Spin structures on flat manifolds

Rafał Lutowski

Institute of Mathematics, University of Gdańsk

Discrete Groups and Geometric Structures, with Applications V June 2 - 6, 2014

joint work with Bartosz Putrycz

- Flat manifolds
- Clifford algebras and spin groups
- Spin structures on manifolds

- Algorithmic approach I
- Manifolds with 2-group holonomy
- Algorithmic approach II

Bieberbach groups and flat manifolds

- $E(n) = O(n) \ltimes \mathbb{R}^n$ isometry group of the Euclidean space \mathbb{R}^n .
- Discrete and cocompact subgroup $\Gamma \subset E(n)$ crystallographic group.
- Torsionfree crystallographic $\Gamma \subset E(n)$ Bieberbach group.
 - ► $X = \mathbb{R}^n / \Gamma$ flat manifold (closed connected Riemannian *n*-manifold with zero sectional curvature).
 - $\pi_1(X) \cong \Gamma$.

Bieberbach groups and flat manifolds

- $E(n) = O(n) \ltimes \mathbb{R}^n$ isometry group of the Euclidean space \mathbb{R}^n .
- Discrete and cocompact subgroup $\Gamma \subset E(n)$ crystallographic group.
- Torsionfree crystallographic $\Gamma \subset E(n)$ Bieberbach group.
 - X = ℝⁿ/Γ − flat manifold (closed connected Riemannian n-manifold with zero sectional curvature).
 - $\pi_1(X) \cong \Gamma$.

Theorem (Bieberbach 1911)

The subgroup $\Gamma \cap (1 \times \mathbb{R}^n)$ of pure translations of Γ is free abelian group of rank n. Moreover it is maximal abelian normal subgroup of Γ of finite index.

Γ fits into a short exact sequence

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1.$$

G – finite group – holonomy group of Γ (X).
π: Γ → G ⊂ SO(n):

$$\forall_{(A,a)\in\Gamma} \pi(A,a) = A.$$

• We get a holonomy representation $\varphi \colon G \to \operatorname{GL}(n, \mathbb{Z})$:

$$\forall_{z \in \mathbb{Z}^n \subset \Gamma} \forall_{g \in G} \varphi_g(z) = \overline{g} z \overline{g}^{-1},$$

where $\pi(\overline{g}) = g$.

• φ is \mathbb{R} -equivalent to $id: G \to G \subset SO(n)$.

• Γ fits into a short exact sequence

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1.$$

G – finite group – holonomy group of Γ (X).
π: Γ → G ⊂ SO(n):

$$\forall_{(A,a)\in\Gamma}\ \pi(A,a) = A.$$

• We get a holonomy representation $\varphi \colon G \to \operatorname{GL}(n, \mathbb{Z})$:

$$\forall_{z \in \mathbb{Z}^n \subset \Gamma} \forall_{g \in G} \varphi_g(z) = \overline{g} z \overline{g}^{-1},$$

where $\pi(\overline{g}) = g$.

• φ is \mathbb{R} -equivalent to $id: G \to G \subset SO(n)$.

Γ fits into a short exact sequence

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1.$$

- G finite group holonomy group of Γ (X).
- $\pi \colon \Gamma \to G \subset SO(n)$:

$$\forall_{(A,a)\in\Gamma}\ \pi(A,a) = A.$$

• We get a holonomy representation $\varphi \colon G \to \operatorname{GL}(n, \mathbb{Z})$:

$$\forall_{z \in \mathbb{Z}^n \subset \Gamma} \forall_{g \in G} \varphi_g(z) = \overline{g} z \overline{g}^{-1},$$

where $\pi(\overline{g}) = g$.

• φ is \mathbb{R} -equivalent to $id: G \to G \subset SO(n)$.

• Γ fits into a short exact sequence

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1.$$

- G finite group holonomy group of Γ (X).
- $\pi \colon \Gamma \to G \subset SO(n)$:

$$\forall_{(A,a)\in\Gamma}\ \pi(A,a) = A.$$

• We get a holonomy representation $\varphi \colon G \to \operatorname{GL}(n, \mathbb{Z})$:

$$\forall_{z \in \mathbb{Z}^n \subset \Gamma} \forall_{g \in G} \varphi_g(z) = \overline{g} z \overline{g}^{-1},$$

where $\pi(\overline{g}) = g$. • φ is \mathbb{R} -equivalent to $id: G \to G \subset SO(n)$.

