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Rafał Lutowski (University of Gdańsk) Spin structures on flat manifolds 1 / 32



Introduction Flat manifolds

Bieberbach groups and flat manifolds

E(n) = O(n) nRn – isometry group of the Euclidean space Rn.
Discrete and cocompact subgroup Γ ⊂ E(n) – crystallographic
group.
Torsionfree crystallographic Γ ⊂ E(n) – Bieberbach group.

I X = Rn/Γ – flat manifold (closed connected Riemannian
n-manifold with zero sectional curvature).

I π1(X) ∼= Γ.
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Introduction Flat manifolds

Bieberbach theorems

Theorem (Bieberbach 1911, 1912)
Let Γ ⊂ E(n) be a crystallographic group.

1 The subgroup Γ ∩ (1× Rn) of pure translations of Γ is free abelian
group of rank n. Moreover it is maximal abelian normal subgroup
of Γ of finite index.

2 A crystallographic group is isomorphic to Γ if and only if it is
conjugate to Γ in the group A(n) = GL(n,R) nRn.

3 There are a finite number of isomorphic classes of
crystallographic groups in each dimension.
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Introduction Flat manifolds

Structure of crystallographic groups
1st Bieberbach theorem

Γ fits into a short exact sequence

0 −→ Zn −→ Γ
π−→ G −→ 1.

π : Γ→ SO(n):
∀(A,a)∈Γ π(A, a) = A.

G = π(G) – finite group – holonomy group of Γ (X).
We get a holonomy representation ϕ : G→ GL(n,Z):

ϕg(z) = gzg−1,

where z ∈ Zn ⊂ Γ, g ∈ G, π(g) = g.
ϕ is R-equivalent to id : G→ G ⊂ SO(n).
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Rafał Lutowski (University of Gdańsk) Spin structures on flat manifolds 4 / 32



Introduction Flat manifolds

Enumeration of crystallographic groups
3rd Bieberbach theorem

Dimension 2: 17 groups (proof of completeness in 1891);
2 Bieberbach groups.

Dimension 3: 219 groups (Fedorov and Schönflies 1890’s);
10 Bieberbach groups.

Dimension 4: 4 783 groups (Brown et al. 1978);
74 Bieberbach groups.

Dimension 5: 222 018 groups (Plesken, Schultz 2000);
1 060 Bieberbach groups.

Dimension 6: 28 927 915 groups (Plesken, Schultz 2000);
38 746 Bieberbach groups.
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Introduction Clifford algebras and spin groups

Clifford algebra

Definition
Let n ∈ N. The Clifford algebra Cn is a real associative algebra with
one, generated by elements e1, . . . , en, which satisfy relations:

∀1≤i<j≤n e
2
i = −1 and eiej = −ejei.

C0 = R, C1 = C, C2 = H.
Rn = span{e1, . . . , en} ⊂ Cn.
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Introduction Clifford algebras and spin groups

Three involutions

1 Defined on the generators of the vector space Cn:

(ei1 . . . eik)∗ = eik . . . ei1 .

2 Defined on the generators of the algebra Cn:

e′i = −ei.

3 The composition of the above two:

∀a∈Cn a = (a′)∗.
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Introduction Clifford algebras and spin groups

Spin group

Definition
Let n ∈ N.

Spin(n) := {x ∈ Cn | x′ = x ∧ xx = 1}.
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Introduction Clifford algebras and spin groups

Spin group
Universal cover of special orthogonal group

Proposition
Let n ∈ N. The map λn : Spin(n)→ SO(n), defined by

λn(x)v = xvx,

where x ∈ Spin(n), v ∈ Rn is a continuous group epimorphism.

For n ≥ 3:
Spin(n) – universal cover of SO(n).
π1(SO(n)) ∼= Z/2Z.
kerλn = {±1}. We get a central extension

1 −→ {±1} −→ Spin(n)
λn−→ SO(n) −→ 1.
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Introduction Spin structures on manifolds

Spin structures on manifolds
X – orientable closed manifold of dimension n.
Q – principal SO(n)-tangent bundle of X.

Definition
A spin structure on X is a pair (P,Λ):

P – principal Spin(n)-bundle over X;
Λ: P → Q is a 2-fold covering with the commutative diagram:

X

Q

PP × Spin(n)

Q× SO(n)

Λ× λn Λ

(The maps in the rows are defined by the action of Spin(n) and SO(n)
on P and Q respectively.)
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Introduction Spin structures on manifolds

Example
Every compact oriented 3 manifold admits a spin structure (it has trivial
tangent bundle).

