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Composition series

Definition

A group G is simple if the only normal subgroups of G are the
trivial subgroup and G itself.

Definition

A composition series of a group G is a subnormal series of finite
length

1 = H0 ◁H1 ◁ ...◁Hn = G

with strict inclusions such that each Hi is a maximal strict normal
subgroup of Hi+1.
Equivalently, a composition series is a subnormal series such that
each factor group Hi+1/Hi is simple. The factor groups are called
composition factors, and the number n is called the composition
length.
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Remark

Then a group G is the simple product of its composition factors.

Remark

Every finite group has a composition series, but not every infinite
group has one.

Corollary

All finite groups are constructed from simple groups.

Question

Is the composition series unique?
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Theorem (Jordan-Hölder Theorem 1869-1889)

Let G be a group and assume G has a composition series. Let

1 = G0 ◁G1 ◁ ...◁Gn = G ,

1 = H0 ◁H1 ◁ ...◁Hm = G

be any two composition series for G. Then n = m and there exists
a permutation σ ∈ Sn such that for any i ∈ 0, ...,n − 1,
Gi+1/Gi = Hσ(i)+1/Hσ(i).

Lemma

Let G be a group with A and B – different normal subgroups of G
such that G/A and G/B are simple. Then G/A ≅ B/(A ∩B) and
G/B ≅ A/(A ∩B).
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Proof.

Suppose that A ⊂ B; then B/A is normal in the simple group G/A.
Since A ≠ B, the quotient is not trivial, and by the assumption that
G/B is simple neither is it the whole group. This is a
contradiction, so we can assume A ⊄ B and by symmetry B ⊄ A.
Consider AB – a normal subgroup of G ; its image under the
quotient map AB/A will be a normal subgroup of G/A. However,
from B ⊄ A we have that AB/A ≠ 1 and so, since G/A is simple,
we must have AB/A = G/A. Finally, from the second isomorphism
theorem we conclude that

B/(A ∩B) ≅ AB/A = G/A.

By symmetry also A/(A ∩B) ≅ G/B.
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Proof of the Jordan-Hölder Theorem

We use induction over the length of the shortest composition series
for G . It is sufficient to show that any composition series is
equivalent to a minimal series, and therefore that any two series
are equivalent. If G is simple, then it has a unique decomposition
series 1 ⊲ G . For the inductive case assume that

1 = G0 ◁G1 ◁ ...◁Gn−1 ◁Gn = G .

is a minimal composition series for G , and

1 = H0 ◁H1 ◁ ...◁Hm−1 ◁Hm = G

is a composition series.
Suppose that Gn−1 = Hm−1; then by induction the series for Gn−1

will be equivalent to the series for Hm−1, and therefore the entire
series will be as well.
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Proof of the Jordan-Hölder Theorem

Now assume Gn−1 ≠ Hm−1. Let K = Hm−1 ∩Gn−1, which is normal
in G . By the lemma we have that Gn−1/K ≅ G/Hm−1 and
Hm−1/K ≅ G/Gn−1 are simple. Let Ki ∶= K ∩Gi ; then Ki ⊲ Gi and
Ki ⊲ Ki+1. Consider the homomorphism Ki+1 → Gi+1/Gi given by
the quotient map. The image is normal and the kernel is Ki ,
therefore by isomorphism theorems we have that Ki+1/Ki is a
normal subgroup of Gi+1/Gi . Furthermore, since Gi+1/Gi is simple,
for each Ki , Ki+1 either Ki = Ki+1 or the quotient Ki+1/Ki is simple.
By removing duplicates we get two composition series for Gn−1:

1 ⊲ G1 ⊲ ... ⊲ Gn−2 ⊲ Gn−1

1 ⊲ K1 ⊲ ... ⊲ Kn−1 ⊲ Gn−1

By induction these series are equivalent, and in particular must
have the same length, n − 1, so exactly one of the groups Ki+1/Ki

is trivial.
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Proof of the Jordan-Hölder Theorem

We have already shown that Kn−1 ⊲ Hm−1 with a simple quotient
(note that Kn−1 = K ) and therefore we also have the following two
composition series:

1 ⊲ H1 ⊲ ... ⊲ Hm−2 ⊲ Hm−1

1 ⊲ K1 ⊲ ... ⊲ Kn−1 ⊲ Hm−1.

Since exactly one of the groups Ki+1/Ki is trivial, the lower series
is of length n-1, which is less than that of G. Therefore by
induction these two series are equivalent with n − 1 = m − 1.
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Proof of the Jordan-Hölder Theorem.