• Γ fits into a short exact sequence

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1.$$

- G finite group holonomy group of Γ (X).
- $\pi \colon \Gamma \to G \subset SO(n)$:

$$\forall_{(A,a)\in\Gamma}\ \pi(A,a) = A.$$

• We get a holonomy representation $\varphi \colon G \to \operatorname{GL}(n, \mathbb{Z})$:

$$\forall_{z \in \mathbb{Z}^n \subset \Gamma} \forall_{g \in G} \varphi_g(z) = \overline{g} z \overline{g}^{-1},$$

where $\pi(\overline{g}) = g$.

• φ is \mathbb{R} -equivalent to $id \colon G \to G \subset \mathrm{SO}(n)$.

Clifford algebra

Definition

Let $n \in \mathbb{N}$. The Clifford algebra C_n is a real associative algebra with one, generated by elements e_1, \ldots, e_n , which satisfy relations:

$$\forall_{1 \le i < j \le n} e_i^2 = -1 \land e_i e_j = -e_j e_i.$$

•
$$C_0 = \mathbb{R}, C_1 = \mathbb{C}, C_2 = \mathbb{H}.$$

•
$$\mathbb{R}^n = \operatorname{span}\{e_1, \ldots, e_n\} \subset C_n.$$

Definition (Three involutions)

•
$$(e_{i_1}\ldots e_{i_k})^* = e_{i_k}\ldots e_{i_1}.$$

•
$$e'_i = -e_i$$
.

•
$$\overline{a} = (a')^*, a \in C_n.$$

Clifford algebra

Definition

Let $n \in \mathbb{N}$. The Clifford algebra C_n is a real associative algebra with one, generated by elements e_1, \ldots, e_n , which satisfy relations:

$$\forall_{1 \le i < j \le n} e_i^2 = -1 \land e_i e_j = -e_j e_i.$$

•
$$C_0 = \mathbb{R}, C_1 = \mathbb{C}, C_2 = \mathbb{H}.$$

•
$$\mathbb{R}^n = \operatorname{span}\{e_1, \ldots, e_n\} \subset C_n.$$

Definition (Three involutions)

•
$$(e_{i_1}\ldots e_{i_k})^* = e_{i_k}\ldots e_{i_1}.$$

•
$$e'_i = -e_i$$
.

•
$$\overline{a} = (a')^*, a \in C_n.$$

Clifford algebra

Definition

Let $n \in \mathbb{N}$. The Clifford algebra C_n is a real associative algebra with one, generated by elements e_1, \ldots, e_n , which satisfy relations:

$$\forall_{1 \le i < j \le n} e_i^2 = -1 \land e_i e_j = -e_j e_i.$$

•
$$C_0 = \mathbb{R}, C_1 = \mathbb{C}, C_2 = \mathbb{H}.$$

•
$$\mathbb{R}^n = \operatorname{span}\{e_1, \ldots, e_n\} \subset C_n.$$

Definition (Three involutions)

•
$$(e_{i_1} \dots e_{i_k})^* = e_{i_k} \dots e_{i_1}$$
.

•
$$e_i = -e_i$$
.

•
$$\overline{a} = (a')^*, a \in C_n.$$

Spin group

$$\forall_{n \in \mathbb{N}} \operatorname{Spin}(n) := \{ x \in C_n \mid x' = x \land x\overline{x} = 1 \}.$$

Proposition

Let $n \in \mathbb{N}$. The map $\lambda_n \colon \operatorname{Spin}(n) \to \operatorname{SO}(n)$, defined by

$$\forall_{x \in \mathrm{Spin}(n)} \forall_{v \in \mathbb{R}^n} \ \lambda_n(x) v = x v \overline{x}$$

is a continuous group epimorphism.