Proposition
An orientable closed manifold X has a spin structure if and only if its
second Stiefel-Whitney class vanishes:

w2(X) = 0.

Moreover in this case spin structures on M are classified by

H1(X,Z2).
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Existence of spin structures on flat manifolds Algorithmic approach I

Spin structures on flat manifolds
Algebraic condition

X = Rn/Γ – orientable flat n-manifold:

0 −→ Zn −→ Γ
π−→ G −→ 1.

π : Γ→ SO(n).

Proposition (Pfaffle 1999)
The set of spin structures on X is in bijection with the set of the
homomorphisms of the form ε : Γ→ Spin(n) which satisfy λnε = π:

Spin(n)

Γ SO(n)
π

ε
λn
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Existence of spin structures on flat manifolds Algorithmic approach I

Determining spin structures
Spin(n)

Γ SO(n)
π

ε λn

Every crystallographic group is finitely presented. Let

Γ = 〈S | R〉,

be a presentation of Γ, with finite S and R.

Determining spin structures

For every map ε : S → Spin(n) for which λnε = π check if it preserves
the relations of Γ:

r1 . . . rl ∈ R
?⇒ ε(r1) . . . ε(rl) = 1,

where r1, . . . , rl ∈ S ∪ S−1.

Rafał Lutowski (University of Gdańsk) Spin structures on flat manifolds 13 / 32



Existence of spin structures on flat manifolds Algorithmic approach I

Determining spin structures
Spin(n)

Γ SO(n)
π

ε λn

Every crystallographic group is finitely presented. Let

Γ = 〈S | R〉,

be a presentation of Γ, with finite S and R.

Determining spin structures

For every map ε : S → Spin(n) for which λnε = π check if it preserves
the relations of Γ:

r1 . . . rl ∈ R
?⇒ ε(r1) . . . ε(rl) = 1,

where r1, . . . , rl ∈ S ∪ S−1.

Rafał Lutowski (University of Gdańsk) Spin structures on flat manifolds 13 / 32



Existence of spin structures on flat manifolds Algorithmic approach I

A question

Question

How to determine ε(S) ⊂ λ−1
n (G)?

G = π(Γ) ⊂ SO(n) – finite group.
For n ≥ 3 kerλn = {±1}: for every x ∈ Spin(n), g ∈ SO(n) we get

λn(x) = g ⇒ λ−1
n (g) = {±x}.

Remark
From now on we assume n ≥ 3.
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Existence of spin structures on flat manifolds Algorithmic approach I

Isomorphic fundamental groups

Proposition (Hiss, Szczepański 2008)
Let Γ1,Γ2 ⊂ E(n) be isomorphic Bieberbach groups. Then the set of
spin structures of Rn/Γ1 is in bijection with the set of spin structures of
Rn/Γ2.

Γ1 Γ2
Φ

SO(n) SO(n)
π1 π2

%

Spin(n) Spin(n)

λn λn

%

ε1 ε2
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Existence of spin structures on flat manifolds Algorithmic approach I

Isomorphic fundamental groups
Proposition (Hiss, Szczepański 2008)
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Existence of spin structures on flat manifolds Algorithmic approach I
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Proposition (Hiss, Szczepański 2008)
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Existence of spin structures on flat manifolds Algorithmic approach I

Spin structures on flat manifolds
Algebraic condition II

X = Rn/Γ – orientable flat n-manifold:

0 −→ Zn −→ Γ
π−→ G −→ 1.

π : Γ→ SO(n).

Corollary
The set of spin structures on X is in bijection with the set of the
homomorphisms of the form ε : Γ→ Spin(n) which satisfy λnε = %π:

Γ Spin(n)

G SO(n)

π

ε

λn
%

where % : G→ SO(n) is a representation of G which is R-equivalent to
id : G→ G ⊂ SO(n).
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Existence of spin structures on flat manifolds Algorithmic approach I

Spin structures on flat manifolds
Algebraic condition II
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Existence of spin structures on flat manifolds Manifolds with 2-group holonomy

Existence of spin structures on flat manifolds
Necessary and sufficient condition

Lemma
Let Γ be an n-dimensional Bieberbach group with holonomy group G:

0 −→ Zn −→ Γ
π−→ G −→ 1.