It is sufficient to show that the series

1 ⊲ K1 ⊲ ... ⊲ Kn−1 ⊲ Hn−1 ⊲ G

1 ⊲ K1 ⊲ ... ⊲ Kn−1 ⊲ Gn−1 ⊲ G

are equivalent. By the lemma G/Gn−1 ≅ Hn−1/Kn−1 and
G/Hn−1 ≅ Gn−1/Kn−1 and clearly Ki+1/Ki ≅ Ki+1/Ki , therefore this
is the case.
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Example (Composition series for Z12)

1 = Z1 ⊲ Z2 ⊲ Z4 ⊲ Z12

Composition factors: Z12/Z4 ≅ Z3, Z4/Z2 = Z2, Z2/Z1 ≅ Z2.

1 = Z1 ⊲ Z2 ⊲ Z6 ⊲ Z12

Composition factors: Z12/Z6 ≅ Z2, Z6/Z2 = Z3, Z2/Z1 ≅ Z2.

1 = Z1 ⊲ Z3 ⊲ Z6 ⊲ Z12

Composition factors: Z12/Z6 ≅ Z2, Z6/Z3 = Z2, Z3/Z1 ≅ Z3.
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Composition series
The Jordan-Hölder Theorem
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Theorem (The Classification Theorem)

Let G be a finite simple group. Then G is either

(a) a cyclic group of prime order;

(b) an alternating group of degree n ≥ 5;

(c) a finite simple group of Lie type;

(d) one of 26 sporadic finite simple groups: the five Mathieu
groups, the four Janko groups, the three Conway groups, the
three Fischer groups, HS, Mc, Suz, Ru, He, Ly, ON, HN, Th,
BM and M.
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Dawn of the project

Hölder (1892): ”It would be of the greatest interest if it were
possible to give an overview of the entire collection of finite
simple groups”.

Cole (1892-1893): determined all simple groups of orders up
to 660, discovering a new group SL(2,8).
Miller and Ling (1900): up to 2001.

Only available tools: Sylow’s Theorems and the Pigeonhole
Principle.
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Alternate strategy

Cole and Glover (1893): structure of a finite group depends
more on the shape of prime factorisation of ∣G ∣ than actual
nature of prime factors.

Frobenius (1893), Burnside (1895): importance of the
smallest prime divisor p of ∣G ∣ and the structure of a Sylow
p-subgroup.

Dedekind (April 6, 1896) invited Frobenius to consider the
problem of factoring the group determinant of a finite
nonabelian group.

Frobenius determinant theorem (1896): the birth of the
theory of group characters.
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Burnside (1900): applied new theory to show that if G is a
nonabelian simple group of odd order, then ∣G ∣ > 40000, ∣G ∣
must have at least seven prime factors, and G can have no
proper subgroup of index less than 101.
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Theory building

Hall (1928,1937): series of papers on finite solvable groups,
generalisations of Sylow’s Theorems.

Wielandt, Hall, Kegel and others (1950’s): connection
between solvability and factorisations.

Zassenhaus (1937): focused on the architectural structure of
groups in terms of normal subgroups and factor groups; the
Schur-Zassenhaus theorem.
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Odd Order Conjecture (Miller, Burnside)

Every finite group of odd order is solvable.

Schreier Conjecture

If N is a nonabelian finite simple group, then Aut(N)/N is a
solvable group.

Both these conjectures turn out to be true, but very deep.

The only known proof of the Schreier Conjecture is as
Corollary of the Classification Theorem.

The proof of the Odd Order Conjecture by Feit and
Thompson yielded the unrestricted Schur-Zassenhaus
Theorem; no elementary proof is known.
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Definition (The Fitting sugroup)

The Fitting subgroup F (G) of a finite group G is the join of all
normal nilpotent subgroups of G .

Theorem (Fitting’s Theorem (1938, edited posthumously by
Zassenhaus))

Let G be a finite solvable group. Then CG(F (G)) ≤ F (G).

Remark

This is false for general finite groups; for example, if G is a
nonabelian simple group, F (G) = 1.
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Definition (Weakly closed subgroup)

Let H be a subgroup of the group G . A subgroup W of H is
weakly closed in H (with respect to G ) if W g ≤ H implies
W g =W for all g ∈ G ; i.e., W is the unique member of its
G -conjugacy class which is contained in H.

Grün (1936): if the center Z(P) is a weakly closed subgroup
of P, then G has an abelian p-quotient if and only if
NG(Z(P)) does.

Zassenhaus (1930’s): extension of Jordan and Frobenius’ work
on transitive permutation groups.

Brauer (1930’s): investigation of modular representations of
finite groups.
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Classification begins in earnest

Zassenhaus (1947) hoped to linearise the problem by
identifying all simple groups as groups of automorphisms of
some linear structure, perhaps a finite Lie algebra.

