ≤ i < j ≤ n.

Corollary

Let $A \in O(n, \mathbb{Z})$. Then

$$A = DP_{(i_1 j_1)} \dots P_{(i_k j_k)},$$

where $D \in \mathcal{D}$.

$$\forall_{A \in \mathcal{O}(n,\mathbb{Z})} \exists_{D \in \mathcal{D}} \exists_{\sigma \in S_n} A = DP_{\sigma}$$

• $P'_{(i j)}$ - matrix of the transposition (i j) with -1 instead of 1 in the *i*th row, where $1 \le i < j \le n$.

Corollary

Let $A \in O(n, \mathbb{Z})$. Then

$$A = DP_{(i_1 j_1)} \dots P_{(i_k j_k)},$$

where $D \in \mathcal{D}$.

$$\forall_{A \in \mathcal{O}(n,\mathbb{Z})} \exists_{D \in \mathcal{D}} \exists_{\sigma \in S_n} A = DP_{\sigma}$$

• $P'_{(i j)}$ - matrix of the transposition (i j) with -1 instead of 1 in the *i*th row, where $1 \le i < j \le n$.

Corollary

Let $A \in SO(n, \mathbb{Z})$. Then

$$A = DP'_{(i_1 \, j_1)} \dots P'_{(i_k \, j_k)},$$

where $D \in \mathcal{D} \cap SO(n, \mathbb{Z})$.

Preimages of "good" matrices

Lemma

Let $D \in \mathcal{D} \cap SO(n, \mathbb{Z})$ has -1 in the entries $i_1 < \ldots < i_m$ of the diagonal. Then

$$\lambda_n(e_{i_1}\ldots e_{i_m})=D.$$

Lemma

$$\forall_{1 \le i < j \le n} \lambda_n \left(\frac{1 + e_i e_j}{\sqrt{2}} \right) = P'_{(ij)}.$$

Preimages of "good" matrices

Lemma

Let $D \in \mathcal{D} \cap SO(n, \mathbb{Z})$ has -1 in the entries $i_1 < \ldots < i_m$ of the diagonal. Then

$$\lambda_n(e_{i_1}\dots e_{i_m})=D.$$

Lemma

$$\forall_{1 \le i < j \le n} \lambda_n \left(\frac{1 + e_i e_j}{\sqrt{2}} \right) = P'_{(ij)}.$$

Preimages of "good" matrices

Lemma

Let $D \in \mathcal{D} \cap SO(n, \mathbb{Z})$ has -1 in the entries $i_1 < \ldots < i_m$ of the diagonal. Then

$$\lambda_n(\pm e_{i_1}\dots e_{i_m})=D.$$

Lemma

$$\forall_{1 \le i < j \le n} \lambda_n \left(\pm \frac{1 + e_i e_j}{\sqrt{2}} \right) = P'_{(i j)}.$$

Theorem (Eckmann, Mislin 1979)

Let *G* be a finite *p*-group. Then every \mathbb{Q} -irreducible representation of *G* is either induced from a representation of a subgroup of index *p* or it factors through a representation of a cyclic group of order *p*.

Corollary A

Every rational representation $\tau: G \to GL(k, \mathbb{Q})$ of 2-group *G* is equivalent to a representation $\varrho: G \to O(k, \mathbb{Z})$.

Corollary B

Every rational representation $\tau \colon G \to SL(k, \mathbb{Q})$ of 2-group G is equivalent to a representation $\varrho \colon G \to SO(k, \mathbb{Z})$.

Theorem (Eckmann, Mislin 1979)

Let *G* be a finite *p*-group. Then every \mathbb{Q} -irreducible representation of *G* is either induced from a representation of a subgroup of index *p* or it factors through a representation of a cyclic group of order *p*.

Corollary A

Every rational representation $\tau \colon G \to \operatorname{GL}(k, \mathbb{Q})$ of 2-group G is equivalent to a representation $\varrho \colon G \to \operatorname{O}(k, \mathbb{Z})$.

Corollary B

Every rational representation $\tau: G \to SL(k, \mathbb{Q})$ of 2-group *G* is equivalent to a representation $\varrho: G \to SO(k, \mathbb{Z})$.

Corollary A

Every rational representation $\tau: G \to GL(k, \mathbb{Q})$ of 2-group *G* is equivalent to a representation $\varrho: G \to O(k, \mathbb{Z})$.

Proof.

• The group $C_2 = \langle c \mid c^2 = 1 \rangle$ has exactly two irreducible

representations:

 $c\mapsto 1, \quad c\mapsto -1.$

Corollary A

Every rational representation $\tau: G \to GL(k, \mathbb{Q})$ of 2-group *G* is equivalent to a representation $\varrho: G \to O(k, \mathbb{Z})$.

Proof.

Assume that the statement is true for every 2-group of order less than |G|. Let

$$\tau\colon G\to \mathrm{GL}(k,\mathbb{Q})$$

be an irreducible representation of G.