Let F ⊂ G be a Sylow 2-subgroup of G. Then Rn/Γ has a spin
structure if and only if Rn/π−1(F ) has one.

Corollary
It is enough to find a "good" representation % : G→ SO(n) with
assumption that G is a 2-group.
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Group of "good" matrices

O(n,Z) := GL(n,Z) ∩O(n), SO(n,Z) := GL(n,Z) ∩ SO(n)

D ⊂ GL(n,Z) – subgroup of diagonal matrices (±1 on diagonal).
Pσ ∈ GL(n,Z) – matrix of a permutation σ ∈ Sn.

Lemma
We have the following split exact sequence

1 −→ D −→ O(n,Z) −→ Sn −→ 1

with splitting homomorphism defined by

σ 7→ Pσ.

∀A∈O(n,Z)∃D∈D∃σ∈Sn A = DPσ
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Group of "good" matrices

∀A∈O(n,Z)∃D∈D∃σ∈Sn A = DPσ

P (i j) – matrix of the transposition (i j) with −1 instead of 1 in the
ith row, where 1 ≤ i < j ≤ n.

Corollary
Let A ∈ O(n,Z). Then

A = DP(i1 j1) . . . P(ik jk),

where D ∈ D.
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P ′(i j) – matrix of the transposition (i j) with −1 instead of 1 in the
ith row, where 1 ≤ i < j ≤ n.

Corollary
Let A ∈ SO(n,Z). Then
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Existence of spin structures on flat manifolds Manifolds with 2-group holonomy

Preimages of "good" matrices

Lemma
Let D ∈ D ∩ SO(n,Z) has −1 in the entries i1 < . . . < im of the
diagonal. Then

λn(ei1 . . . eim) = D.

Lemma

∀1≤i<j≤n λn

(
1 + eiej√

2

)
= P ′(i j).
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Preimages of "good" matrices

Lemma
Let D ∈ D ∩ SO(n,Z) has −1 in the entries i1 < . . . < im of the
diagonal. Then

λn(± ei1 . . . eim) = D.

Lemma

∀1≤i<j≤n λn

(
± 1 + eiej√

2

)
= P ′(i j).
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Existence of spin structures on flat manifolds Manifolds with 2-group holonomy

Every rational representation of 2-group is "good"

Theorem (Eckmann, Mislin 1979)
Let G be a finite p-group. Then every Q-irreducible representation of G
is either induced from a representation of a subgroup of index p or it
factors through a representation of a cyclic group of order p.

Corollary A

Every rational representation τ : G → GL(k,Q) of 2-group G is equiva-
lent to a representation % : G→ O(k,Z).

Corollary B

Every rational representation τ : G → SL(k,Q) of 2-group G is equiva-
lent to a representation % : G→ SO(k,Z).
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Existence of spin structures on flat manifolds Manifolds with 2-group holonomy

Every rational representation of 2-group is "good"
Corollary A

Every rational representation τ : G → GL(k,Q) of 2-group G is equiva-
lent to a representation % : G→ O(k,Z).

Proof.
1 The group C2 = 〈c | c2 = 1〉 has exactly two irreducible

representations:
c 7→ 1, c 7→ −1.
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Every rational representation of 2-group is "good"
Corollary A

Every rational representation τ : G → GL(k,Q) of 2-group G is equiva-
lent to a representation % : G→ O(k,Z).

Proof.
2 Assume that the statement is true for every 2-group of order less

than |G|. Let
τ : G→ GL(k,Q)

be an irreducible representation of G.
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Proof.
2 Assume that the statement is true for every 2-group of order less

than |G|. Let
τ : G→ GL(k,Q)

be an irreducible representation of G.
1 τ = ind τH , where H < G, [G : H] = 2 and τH : H → GL(k/2,Q):

F τH ∼ %H , where %H : H → O(k/2,Z).
F τ = ind τH ∼ ind %H and ind %H : G→ O(k,Z).
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Existence of spin structures on flat manifolds Algorithmic approach II

Determining existence of spin structures
Let Γ be a Bieberbach group:

0 −→ Zn −→ Γ′
π−→ G′ −→ 1,

where G′ ⊂ SO(n), i.e. Rn/Γ′ is orientable.
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Let Γ be a Bieberbach group:

0 −→ Zn −→ Γ′
π−→ G′ −→ 1,

where G′ ⊂ SO(n), i.e. Rn/Γ′ is orientable.