Chevalley (1955) found a uniform method to construct finite
analogues of the simple complex Lie groups.

Lie theoretic context for all of the known simple groups except
for the alternating groups and the five Mathieu groups; new
finite simple groups, unified context for the study of their
subgroups and presentations; no obvious strategy for
classification.
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Brauer, Fowler (1948–): CA-groups ( = centraliser of ever
non-identity element is abelian) of even order.

Suzuki (1950): characterisation of PGL(2,q), q odd, in terms
of partitions.

Brauer, Suzuki, Wall (1953): characterisation of
PSL(2,q),The Brauer-Suzuki-Wall Theorem; special case –
Burnside in 1899, rediscovered 1970 by Feit.
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Brauer-Fowler Theorem (1955): bound on the order of a finite
simple group of even order given the order of one of its
involution centralisers.

For any finite group H the determination of all finite simple
groups with an involution centraliser isomorphic to H is a
finite problem.

Two-step strategy for proving the Classification Theorem:

1 Determine all possible structures for an involution centraliser in
a finite simple group.

2 For each possible structure, determine all finite simple groups
with such an involution centraliser.

Brauer had proved some sample cases for Step 2; no one had
an idea how to do Step 1.
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Suzuki (1957): nonexistence of nonabelian simple CA-groups
of odd order.

First breakthrough in the direction of the Miller-Burnside Odd
Order Conjecture.

Nevertheless, difficulties still seemed insurmountable.
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Theorem (Thompson’s Thesis 1959/60)

Let G be a finite group admitting an automorphism α of prime
order with CG(α) = 1. Then G is a nilpotent group.

If G is nilpotent, then for every prime p dividing ∣G ∣, G has a
normal subgroup P of index p which is α-invariant. Then
Z(P) cannot be weakly closed in P. This led Thompson to
study weak closures of abelian subgroups of P.

Discovery of the J-subgroup and the Thompson factorisation
theorems.
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Definition

Let A ≤ H ≤ G . The weak closure of A in H with respect to G is

W = ⟨Ag ∶ Ag ≤ H⟩.

Equivalently, W is the smallest subgroup of H containing A and
weakly closed in H (with respect to G ).

Definition (Thompson subgroup)

Let P be a finite p-group and let d be the maximum rank of an
elementary abelian subgroup of P. Let A(P) denote the set of all
elementary subgroups of P of rank d . Then the Thompson
subgroup J(P) is

J(P) = ⟨A ∶ A ∈ A(P)⟩.
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Let H be a finite solvable group whose Fitting subgroup F is a
p-group. For R – any p-group denote by Ω1(R) the subgroup
generated by the elements of order p in R.

Thompson Factorisation

H = CNH(J(P)) = CH(Ω1(Z(P)))NH(J(P))

When hypotheses such as solvability and odd order are dropped,
the analysis becomes much more complicated, but the fundamental
philosophy remains the same.



Classification of Finite Simple Groups

Classification of finite simple groups

Enter John Thompson

Definition

A finite group is of (local) characteristic p-type if the following
condition is satisfied by every p-local subgroup H of G : Let F be
the largest normal p-subgroup of H. Then CH(F ) ≤ F .

When G is a group of characteristic p-type, Thompson’s
analysis may be undertaken.

Glauberman (around 1967): the ZJ-Theorem; easier approach
in the context of groups of odd order.

Stellmacher (1996): an analogue of the ZJ-Theorem for
groups of order prime to 3.

In general context: Thompson’s factorisation.
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Hall and Thompson (1959): extended Suzuki’s theorem on
CA-groups of odd order to the nilpotent centraliser case; Feit
improved character theory.

Feit and Thompson: collaboration on groups of odd order.

Theorem (The Odd Order Theorem, 1963)

All finite groups of odd order are solvable.

Corollary

A finite simple group is either prime cyclic or of even order.

The paper is 225 pages long.
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The only known models were the Odd Order Paper and
Thompson’s evolving work on minimal simple groups of even
order.

Dichotomy between groups of p-rank at most 2 and those of
p-rank at least 3 → importance of groups of 2-rank 2 as a
separate problem.

Definition

The p-rank of a group G is the largest n ∈ Z such that G has an
elementary abelian subgroup of order pn.

Alperin: a 2-group of 2-rank 2 which is a candidate to be a
Sylow 2-subgroup must be one of dihedral, semidihedral,
wreathed or homocyclic abelian.
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Alperin, Brauer, Gorenstein (1969): classified most simple
groups of 2-rank at most 2.

2-rank at least 3: Signaliser functor analysis.

Bender’s Strongly Embedded Theorem (1971).

Aschbacher (1973): 2-Uniqueness Theorem, needed for the
Signalizer Functor Method.
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Janko (1974): study of involution centralisers – new sporadic
simple group J4.