Corollary A

Every rational representation $\tau: G \to GL(k, \mathbb{Q})$ of 2-group *G* is equivalent to a representation $\varrho: G \to O(k, \mathbb{Z})$.

Proof.

2 Assume that the statement is true for every 2-group of order less than |G|. Let

$$\tau \colon G \to \mathrm{GL}(k, \mathbb{Q})$$

be an irreducible representation of G.

•
$$\tau = \operatorname{ind} \tau_H$$
, where $H < G$, $[G : H] = 2$ and $\tau_H : H \to \operatorname{GL}(k/2, \mathbb{Q})$:
 $\tau_H \sim \varrho_H$, where $\varrho_H : H \to \operatorname{O}(k/2, \mathbb{Z})$.
 $\tau = \operatorname{ind} \tau_H \sim \operatorname{ind} \varrho_H$ and $\operatorname{ind} \varrho_H : G \to \operatorname{O}(k, \mathbb{Z})$.

Corollary A

Every rational representation $\tau \colon G \to \operatorname{GL}(k, \mathbb{Q})$ of 2-group G is equivalent to a representation $\varrho \colon G \to \operatorname{O}(k, \mathbb{Z})$.

Proof.

2 Assume that the statement is true for every 2-group of order less than |G|. Let

$$\tau \colon G \to \mathrm{GL}(k, \mathbb{Q})$$

be an irreducible representation of G.

$$\tau = \operatorname{ind} \tau_H$$
, where $H < G, [G:H] = 2$ and $\tau_H \colon H \to \operatorname{GL}(k/2, \mathbb{Q})$:

* $\tau_H \sim \varrho_H$, where $\varrho_H \colon H \to O(k/2, \mathbb{Z})$.

 $\tau = \operatorname{ind} \tau_H \sim \operatorname{ind} \varrho_H \text{ and } \operatorname{ind} \varrho_H \colon G \to \mathcal{O}(k, \mathbb{Z}).$

Corollary A

Every rational representation $\tau \colon G \to \operatorname{GL}(k, \mathbb{Q})$ of 2-group G is equivalent to a representation $\varrho \colon G \to \operatorname{O}(k, \mathbb{Z})$.

Proof.

2 Assume that the statement is true for every 2-group of order less than |G|. Let

$$\tau\colon G\to \mathrm{GL}(k,\mathbb{Q})$$

be an irreducible representation of G.

•
$$\tau = \operatorname{ind} \tau_H$$
, where $H < G, [G : H] = 2$ and $\tau_H : H \to \operatorname{GL}(k/2, \mathbb{Q})$:
• $\tau_H \sim \varrho_H$, where $\varrho_H : H \to \operatorname{O}(k/2, \mathbb{Z})$.
• $\tau = \operatorname{ind} \tau_H \sim \operatorname{ind} \varrho_H$ and $\operatorname{ind} \varrho_H : G \to \operatorname{O}(k, \mathbb{Z})$.

Corollary A

Every rational representation $\tau \colon G \to \operatorname{GL}(k, \mathbb{Q})$ of 2-group *G* is equivalent to a representation $\varrho \colon G \to \operatorname{O}(k, \mathbb{Z})$.

Proof.

2 Assume that the statement is true for every 2-group of order less than |G|. Let

$$\tau \colon G \to \mathrm{GL}(k, \mathbb{Q})$$

be an irreducible representation of G.

2 $[G: \ker \tau] = 2$:

 $\tau(G) \subset \{\pm 1\} = \mathcal{O}(1,\mathbb{Z}).$

Corollary A

2

Every rational representation $\tau \colon G \to \operatorname{GL}(k, \mathbb{Q})$ of 2-group *G* is equivalent to a representation $\varrho \colon G \to \operatorname{O}(k, \mathbb{Z})$.

Proof.

2 Assume that the statement is true for every 2-group of order less than |G|. Let

$$\tau \colon G \to \mathrm{GL}(k, \mathbb{Q})$$

be an irreducible representation of G.

$$[G: \ker \tau] = 2:$$

$$\tau(G) \subset \{\pm 1\} = \mathcal{O}(1, \mathbb{Z}).$$

Determining existence of spin structures

Let Γ be a Bieberbach group:

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma' \xrightarrow{\pi} G' \longrightarrow 1,$$

where $G' \subset SO(n)$, i.e. \mathbb{R}^n / Γ' is orientable.

Determining existence of spin structures

Let Γ be a Bieberbach group:

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma' \xrightarrow{\pi} G' \longrightarrow 1,$$

where $G' \subset SO(n)$, i.e. \mathbb{R}^n / Γ' is orientable.

• Calculate a Sylow 2-subgroup G of G' and deal with $\Gamma = \pi^{-1}(G) \subset \Gamma'$:

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1.$$

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1, G-2$$
-group.

 $\ 2 \ \ \varrho \colon G \to \mathrm{SO}(n,\mathbb{Z}).$

 $G = \langle g_1, \ldots, g_s \rangle, \, \lambda_n(x_i) = \varrho(g_i), i = 1, \ldots, s.$

② Determine a representation *ρ*: G → SO(n, Z) equivalent to *id*: G → G ⊂ SO(n). Useful:

- ► A list of all Q-irreducible integral and orthogonal representations of the group *G*.
- Character theory (characteristic zero).