For $n \geq 3$:

- $\operatorname{Spin}(n)$ universal cover of $\operatorname{SO}(n)$.
- $\pi_1(\mathrm{SO}(n)) \cong \mathbb{Z}/2\mathbb{Z}.$
- ker $\lambda_n = \{\pm 1\}.$

Spin group

$$\forall_{n \in \mathbb{N}} \operatorname{Spin}(n) := \{ x \in C_n \mid x' = x \land x\overline{x} = 1 \}.$$

Proposition

Let $n \in \mathbb{N}$. The map $\lambda_n \colon \operatorname{Spin}(n) \to \operatorname{SO}(n)$, defined by

$$\forall_{x \in \operatorname{Spin}(n)} \forall_{v \in \mathbb{R}^n} \ \lambda_n(x) v = x v \overline{x}$$

is a continuous group epimorphism.

For $n \geq 3$:

- $\operatorname{Spin}(n)$ universal cover of $\operatorname{SO}(n)$.
- $\pi_1(\mathrm{SO}(n)) \cong \mathbb{Z}/2\mathbb{Z}.$
- ker $\lambda_n = \{\pm 1\}.$

Spin group

$$\forall_{n \in \mathbb{N}} \operatorname{Spin}(n) := \{ x \in C_n \mid x' = x \land x\overline{x} = 1 \}.$$

Proposition

Let $n \in \mathbb{N}$. The map $\lambda_n \colon \operatorname{Spin}(n) \to \operatorname{SO}(n)$, defined by

$$\forall_{x \in \operatorname{Spin}(n)} \forall_{v \in \mathbb{R}^n} \ \lambda_n(x) v = x v \overline{x}$$

is a continuous group epimorphism.

For $n \geq 3$:

- $\operatorname{Spin}(n)$ universal cover of $\operatorname{SO}(n)$.
- $\pi_1(\mathrm{SO}(n)) \cong \mathbb{Z}/2\mathbb{Z}.$
- ker $\lambda_n = \{\pm 1\}.$

Spin structures on Riemannian manifolds

Definition

Let *M* be an *n*-dimensional oriented Riemannian manifold. A spin structure on *M* is a λ_n extension of the oriented orthonormal frame bundle of *M* (SO(*n*) principal bundle) to the Spin(*n*) bundle.

Example

Every compact oriented 3 manifold admits a spin structure (it has trivial tangent bundle).

Proposition

M admits a spin structure if and only if $w_2(M) = 0$.

Spin structures on Riemannian manifolds

Definition

Let *M* be an *n*-dimensional oriented Riemannian manifold. A spin structure on *M* is a λ_n extension of the oriented orthonormal frame bundle of *M* (SO(*n*) principal bundle) to the Spin(*n*) bundle.

Example

Every compact oriented 3 manifold admits a spin structure (it has trivial tangent bundle).

Proposition

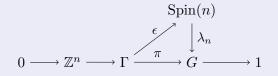
M admits a spin structure if and only if $w_2(M) = 0$.

Spin structures on flat manifolds

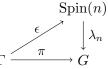
Algebraic condition

Proposition (Pfaffle 1999)

Let $\Gamma \in E(n)$ be a Bieberbach group. Then the set of spin structures on the flat manifold \mathbb{R}^n/Γ is in bijection with the set of the homomorphisms of the form $\epsilon \colon \Gamma \to \operatorname{Spin}(n)$ which satisfy $\lambda_n \epsilon = \pi$:



Determining spin structures



• Every crystallographic group is finitely presented. Let

 $\Gamma = \langle X \mid R \rangle,$

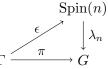
be a presentation of Γ , with finite *X* and *R*.

Determining spin structures

For all maps $\epsilon \colon X \to \lambda_n^{-1} \pi(X)$ for which $\lambda_n \epsilon = \pi$ check which preserve relations of Γ :

$$\forall_{r_1,\ldots,r_l\in X\cup X^{-1}} r_1\ldots r_l\in R \stackrel{?}{\Rightarrow} \epsilon(r_1)\ldots \epsilon(r_l)=1.$$

Determining spin structures



• Every crystallographic group is finitely presented. Let

$$\Gamma = \langle X \mid R \rangle,$$

be a presentation of Γ , with finite *X* and *R*.