1 Calculate a Sylow 2-subgroup G of G′ and deal with
Γ = π−1(G) ⊂ Γ′:

0 −→ Zn −→ Γ
π−→ G −→ 1.
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Existence of spin structures on flat manifolds Algorithmic approach II

Determining existence of spin structures

1 0 −→ Zn −→ Γ
π−→ G −→ 1, G – 2-group.

2 % : G→ SO(n,Z).
3 G = 〈g1, . . . , gs〉, λn(xi) = %(gi), i = 1, . . . , s.

2 Determine a representation % : G→ SO(n,Z) equivalent to
id : G→ G ⊂ SO(n).
Useful:

I A list of all Q-irreducible integral and orthogonal representations of
the group G.

I Character theory (characteristic zero).
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Determining existence of spin structures

1 0 −→ Zn −→ Γ
π−→ G −→ 1, G – 2-group.

2 % : G→ SO(n,Z).
3 G = 〈g1, . . . , gs〉, λn(xi) = %(gi), i = 1, . . . , s.

3 Fix a generating set {g1, . . . , gs} of G.
Using decomposition of %(gi) determine xi ∈ Spin(n) such that

λn(xi) = %(gi)

for every 1 ≤ i ≤ s.
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Determining existence of spin structures

1 0 −→ Zn −→ Γ
π−→ G −→ 1, G – 2-group.

2 % : G→ SO(n,Z).
3 G = 〈g1, . . . , gs〉, λn(xi) = %(gi), i = 1, . . . , s.

4 Determine the integral holonomy representation

ϕ : G→ GL(n,Z).

I ϕi,j : G→ Z – coordinate functions:

∀g∈G ϕ(g) = [ϕi,j(g)].

I In CARAT Γ ⊂ GL(n,Z) nQn, Γ ∩Qn = Zn.
I %, idG, ϕ – R-equivalent.
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Rafał Lutowski (University of Gdańsk) Spin structures on flat manifolds 21 / 32



Existence of spin structures on flat manifolds Algorithmic approach II

Determining existence of spin structures

1 0 −→ Zn −→ Γ
π−→ G −→ 1, G – 2-group.

2 % : G→ SO(n,Z).
3 G = 〈g1, . . . , gs〉, λn(xi) = %(gi), i = 1, . . . , s.
4 ϕ : G→ GL(n,Z), ϕi,j : G→ Z, 1 ≤ i, j ≤ n.

4 Determine the integral holonomy representation

ϕ : G→ GL(n,Z).

I ϕi,j : G→ Z – coordinate functions:

∀g∈G ϕ(g) = [ϕi,j(g)].

I In CARAT Γ ⊂ GL(n,Z) nQn, Γ ∩Qn = Zn.
I %, idG, ϕ – R-equivalent.
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Existence of spin structures on flat manifolds Algorithmic approach II

Determining existence of spin structures

2 % : G→ SO(n,Z).
3 G = 〈g1, . . . , gs〉, λn(xi) = %(gi), i = 1, . . . , s.
4 ϕ : G→ GL(n,Z), ϕi,j : G→ Z, 1 ≤ i, j ≤ n.

5 If Zn = 〈a1, . . . , an〉 and γ1, . . . , γs ∈ Γ are such that

π(γi) = gi

for 1 ≤ i ≤ s then

Γ = 〈a1, . . . , an, γ1, . . . , γs〉.
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Existence of spin structures on flat manifolds Algorithmic approach II

Determining existence of spin structures

3 G = 〈g1, . . . , gs〉, λn(xi) = %(gi), i = 1, . . . , s.
4 ϕ : G→ GL(n,Z), ϕi,j : G→ Z, 1 ≤ i, j ≤ n.
5 Γ = 〈a1, . . . , an, γ1, . . . , γs〉.

5 If ε : Γ→ Spin(n) – homomorphism with λnε = π then

ε(ai) ∈ {±1} and ε(γj) ∈ {±xi}

for all 1 ≤ i ≤ n, 1 ≤ j ≤ s.
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Existence of spin structures on flat manifolds Algorithmic approach II

Determining existence of spin structures

3 G = 〈g1, . . . , gs〉, λn(xi) = %(gi), i = 1, . . . , s.
4 ϕ : G→ GL(n,Z), ϕi,j : G→ Z, 1 ≤ i, j ≤ n.
5 Γ = 〈a1, . . . , an, γ1, . . . , γs〉.