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1, G-2$$
-group.

 $\ \varrho \colon G \to \mathrm{SO}(n,\mathbb{Z}).$

 $G = \langle g_1, \ldots, g_s \rangle, \, \lambda_n(x_i) = \varrho(g_i), i = 1, \ldots, s.$

- ② Determine a representation *ρ*: G → SO(n, Z) equivalent to *id*: G → G ⊂ SO(n). Useful:
 - ► A list of all Q-irreducible integral and orthogonal representations of the group *G*.
 - Character theory (characteristic zero).

 $0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1, G - 2 \text{-group.}$

Solution Fix a generating set $\{g_1, \ldots, g_s\}$ of G. Using decomposition of $\varrho(g_i)$ determine $x_i \in \text{Spin}(n)$ such that

$$\lambda_n(x_i) = \varrho(g_i)$$

for every $1 \le i \le s$.

• 0
$$\longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1, G - 2$$
-group.
• $\varrho: G \to \mathrm{SO}(n, \mathbb{Z}).$
• $G = \langle g_1, \dots, g_s \rangle, \lambda_n(x_i) = \varrho(g_i), i = 1, \dots, s.$

Determine the integral holonomy representation

$$\varphi \colon G \to \mathrm{GL}(n,\mathbb{Z}).$$

• $\varphi_{i,j} : G \to \mathbb{Z}$ – coordinate functions:

$$\forall_{g \in G} \varphi(g) = [\varphi_{i,j}(g)].$$

- ▶ In CARAT $\Gamma \subset \operatorname{GL}(n, \mathbb{Z}) \ltimes \mathbb{Q}^n$, $\Gamma \cap \mathbb{Q}^n = \mathbb{Z}^n$.
- $\varrho, id_G, \varphi \mathbb{R}$ -equivalent.

Oetermine the integral holonomy representation

$$\varphi \colon G \to \operatorname{GL}(n, \mathbb{Z}).$$

•
$$\varphi_{i,j} \colon G \to \mathbb{Z}$$
 – coordinate functions:

 $\forall_{g\in G} \varphi(g) = [\varphi_{i,j}(g)].$

- In CARAT $\Gamma \subset \operatorname{GL}(n,\mathbb{Z}) \ltimes \mathbb{Q}^n$, $\Gamma \cap \mathbb{Q}^n = \mathbb{Z}^n$.
- $\varrho, id_G, \varphi \mathbb{R}$ -equivalent.

1
$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1, G - 2$$
-group.
2 $\varrho: G \to \mathrm{SO}(n, \mathbb{Z}).$
3 $G = \langle g_1, \dots, g_s \rangle, \lambda_n(x_i) = \varrho(g_i), i = 1, \dots, s.$
4 $\varphi: G \to \mathrm{GL}(n, \mathbb{Z}), \varphi_{i,j}: G \to \mathbb{Z}, 1 \le i, j \le n.$

Oetermine the integral holonomy representation

$$\varphi \colon G \to \operatorname{GL}(n, \mathbb{Z}).$$

•
$$\varphi_{i,j} \colon G \to \mathbb{Z}$$
 – coordinate functions:

 $\forall_{g \in G} \varphi(g) = [\varphi_{i,j}(g)].$

In CARAT Γ ⊂ GL(n, Z) ⋉ Qⁿ, Γ ∩ Qⁿ = Zⁿ.
 ρ, id_G, φ − ℝ-equivalent.

• 0
$$\longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1, G - 2$$
-group.
• $\varrho: G \to \mathrm{SO}(n, \mathbb{Z}).$
• $G = \langle g_1, \dots, g_s \rangle, \lambda_n(x_i) = \varrho(g_i), i = 1, \dots, s.$
• $\varphi: G \to \mathrm{GL}(n, \mathbb{Z}), \varphi_{i,i}: G \to \mathbb{Z}, 1 \le i, j \le n.$

Oetermine the integral holonomy representation

$$\varphi \colon G \to \operatorname{GL}(n, \mathbb{Z}).$$

•
$$\varphi_{i,j} \colon G \to \mathbb{Z}$$
 – coordinate functions:

 $\forall_{g\in G} \varphi(g) = [\varphi_{i,j}(g)].$

- In CARAT $\Gamma \subset \operatorname{GL}(n,\mathbb{Z}) \ltimes \mathbb{Q}^n$, $\Gamma \cap \mathbb{Q}^n = \mathbb{Z}^n$.
- $\varrho, id_G, \varphi \mathbb{R}$ -equivalent.