Determining spin structures

For all maps $\epsilon \colon X \to \lambda_n^{-1} \pi(X)$ for which $\lambda_n \epsilon = \pi$ check which preserve relations of Γ :

$$\forall_{r_1,\ldots,r_l\in X\cup X^{-1}} r_1\ldots r_l\in R \stackrel{?}{\Rightarrow} \epsilon(r_1)\ldots \epsilon(r_l)=1.$$

Question

How to determine $\lambda_n^{-1}\pi(X) \subset \lambda_n^{-1}(G)$?

- $G = \pi(\Gamma) \subset SO(n)$ finite group.
- For $n \ge 3 \ker \lambda_n = \{\pm 1\}$:

$$\forall_{x \in \mathrm{Spin}(n)} \forall_{g \in \mathrm{SO}(n)} \ \lambda_n(x) = g \Rightarrow \lambda_n^{-1}(g) = \{\pm x\}.$$

Remark

Question

How to determine $\lambda_n^{-1}\pi(X) \subset \lambda_n^{-1}(G)$?

•
$$G = \pi(\Gamma) \subset SO(n)$$
 – finite group.

• For $n \ge 3 \ker \lambda_n = \{\pm 1\}$:

$$\forall_{x \in \mathrm{Spin}(n)} \forall_{g \in \mathrm{SO}(n)} \ \lambda_n(x) = g \Rightarrow \lambda_n^{-1}(g) = \{\pm x\}.$$

Remark

Question

How to determine $\lambda_n^{-1}\pi(X) \subset \lambda_n^{-1}(G)$?

•
$$G = \pi(\Gamma) \subset SO(n)$$
 – finite group.

• For
$$n \ge 3 \ker \lambda_n = \{\pm 1\}$$
:

$$\forall_{x \in \mathrm{Spin}(n)} \forall_{g \in \mathrm{SO}(n)} \ \lambda_n(x) = g \Rightarrow \lambda_n^{-1}(g) = \{\pm x\}.$$

Remark

Question

How to determine $\lambda_n^{-1}\pi(X) \subset \lambda_n^{-1}(G)$?

•
$$G = \pi(\Gamma) \subset SO(n)$$
 – finite group.

• For
$$n \ge 3 \ker \lambda_n = \{\pm 1\}$$
:

$$\forall_{x \in \mathrm{Spin}(n)} \forall_{g \in \mathrm{SO}(n)} \ \lambda_n(x) = g \Rightarrow \lambda_n^{-1}(g) = \{\pm x\}.$$

Remark

Proposition (Hiss, Szczepański 2008)

Let $\Gamma_1, \Gamma_2 \subset E(n)$ be isomorphic Bieberbach groups. Then the set of spin structures of \mathbb{R}^n/Γ_1 is in bijection with the set of spin structures of \mathbb{R}^n/Γ_2 .

Corollary

Let $\Gamma \subset E(n)$ be a Bieberbach group. Then the set of spin structures on the flat manifold \mathbb{R}^n/Γ is in bijection with the set of the homomorphisms of the form $\epsilon \colon \Gamma \to \text{Spin}(n)$ which satisfy $\lambda_n \epsilon = \varphi \pi$:

where $\varphi \colon G \to SO(n)$ is a representation of G which is \mathbb{R} -equivalent to $id \colon G \to G \subset SO(n)$.

Proposition (Hiss, Szczepański 2008)

Let $\Gamma_1, \Gamma_2 \subset E(n)$ be isomorphic Bieberbach groups. Then the set of spin structures of \mathbb{R}^n/Γ_1 is in bijection with the set of spin structures of \mathbb{R}^n/Γ_2 .

Corollary

Let $\Gamma \subset E(n)$ be a Bieberbach group. Then the set of spin structures on the flat manifold \mathbb{R}^n/Γ is in bijection with the set of the homomorphisms of the form $\epsilon \colon \Gamma \to \operatorname{Spin}(n)$ which satisfy $\lambda_n \epsilon = \varphi \pi$:

$$\begin{array}{c} \Gamma \xrightarrow{\epsilon} \operatorname{Spin}(n) \\ \pi \downarrow \qquad \qquad \downarrow \lambda_n \\ G \xrightarrow{\varphi} \varphi(G) \end{array}$$

where $\varphi \colon G \to SO(n)$ is a representation of G which is \mathbb{R} -equivalent to $id \colon G \to G \subset SO(n)$.