5 Three types of relations in Γ:
1 Commutators in Zn – automatically satisfied:

ε({a1, . . . , an}) ⊂ {±1}.
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Determining existence of spin structures

3 G = 〈g1, . . . , gs〉, λn(xi) = %(gi), i = 1, . . . , s.
4 ϕ : G→ GL(n,Z), ϕi,j : G→ Z, 1 ≤ i, j ≤ n.
5 Γ = 〈a1, . . . , an, γ1, . . . , γs〉.

5 Three types of relations in Γ:
2 The action of G on Zn. Let 1 ≤ i ≤ n and 1 ≤ j ≤ s.

In Γ:
a
%1i(gj)
1 · · · a%ni(gj)

n = γjaiγ
−1
j .

In Spin(n):

ε(a1)%1i(gj) · · · ε(an)%ni(gj) = ε(γj)ε(ai)ε(γj)
−1.
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Determining existence of spin structures
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Existence of spin structures on flat manifolds Algorithmic approach II

Determining existence of spin structures

3 G = 〈g1, . . . , gs〉, λn(xi) = %(gi), i = 1, . . . , s.
4 ϕ : G→ GL(n,Z), ϕi,j : G→ Z, 1 ≤ i, j ≤ n.
5 Γ = 〈a1, . . . , an, γ1, . . . , γs〉.

5 Three types of relations in Γ:
3 Relations from G.

In G:
gi1 · · · gik = 1.

In Γ:
γi1 · · · γik = aα1

1 · · · aαn
n

for some α1, . . . , αn ∈ Z.
In Spin(n):

ε(γi1) · · · ε(γik) = ε(a1)α1 · · · ε(an)αn .
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Existence of spin structures on flat manifolds Example

The Bieberbach group

Generators of Γ′:

1 0 0 0 0 −1/3
0 0 −1 0 0 0
0 1 −1 0 0 0
0 0 −1 1 0 0
0 0 −1 0 1 0
0 0 0 0 0 1

 ,


−1 0 0 0 0 0
0 0 −1 1 1 1/2
0 −1 0 1 1 0
0 0 0 1 0 −1/2
0 0 0 0 1 0
0 0 0 0 0 1


and

ai =

[
I ei
0 1

]
,

where 1 ≤ i ≤ 5.

Γ′ = min.134.1.2.2 in CARAT.
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Existence of spin structures on flat manifolds Example

Sylow 2-subgroup

The short exact sequence for Γ′:

0 −→ Zn −→ Γ
π−→ S4 −→ 1.

The sylow 2-subgroup G = D8.
Γ = π−1(G) is generated by a1, . . . , a5 and

A =



1 0 0 0 0 0
0 −1 0 1 1 0
0 0 −1 1 1 1/2
0 0 0 1 0 1/2
0 0 0 0 1 1/2
0 0 0 0 0 1

 , B =



−1 0 0 0 0 2/3
0 1 0 −1 −1 0
0 1 −1 0 0 1/2
0 1 0 0 −1 1/2
0 1 0 −1 0 0
0 0 0 0 0 1

 .
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The short exact sequence for Γ′:

0 −→ Zn −→ Γ
π−→ S4 −→ 1.

The sylow 2-subgroup G = D8.
Γ = π−1(G) is generated by a1, . . . , a5 and

A =
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0 −1 0 1 1 0
0 0 −1 1 1 1/2
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Existence of spin structures on flat manifolds Example

Sylow 2-subgroup
Special orthogonal integral representation

Tr(π(A)) = 1,Tr(π(B)) = −1.
a = π(A), b = π(B).
Character table of G:

1 a b b2 ab

χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 1 1 −1 1 −1
χ4 1 −1 −1 1 1
χ5 2 0 0 −2 0

Character of id : G→ G ⊂ SO(n):

χ1 + χ3 + χ4 + χ5.
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Existence of spin structures on flat manifolds Example

Sylow 2-subgroup
Special orthogonal integral representation

Character of id : G→ G ⊂ SO(n):

χ1 + χ3 + χ4 + χ5.