5 If
$$\mathbb{Z}^n = \langle a_1, \dots, a_n \rangle$$
 and $\gamma_1, \dots, \gamma_s \in \Gamma$ are such that

$$\pi(\gamma_i) = g_i$$

for $1 \leq i \leq s$ then

$$\Gamma = \langle a_1, \ldots, a_n, \gamma_1, \ldots, \gamma_s \rangle.$$

$$G = \langle g_1, \dots, g_s \rangle, \lambda_n(x_i) = \varrho(g_i), i = 1, \dots, s.$$

$$\varphi: G \to \operatorname{GL}(n, \mathbb{Z}), \varphi_{i,j}: G \to \mathbb{Z}, 1 \le i, j \le n.$$

$$\Gamma = \langle a_1, \dots, a_n, \gamma_1, \dots, \gamma_s \rangle.$$

5 If $\varepsilon \colon \Gamma \to \operatorname{Spin}(n)$ – homomorphism with $\lambda_n \varepsilon = \pi$ then

$$\varepsilon(a_i) \in \{\pm 1\}$$
 and $\varepsilon(\gamma_j) \in \{\pm x_i\}$

for all $1 \le i \le n, 1 \le j \le s$.

• Three types of relations in Γ :

• Commutators in \mathbb{Z}^n – automatically satisfied:

$$\varepsilon(\{a_1,\ldots,a_n\})\subset\{\pm 1\}.$$

$$G = \langle g_1, \dots, g_s \rangle, \ \lambda_n(x_i) = \varrho(g_i), i = 1, \dots, s.$$

$$\varphi \colon G \to \operatorname{GL}(n, \mathbb{Z}), \ \varphi_{i,j} \colon G \to \mathbb{Z}, \ 1 \le i, j \le n.$$

$$\Gamma = \langle a_1, \dots, a_n, \gamma_1, \dots, \gamma_s \rangle.$$

Solution Three types of relations in Γ:
2 The action of G on Zⁿ. Let 1 ≤ i ≤ n and 1 ≤ j ≤ s. In Γ:

$$a_1^{\varrho_{1i}(g_j)}\cdots a_n^{\varrho_{ni}(g_j)}=\gamma_j a_i \gamma_j^{-1}.$$

In $\operatorname{Spin}(n)$:

$$\varepsilon(a_1)^{\varrho_{1i}(g_j)}\cdots\varepsilon(a_n)^{\varrho_{ni}(g_j)}=\varepsilon(\gamma_j)\varepsilon(a_i)\varepsilon(\gamma_j)^{-1}.$$

$$G = \langle g_1, \dots, g_s \rangle, \ \lambda_n(x_i) = \varrho(g_i), i = 1, \dots, s.$$

$$\varphi \colon G \to \operatorname{GL}(n, \mathbb{Z}), \ \varphi_{i,j} \colon G \to \mathbb{Z}, \ 1 \le i, j \le n.$$

$$\Gamma = \langle a_1, \dots, a_n, \gamma_1, \dots, \gamma_s \rangle.$$

Solution Three types of relations in Γ:
2 The action of G on Zⁿ. Let 1 ≤ i ≤ n and 1 ≤ j ≤ s. In Γ:

$$a_1^{\varrho_{1i}(g_j)}\cdots a_n^{\varrho_{ni}(g_j)}=\gamma_j a_i \gamma_j^{-1}.$$

 $\ln \operatorname{Spin}(n)$:

$$\varepsilon(a_1)^{\varrho_{1i}(g_j)}\cdots\varepsilon(a_n)^{\varrho_{ni}(g_j)}=\varepsilon(a_i),$$

since $\varepsilon(a_i) = \pm 1$.

$$G = \langle g_1, \dots, g_s \rangle, \ \lambda_n(x_i) = \varrho(g_i), i = 1, \dots, s.$$

$$\varphi \colon G \to \operatorname{GL}(n, \mathbb{Z}), \ \varphi_{i,j} \colon G \to \mathbb{Z}, \ 1 \le i, j \le n.$$

$$\Gamma = \langle a_1, \dots, a_n, \gamma_1, \dots, \gamma_s \rangle.$$

Solution Three types of relations in Γ:
2 The action of G on Zⁿ. Let 1 ≤ i ≤ n and 1 ≤ j ≤ s. In Γ:

$$a_1^{\varrho_{1i}(g_j)}\cdots a_n^{\varrho_{ni}(g_j)}=\gamma_j a_i \gamma_j^{-1}.$$

 $\ln \operatorname{Spin}(n)$:

 $\varepsilon(a_1)^{\varrho_{1i}(g_j)}\cdots\varepsilon(a_n)^{\varrho_{ni}(g_j)}\varepsilon(a_i)=1,$

since $\varepsilon(a_i) = \pm 1$.

$$G = \langle g_1, \dots, g_s \rangle, \ \lambda_n(x_i) = \varrho(g_i), i = 1, \dots, s.$$

$$\varphi \colon G \to \operatorname{GL}(n, \mathbb{Z}), \ \varphi_{i,j} \colon G \to \mathbb{Z}, \ 1 \le i, j \le n.$$

$$\Gamma = \langle a_1, \dots, a_n, \gamma_1, \dots, \gamma_s \rangle.$$

Three types of relations in Γ:
Relations from G. In G:

$$g_{i_1}\cdots g_{i_k}=1.$$

In Γ :

$$\gamma_{i_1}\cdots\gamma_{i_k}=a_1^{\alpha_1}\cdots a_n^{\alpha_n}$$

for some $\alpha_1, \ldots, \alpha_n \in \mathbb{Z}$. In Spin(*n*): $\varepsilon(\gamma_{i_1}) \cdots \varepsilon(\gamma_{i_k}) = \varepsilon(a_1)^{\alpha_1} \cdots \varepsilon(a_n)^{\alpha_n}$.