Necessary and sufficient condition

Lemma

Let Γ be an *n*-dimensional Bieberbach group with holonomy group G:

 $0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1$

Let $F \subset G$ be a Sylow 2-subgroup of G. Then \mathbb{R}^n/Γ has a spin structure if and only if $\mathbb{R}^n/\pi^{-1}(F)$ has one.

Necessary and sufficient condition

Lemma

Let Γ be an *n*-dimensional Bieberbach group with holonomy group G:

 $0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1.$

Let $F \subset G$ be a Sylow 2-subgroup of G. Then \mathbb{R}^n/Γ has a spin structure if and only if $\mathbb{R}^n/\pi^{-1}(F)$ has one.

Corollary

It is enough to find "good" representation $\varphi \colon G \to SO(n)$ with assumption that *G* is a 2-group.

Necessary and sufficient condition

Theorem (Putrycz, Szczepański 2008)

24 out of the 27 oriented flat 4-manifolds have a spin structure.

$\mathcal{O}(n,\mathbb{Z}):=\mathrm{GL}(n,\mathbb{Z})\cap O(n),\quad \mathcal{SO}(n,\mathbb{Z}):=\mathrm{GL}(n,\mathbb{Z})\cap \mathcal{SO}(n)$

D ⊂ GL(n, Z) – subgroup of diagonal matrices (±1 on diagonal).
P_σ ∈ GL(n, Z) – matrix of a permutation σ ∈ S_n.

Lemma

$$\forall_{A \in (n,\mathbb{Z})} \exists_{D \in \mathcal{D}} \exists_{\sigma \in S_n} A = DP_{\sigma}$$

$$\mathcal{O}(n,\mathbb{Z}):=\mathrm{GL}(n,\mathbb{Z})\cap O(n),\quad \mathcal{SO}(n,\mathbb{Z}):=\mathrm{GL}(n,\mathbb{Z})\cap \mathcal{SO}(n)$$

- $\mathcal{D} \subset \operatorname{GL}(n,\mathbb{Z})$ subgroup of diagonal matrices (±1 on diagonal).
- $P_{\sigma} \in \operatorname{GL}(n, \mathbb{Z})$ matrix of a permutation $\sigma \in S_n$.

Lemma

$$\forall_{A \in (n,\mathbb{Z})} \exists_{D \in \mathcal{D}} \exists_{\sigma \in S_n} A = DP_{\sigma}$$

Lemma

$$\forall_{A \in (n,\mathbb{Z})} \exists_{D \in \mathcal{D}} \exists_{\sigma \in S_n} A = DP_{\sigma}$$

• E_{ij} - matrix of the transposition (i j) with -1 instead of 1 in the *i*th row, where $1 \le i < j \le n$.

Corollary

Let $A \in SO(n, \mathbb{Z})$. Then

$$A = DE_{i_1j_1} \dots E_{i_kj_k},$$

where $D \in \mathcal{D} \cap SO(n, \mathbb{Z})$, $i_l < j_l$ for $l = 1, \dots, k$.

Lemma

$$\forall_{A \in (n,\mathbb{Z})} \exists_{D \in \mathcal{D}} \exists_{\sigma \in S_n} A = DP_{\sigma}$$

• E_{ij} - matrix of the transposition (i j) with -1 instead of 1 in the *i*th row, where $1 \le i < j \le n$.

Corollary

Let $A \in SO(n, \mathbb{Z})$. Then

$$A = DE_{i_1j_1} \dots E_{i_kj_k},$$

where $D \in \mathcal{D} \cap SO(n, \mathbb{Z})$, $i_l < j_l$ for $l = 1, \ldots, k$.