20 more sporadic simple groups.

Walter (1969): reduction of the problem of groups with
abelian Sylow 2-subgroups to the specific centraliser of
involution problem which had been studied by Thompson,
Janko and others.

Bender (1970): generalised Fitting subgroup.

Gorenstein, Walter (1975): L-Balance Theorem.

Comparison of the centralisers of two different commuting
involutions in a finite group G .

Goldschmidt : candidate signalizer functor, modified and
implemented by Aschbacher in his characterisations of simple
groups of Lie type.
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Gorenstein’s Classification Programme (1972)

Step I – ”Small odd type” case, completed by Gorenstein and
Harada.

Step II – Signaliser analysis for the ”large odd type”.

Steps IV, VI, VII and VIII – various aspects of the Odd Type
Case: final identification problem for the groups of Lie type in
odd characteristic, the alternating groups and most sporadic
simple groups.

Steps III and V – Bounding the number of quasisimple
components in the centraliser of some involution.

A first version of such a bounding theorem was proved by Powell
and Thwaites; shortly thereafter, an optimal theorem was obtained
by Aschbacher (1973).
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The Monster

Fischer (1973) and Griess (1976) predicted the existence of the
Monster Group, also known as the Fischer-Griess Monster or the
Friendly Giant,the largest sporadic simple group. The order of the
Monster is

246 ⋅ 320 ⋅ 59 ⋅ 76 ⋅ 112 ⋅ 133 ⋅ 17 ⋅ 19 ⋅ 23 ⋅ 29 ⋅ 31 ⋅ 41 ⋅ 47 ⋅ 59 ⋅ 71

= 808,017,424,794,512,875,886,459,904,961,710,757,005,

754,368,000,000,000

≈ 8 ⋅ 1053.

The Monster group contains the double cover of the Baby
Monster group as a centraliser of an involution.

The Monster group contains 20 sporadic groups (including
itself) as subquotients.

The character table of the Monster is a 194-by-194 array.
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Gorenstein’s Classification Programme

Step IX – Thin groups (Aschbacher)

Step X – Groups with a stronly p-embedded (2-local)
subgroup, p odd (Aschbacher)

Steps XI and XV – The signaliser functor method and
component theorem for odd primes (Gorenstein-Lyons)

Step XII – Groups of characteristic 2,p-type (Timmesfield et
al.)

Step XIII – Quasinthin groups (Mason, Aschbacher-Smith)

Step XIV – Groups with e(G) = 3 (Aschbacher)

Step XVI – Final characterisation of the simple groups of
characteristic 2-type (Gilman-Griess)
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Definition

Let G be a finite group. For H a local 2-subgroup of G , denote by
e(H) the maximum rank of an abelian subgroup of H of odd
prime-power order. Then let e(G) denote the maximum value of
e(H) as H ranges over all 2-local subgroups of G .

By the Odd Order Theorem and a theorem of Frobenius, if G is
nonsolvable, then e(G) ≥ 1.

Definition

When e(G) = 1, we call G a thin group.
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Canonical examples: groups of Lie type in characteristic 2.

PSL(2,2n), PSU(3,2n), Sz(2n), PSL(3,4).

Aschbacher: Thin Group Theorem.

Aschbacher, Foote et al.: Global C(G ,T ) Theorem.

Unresolved: the cases e(G) = 2 (the quasithin case) and
e(G) = 3, claimed by Mason and Aschbacher, respectively.

Gap: existence and uniqueness of some of the sporadic simple
groups, notable the Monster.

Griess (January 1980): computer-free construction of the
Monster, as group of automorphisms of a non-associative
commutative algebra of dimension 196 884.
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Theorem (The Classification Theorem)

Let G be a finite simple group. Then G is either

(a) a cyclic group of prime order;

(b) an alternating group o fdegree n ≥ 5;

(c) a finite simple group of Lie type;

(d) one of 26 sporadic finite simple groups: the five Mathieu
groups, the four Janko groups, the three Conway groups, the
three Fischer groups, HS, Mc, Suz, Ru, He, Ly, ON, HN, Th,
BM and M.
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August 1980/February 1981: Gorenstein asserts completion.

1989: Aschbacher noticed that Mason’s 800-page manuscript
on quasithin groups was incomplete in various ways.

1992: Aschbacher prepared a manuscript treating the
remaining cases; still unpublished.

1996: Aschbacher and Smith took on the task of proving and
publishing a proof of the Quasithin Theorem.

Published in 2004.

Finished! :)
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Based on

A brief history of the classification of finite simple groups

by Ronald Solomon

BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL
SOCIETY Volume 38, Number 3, Pages 315–352.
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Thank you for attention.
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