The Bieberbach group

Generators of Γ' :

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & -1/3 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 1/2 \\ 0 & -1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1/2 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

and

$$a_i = \begin{bmatrix} I & e_i \\ 0 & 1 \end{bmatrix},$$

where $1 \le i \le 5$.

$$\Gamma' = min.134.1.2.2$$
 in CARAT.

• The short exact sequence for Γ' :

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} S_4 \longrightarrow 1.$$

The sylow 2-subgroup G = D₈.
Γ = π⁻¹(G) is generated by a₁,..., a₅ and

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 & 1 & 1/2 \\ 0 & 0 & 0 & 1 & 0 & 1/2 \\ 0 & 0 & 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 2/3 \\ 0 & 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 0 & -1 & 1/2 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

• The short exact sequence for Γ' :

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} S_4 \longrightarrow 1.$$

• The sylow 2-subgroup $G = D_8$.

• $\Gamma = \pi^{-1}(G)$ is generated by a_1, \ldots, a_5 and

 $A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 & 1 & 1/2 \\ 0 & 0 & 0 & 1 & 0 & 1/2 \\ 0 & 0 & 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 2/3 \\ 0 & 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 0 & -1 & 1/2 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$

• The short exact sequence for Γ' :

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} S_4 \longrightarrow 1.$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 & 1 & 1/2 \\ 0 & 0 & 0 & 1 & 0 & 1/2 \\ 0 & 0 & 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 2/3 \\ 0 & 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 0 & -1 & 1/2 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

.

Sylow 2-subgroup

Special orthogonal integral representation

•
$$\operatorname{Tr}(\pi(A)) = 1, \operatorname{Tr}(\pi(B)) = -1.$$

• $a = \pi(A), b = \pi(B).$

• Character of $id: G \to G \subset SO(n)$:

Special orthogonal integral representation

•
$$\operatorname{Tr}(\pi(A)) = 1, \operatorname{Tr}(\pi(B)) = -1.$$

•
$$a = \pi(A), b = \pi(B).$$

• Character table of G:

• Character of $id: G \to G \subset SO(n)$:

 $\chi_1 + \chi_3 + \chi_4 + \chi_5.$

Sylow 2-subgroup

Special orthogonal integral representation

- $\operatorname{Tr}(\pi(A)) = 1, \operatorname{Tr}(\pi(B)) = -1.$
- $a = \pi(A), b = \pi(B).$
- Character table of G:

	1			b^2	
χ_1	1	1	1	1	1
χ_2	1	-1	1	1	-1
χ_3	1	1	-1	1	-1
χ_4	1	-1	-1	1	1
χ_5	2	$ \begin{array}{c} 1 \\ -1 \\ 1 \\ -1 \\ 0 \end{array} $	0	-2	0

• Character of $id: G \to G \subset SO(n)$:

Special orthogonal integral representation

- $\operatorname{Tr}(\pi(A)) = 1, \operatorname{Tr}(\pi(B)) = -1.$
- $a = \pi(A), b = \pi(B).$
- Character table of G:

	1	a	b	b^2	ab
χ_1	1	1	1	1	1
χ_2	1	-1	1	1	-1
χ_3	1	1	-1	1	-1
χ_4	1	-1	-1	1	1
χ_5	2	$ \begin{array}{c} 1 \\ -1 \\ 1 \\ -1 \\ 0 \end{array} $	0	-2	0

• Character of $id: G \to G \subset SO(n)$:

$$\chi_1 + \chi_3 + \chi_4 + \chi_5.$$

Sylow 2-subgroup

Special orthogonal integral representation

• Character of $id: G \to G \subset SO(n)$:

$$\chi_1 + \chi_3 + \chi_4 + \chi_5.$$

• $\varphi \colon G \to \mathrm{SO}(5,\mathbb{Z})$ may be defined by

$$a \mapsto \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, b \mapsto \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 \end{bmatrix}$$

.