ϕ : G→ SO(5,Z) may be defined by

a 7→


1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

 , b 7→


1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 0 1
0 0 0 −1 0

 .
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Existence of spin structures on flat manifolds Example

Preimages in Spin(5)

ϕπ(A) =


1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1


⇓

ϕπ(A) = λ5(±e2e4)
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Existence of spin structures on flat manifolds Example

Preimages in Spin(5)

ϕπ(B) =


1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 0 1
0 0 0 −1 0



=


1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1




1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 0 −1
0 0 0 1 0


⇓

ϕπ(B) = λ5

(
±e2e3e4e5

1 + e4e5√
2

)
= λ5

(
±e2e3

1 + e5e4√
2

)
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Existence of spin structures on flat manifolds Example

Preimages in Spin(5)

ϕπ(B) =
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Existence of spin structures on flat manifolds Example

Relations in Spin(5)
The action of G on Z5

ε(a1)%1i(gj) · · · ε(an)%ni(gj)ε(ai) = 1

A =


1 0 0 0 0 0
0 −1 0 1 1 0
0 0 −1 1 1 1/2
0 0 0 1 0 1/2
0 0 0 0 1 1/2
0 0 0 0 0 1

 , B =


−1 0 0 0 0 2/3
0 1 0 −1 −1 0
0 1 −1 0 0 1/2
0 1 0 0 −1 1/2
0 1 0 −1 0 0
0 0 0 0 0 1


We get: 

ε(a2)ε(a3)ε(a4)2 = 1
ε(a2)ε(a3)ε(a5)2 = 1

ε(a2)ε(a3)ε(a4)ε(a5)ε(a2) = 1
ε(a2)ε(a5)ε(a4) = 1
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Existence of spin structures on flat manifolds Example

Relations in Spin(5)
The relations coming from G

ε(γi1) · · · ε(γik) = ε(a1)α1 · · · ε(an)αn

We have 
A2 = a2a3a4a5

B4 = a4a
−1
5

(AB)2 = a2a4

We get 
ε(A)2 = ε(a2)ε(a3)ε(a4)ε(a5)
ε(B)4 = ε(a4)ε(a5)

(ε(A)ε(B))2 = ε(a2)ε(a4)
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Existence of spin structures on flat manifolds Example

Relations in Spin(5)
Summary


1 = ε(a2)ε(a3)
1 = ε(a2)ε(a4)ε(a5)

ε(A)2 = ε(a2)ε(a3)ε(a4)ε(a5)
ε(B)4 = ε(a4)ε(a5)

(ε(A)ε(B))2 = ε(a2)ε(a4)

We get {
ε(a2) = ε(a3) = ε(a4)ε(a5) = ε(A)2 = ε(B)4

ε(a5) = (ε(A)ε(B))2
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Existence of spin structures on flat manifolds Example

Spin structures on Γ

{
ε(a2) = ε(a3) = ε(a4)ε(a5) = ε(A)2 = ε(B)4

ε(a5) = (ε(A)ε(B))2

ε(A) = ±e2e4, ε(B) = ± e2e3(1+e5e4)√
2

For every possibility we have

ε(A)2 = ε(B)4 = (ε(A)ε(B))2 = −1.

ε(a2) = ε(a3) = ε(a5) = −1, ε(a4) = 1.
For a1, A,B every possibility is good.
We get 8 spin structures on Γ.
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Existence of spin structures on flat manifolds Example

Spin structures on Γ′

Γ = π−1(G) ⊂ Γ′

Corollary
There exists a spin structure on R5/Γ′. Moreover, since

H1(R5/Γ′,Z2) = Z2
2,

there exist exactly four spin structures on the manifold.
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Existence of spin structures on flat manifolds Dimensions 5 and 6

Number of spin manifolds

dim flat mflds orientable f.m. spin f.m.
5 1060 174 88
6 38746 3314 760
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Existence of spin structures on flat manifolds Dimensions 5 and 6

Relation with holonomy representation

Putrycz, Szczepański 2010
In dimension 4:

1 The existence of a spin structure does not depend on the
Q-equivalence class of the integral holonomy representation of an
orientable flat manifold.

2 The existence of a spin structure is determined by the
Z-equivalence class of the integral holonomy representation of an
orientable flat manifold.

Miatello, Podestá 2004
The above does not hold in dimension 6.

The above does not hold in dimension 5.
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Thank you!
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