Preimages in Spin(5)

Rafał Lutowski (University of Gdańsk) Spin structures on flat manifolds

Preimages in Spin(5)

$$\varphi \pi(A) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\Downarrow$$
$$\varphi \pi(A) = \lambda_5(\pm e_2 e_4)$$

Preimages in Spin(5)

Preimages in Spin(5)

Relations in Spin(5)

The action of G on \mathbb{Z}^5

$$\varepsilon(a_1)^{\varrho_{1i}(g_j)} \cdots \varepsilon(a_n)^{\varrho_{ni}(g_j)} \varepsilon(a_i) = 1$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 & 1 & 1/2 \\ 0 & 0 & 0 & 1 & 0 & 1/2 \\ 0 & 0 & 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 2/3 \\ 0 & 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & -1 & 1/2 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{cases} \varepsilon(a_2)\varepsilon(a_3)\varepsilon(a_4)^2 = 1\\ \varepsilon(a_2)\varepsilon(a_3)\varepsilon(a_5)^2 = 1\\ \varepsilon(a_2)\varepsilon(a_3)\varepsilon(a_4)\varepsilon(a_5)\varepsilon(a_2) = 1\\ \varepsilon(a_2)\varepsilon(a_5)\varepsilon(a_4) = 1 \end{cases}$$

Relations in Spin(5)

The action of G on \mathbb{Z}^5

$$\varepsilon(a_1)^{\varrho_{1i}(g_j)}\cdots\varepsilon(a_n)^{\varrho_{ni}(g_j)}\varepsilon(a_i) = 1$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 1 & 1/2 \\ 0 & 0 & 0 & 1 & 0 & 1/2 \\ 0 & 0 & 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 2/3 \\ 0 & 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & -1 & 1/2 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{cases} \varepsilon(a_2)\varepsilon(a_3) = 1\\ \varepsilon(a_2)\varepsilon(a_3)\varepsilon(a_5)^2 = 1\\ \varepsilon(a_2)\varepsilon(a_3)\varepsilon(a_4)\varepsilon(a_5)\varepsilon(a_2) = 1\\ \varepsilon(a_2)\varepsilon(a_5)\varepsilon(a_4) = 1 \end{cases}$$

Relations in Spin(5)

The action of G on \mathbb{Z}^5

$$\varepsilon(a_1)^{\varrho_{1i}(g_j)}\cdots\varepsilon(a_n)^{\varrho_{ni}(g_j)}\varepsilon(a_i) = 1$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 1 & 1/2 \\ 0 & 0 & 0 & 1 & 0 & 1/2 \\ 0 & 0 & 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 2/3 \\ 0 & 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 0 & -1 & 1/2 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{cases} \varepsilon(a_2)\varepsilon(a_3) = 1\\ \varepsilon(a_2)\varepsilon(a_3)\varepsilon(a_5)^2 = 1\\ \varepsilon(a_2)\varepsilon(a_3)\varepsilon(a_4)\varepsilon(a_5)\varepsilon(a_2) = 1\\ \varepsilon(a_2)\varepsilon(a_5)\varepsilon(a_4) = 1 \end{cases}$$

Relations in Spin(5)

The action of G on \mathbb{Z}^5

$$\varepsilon(a_1)^{\varrho_{1i}(g_j)}\cdots\varepsilon(a_n)^{\varrho_{ni}(g_j)}\varepsilon(a_i) = 1$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 1 & 1/2 \\ 0 & 0 & 0 & 1 & 0 & 1/2 \\ 0 & 0 & 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 2/3 \\ 0 & 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 0 & -1 & 1/2 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{cases} \varepsilon(a_2)\varepsilon(a_3) = 1\\ \varepsilon(a_2)\varepsilon(a_3)\varepsilon(a_5)^2 = 1\\ \varepsilon(a_2)\varepsilon(a_3)\varepsilon(a_4)\varepsilon(a_5)\varepsilon(a_2) = 1\\ \varepsilon(a_2)\varepsilon(a_5)\varepsilon(a_4) = 1 \end{cases}$$

Relations in Spin(5)

The action of G on \mathbb{Z}^5

$$\varepsilon(a_1)^{\varrho_{1i}(g_j)}\cdots\varepsilon(a_n)^{\varrho_{ni}(g_j)}\varepsilon(a_i) = 1$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 1 & 1/2 \\ 0 & 0 & 0 & 1 & 0 & 1/2 \\ 0 & 0 & 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 2/3 \\ 0 & 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 0 & -1 & 1/2 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{cases} \varepsilon(a_2)\varepsilon(a_3) = 1\\ \varepsilon(a_2)\varepsilon(a_3)\varepsilon(a_5)^2 = 1\\ \varepsilon(a_2)\varepsilon(a_3)\varepsilon(a_4)\varepsilon(a_5)\varepsilon(a_2) = 1\\ \varepsilon(a_2)\varepsilon(a_4)\varepsilon(a_5) = 1 \end{cases}$$

Relations in Spin(5)

The relations coming from \boldsymbol{G}

$$\varepsilon(\gamma_{i_1})\cdots\varepsilon(\gamma_{i_k})=\varepsilon(a_1)^{\alpha_1}\cdots\varepsilon(a_n)^{\alpha_n}$$

We have

$$\begin{cases} A^2 &= a_2 a_3 a_4 a_5 \\ B^4 &= a_4 a_5^{-1} \\ (AB)^2 &= a_2 a_4 \end{cases}$$

$$\begin{cases} \varepsilon(A)^2 &= \varepsilon(a_2)\varepsilon(a_3)\varepsilon(a_4)\varepsilon(a_5)\\ \varepsilon(B)^4 &= \varepsilon(a_4)\varepsilon(a_5)\\ (\varepsilon(A)\varepsilon(B))^2 &= \varepsilon(a_2)\varepsilon(a_4) \end{cases}$$

Relations in Spin(5)

Summary

$$\begin{cases} 1 = \varepsilon(a_2)\varepsilon(a_3) \\ 1 = \varepsilon(a_2)\varepsilon(a_4)\varepsilon(a_5) \\ \varepsilon(A)^2 = \varepsilon(a_2)\varepsilon(a_3)\varepsilon(a_4)\varepsilon(a_5) \\ \varepsilon(B)^4 = \varepsilon(a_4)\varepsilon(a_5) \\ (\varepsilon(A)\varepsilon(B))^2 = \varepsilon(a_2)\varepsilon(a_4) \end{cases}$$

$$\begin{cases} \varepsilon(a_2) = \varepsilon(a_3) = \varepsilon(a_4)\varepsilon(a_5) = \varepsilon(A)^2 = \varepsilon(B)^4 \\ \varepsilon(a_5) = (\varepsilon(A)\varepsilon(B))^2 \end{cases}$$

Relations in Spin(5)

Summary

$$\begin{cases} \varepsilon(a_2) &= \varepsilon(a_3) \\ \varepsilon(a_2) &= \varepsilon(a_4)\varepsilon(a_5) \\ \varepsilon(A)^2 &= \varepsilon(a_4)\varepsilon(a_5) \\ \varepsilon(B)^4 &= \varepsilon(a_4)\varepsilon(a_5) \\ (\varepsilon(A)\varepsilon(B))^2 &= \varepsilon(a_5) \end{cases}$$

$$\begin{cases} \varepsilon(a_2) = \varepsilon(a_3) = \varepsilon(a_4)\varepsilon(a_5) = \varepsilon(A)^2 = \varepsilon(B)^4 \\ \varepsilon(a_5) = (\varepsilon(A)\varepsilon(B))^2 \end{cases}$$

Relations in Spin(5)

Summary

$$\begin{cases} \varepsilon(a_2) &= \varepsilon(a_3) \\ \varepsilon(a_2) &= \varepsilon(a_4)\varepsilon(a_5) \\ \varepsilon(A)^2 &= \varepsilon(a_4)\varepsilon(a_5) \\ \varepsilon(B)^4 &= \varepsilon(a_4)\varepsilon(a_5) \\ (\varepsilon(A)\varepsilon(B))^2 &= \varepsilon(a_5) \end{cases}$$

$$\begin{cases} \varepsilon(a_2) = \varepsilon(a_3) = \varepsilon(a_4)\varepsilon(a_5) = \varepsilon(A)^2 = \varepsilon(B)^4\\ \varepsilon(a_5) = (\varepsilon(A)\varepsilon(B))^2 \end{cases}$$

Example

Spin structures on Γ

•
$$\begin{cases} \varepsilon(a_2) = \varepsilon(a_3) = \varepsilon(a_4)\varepsilon(a_5) = \varepsilon(A)^2 = \varepsilon(B)^4 \\ \varepsilon(a_5) = (\varepsilon(A)\varepsilon(B))^2 \end{cases}$$

• $\varepsilon(A) = \pm e_2 e_4, \ \varepsilon(B) = \pm \frac{e_2 e_3 (1 + e_5 e_4)}{\sqrt{2}}$

• For every possibility we have

$$\varepsilon(A)^2 = \varepsilon(B)^4 = (\varepsilon(A)\varepsilon(B))^2 = -1.$$

• $\varepsilon(a_2) = \varepsilon(a_3) = \varepsilon(a_5) = -1, \ \varepsilon(a_4) = 1.$

• For a_1, A, B every possibility is good.

Example

Spin structures on Γ

•
$$\begin{cases} \varepsilon(a_2) = \varepsilon(a_3) = \varepsilon(a_4)\varepsilon(a_5) = \varepsilon(A)^2 = \varepsilon(B)^4 \\ \varepsilon(a_5) = (\varepsilon(A)\varepsilon(B))^2 \end{cases}$$

•
$$\varepsilon(A) = \pm e_2 e_4, \ \varepsilon(B) = \pm \frac{e_2 e_3 (1 + e_5 e_4)}{\sqrt{2}}$$

For every possibility we have

$$\varepsilon(A)^2 = \varepsilon(B)^4 = (\varepsilon(A)\varepsilon(B))^2 = -1.$$

•
$$\varepsilon(a_2) = \varepsilon(a_3) = \varepsilon(a_5) = -1, \ \varepsilon(a_4) = 1.$$

• For a_1, A, B every possibility is good.

•
$$\begin{cases} \varepsilon(a_2) = \varepsilon(a_3) = \varepsilon(a_4)\varepsilon(a_5) = \varepsilon(A)^2 = \varepsilon(B)^4 \\ \varepsilon(a_5) = (\varepsilon(A)\varepsilon(B))^2 \end{cases}$$

•
$$\varepsilon(A) = \pm e_2 e_4, \ \varepsilon(B) = \pm \frac{e_2 e_3 (1 + e_5 e_4)}{\sqrt{2}}$$

For every possibility we have

$$\varepsilon(A)^2 = \varepsilon(B)^4 = (\varepsilon(A)\varepsilon(B))^2 = -1.$$

•
$$\varepsilon(a_2) = \varepsilon(a_3) = \varepsilon(a_5) = -1, \ \varepsilon(a_4) = 1.$$

• For a_1, A, B every possibility is good.

•
$$\begin{cases} \varepsilon(a_2) = \varepsilon(a_3) = \varepsilon(a_4)\varepsilon(a_5) = \varepsilon(A)^2 = \varepsilon(B)^4 \\ \varepsilon(a_5) = (\varepsilon(A)\varepsilon(B))^2 \end{cases}$$

•
$$\varepsilon(A) = \pm e_2 e_4, \, \varepsilon(B) = \pm \frac{e_2 e_3 (1 + e_5 e_4)}{\sqrt{2}}$$

For every possibility we have

$$\varepsilon(A)^2 = \varepsilon(B)^4 = (\varepsilon(A)\varepsilon(B))^2 = -1.$$

•
$$\varepsilon(a_2) = \varepsilon(a_3) = \varepsilon(a_5) = -1, \ \varepsilon(a_4) = 1.$$

• For a_1, A, B every possibility is good.

•
$$\begin{cases} \varepsilon(a_2) = \varepsilon(a_3) = \varepsilon(a_4)\varepsilon(a_5) = \varepsilon(A)^2 = \varepsilon(B)^4 \\ \varepsilon(a_5) = (\varepsilon(A)\varepsilon(B))^2 \end{cases}$$

•
$$\varepsilon(A) = \pm e_2 e_4, \ \varepsilon(B) = \pm \frac{e_2 e_3 (1 + e_5 e_4)}{\sqrt{2}}$$

For every possibility we have

$$\varepsilon(A)^2 = \varepsilon(B)^4 = (\varepsilon(A)\varepsilon(B))^2 = -1.$$

•
$$\varepsilon(a_2) = \varepsilon(a_3) = \varepsilon(a_5) = -1, \ \varepsilon(a_4) = 1.$$

• For a_1, A, B every possibility is good.

•
$$\begin{cases} \varepsilon(a_2) = \varepsilon(a_3) = \varepsilon(a_4)\varepsilon(a_5) = \varepsilon(A)^2 = \varepsilon(B)^4 \\ \varepsilon(a_5) = (\varepsilon(A)\varepsilon(B))^2 \end{cases}$$

•
$$\varepsilon(A) = \pm e_2 e_4, \, \varepsilon(B) = \pm \frac{e_2 e_3 (1 + e_5 e_4)}{\sqrt{2}}$$

For every possibility we have

$$\varepsilon(A)^2 = \varepsilon(B)^4 = (\varepsilon(A)\varepsilon(B))^2 = -1.$$

•
$$\varepsilon(a_2) = \varepsilon(a_3) = \varepsilon(a_5) = -1, \ \varepsilon(a_4) = 1.$$

- For a_1, A, B every possibility is good.
- We get $8 \text{ spin structures on } \Gamma$.

Example

Spin structures on Γ'

$$\Gamma = \pi^{-1}(G) \subset \Gamma'$$

Corollary

There exists a spin structure on \mathbb{R}^5/Γ' . Moreover, since

$$H^1(\mathbb{R}^5/\Gamma',\mathbb{Z}_2)=\mathbb{Z}_2^2,$$

there exist exactly four spin structures on the manifold.

Number of spin manifolds

dim	flat mflds	orientable f.m.	spin f.m.
5	1060	174	88
6	38746	3314	760

Relation with holonomy representation

Putrycz, Szczepański 2010

In dimension 4:

- The existence of a spin structure does not depend on the Q-equivalence class of the integral holonomy representation of an orientable flat manifold.
- The existence of a spin structure is determined by the Z-equivalence class of the integral holonomy representation of an orientable flat manifold.

Miatello, Podestá 2004

The above does not hold in dimension 6.

The above does not hold in dimension 5.

Relation with holonomy representation

Putrycz, Szczepański 2010

In dimension 4:

- The existence of a spin structure does not depend on the Q-equivalence class of the integral holonomy representation of an orientable flat manifold.
- The existence of a spin structure is determined by the Z-equivalence class of the integral holonomy representation of an orientable flat manifold.

Miatello, Podestá 2004

The above does not hold in dimension 6.

The above does not hold in dimension 5.

Relation with holonomy representation

Putrycz, Szczepański 2010

In dimension 4:

- The existence of a spin structure does not depend on the Q-equivalence class of the integral holonomy representation of an orientable flat manifold.
- The existence of a spin structure is determined by the Z-equivalence class of the integral holonomy representation of an orientable flat manifold.

Miatello, Podestá 2004

The above does not hold in dimension 6.

The above does not hold in dimension 5.

Thank you!