Preimages of "good" matrices

Lemma

Let $D \in \mathcal{D} \cap SO(n, \mathbb{Z})$ has -1 in the entries $i_1 < \ldots < i_m$ of the diagonal. Then

$$\lambda_n(e_{i_1}\ldots e_{i_m})=D.$$

Lemma

$$\forall_{1 \le i < j \le n} \ \lambda_n \left(\frac{1 + e_i e_j}{\sqrt{2}} \right) = E_{ij}.$$

Preimages of "good" matrices

Lemma

Let $D \in \mathcal{D} \cap SO(n, \mathbb{Z})$ has -1 in the entries $i_1 < \ldots < i_m$ of the diagonal. Then

$$\lambda_n(e_{i_1}\dots e_{i_m})=D.$$

Lemma

$$\forall_{1 \le i < j \le n} \ \lambda_n \left(\frac{1 + e_i e_j}{\sqrt{2}} \right) = E_{ij}.$$

Preimages of "good" matrices

Lemma

Let $D \in \mathcal{D} \cap SO(n, \mathbb{Z})$ has -1 in the entries $i_1 < \ldots < i_m$ of the diagonal. Then

$$\lambda_n(\pm e_{i_1}\dots e_{i_m})=D.$$

Lemma

$$\forall_{1 \le i < j \le n} \lambda_n \left(\pm \frac{1 + e_i e_j}{\sqrt{2}} \right) = E_{ij}.$$

Theorem (Eckmann, Mislin 1979)

Let *G* be a finite *p*-group. Then every \mathbb{Q} -irreducible representation of *G* is either induced from a representation of a subgroup of index *p* or it factors through a representation of a cyclic group of order *p*.

Corollary A

Every rational representation $\rho \colon G \to \operatorname{GL}(k, \mathbb{Q})$ of 2-group G is equivalent to a representation $\varphi \colon G \to \operatorname{O}(k, \mathbb{Z})$.

Corollary B

Every rational representation $\rho: G \to SL(k, \mathbb{Q})$ of 2-group G is equivalent to a representation $\varphi: G \to SO(k, \mathbb{Z})$.

Theorem (Eckmann, Mislin 1979)

Let *G* be a finite *p*-group. Then every \mathbb{Q} -irreducible representation of *G* is either induced from a representation of a subgroup of index *p* or it factors through a representation of a cyclic group of order *p*.

Corollary A

Every rational representation $\rho: G \to GL(k, \mathbb{Q})$ of 2-group G is equivalent to a representation $\varphi: G \to O(k, \mathbb{Z})$.

Corollary B

Every rational representation $\rho: G \to SL(k, \mathbb{Q})$ of 2-group G is equivalent to a representation $\varphi: G \to SO(k, \mathbb{Z})$.

Proof of Corollary A.

We may assume that ρ is irreducible.

• The group $C_2 = \langle c \mid c^2 = 1 \rangle$ has exactly two irreducible representations:

$$c \mapsto 1, \quad c \mapsto -1.$$

Proof of Corollary A.

We may assume that ρ is irreducible.

2 Assume that the statement is true for every 2-group of order less than |G|. Let $\rho \colon G \to \operatorname{GL}(k, \mathbb{Q})$ be an irreducible representation of G.

Proof of Corollary A.

We may assume that ρ is irreducible.

- Assume that the statement is true for every 2-group of order less than |G|. Let $\rho: G \to \operatorname{GL}(k, \mathbb{Q})$ be an irreducible representation of G.
 - $\rho = \operatorname{ind} \rho_H$, where H < G, [G:H] = 2 and $\rho_H: H \to \operatorname{GL}(k/2, \mathbb{Q})$:

Proof of Corollary A.

We may assume that ρ is irreducible.

- Assume that the statement is true for every 2-group of order less than |G|. Let $\rho: G \to \operatorname{GL}(k, \mathbb{Q})$ be an irreducible representation of G.
 - $\rho = \operatorname{ind} \rho_H$, where H < G, [G:H] = 2 and $\rho_H: H \to \operatorname{GL}(k/2, \mathbb{Q})$:

* $\rho_H \sim \varphi_H$, where $\varphi_H \colon H \to O(k/2, \mathbb{Z})$.

Proof of Corollary A.

We may assume that ρ is irreducible.

Assume that the statement is true for every 2-group of order less than |G|. Let $\rho: G \to \operatorname{GL}(k, \mathbb{Q})$ be an irreducible representation of G.

•
$$\rho = \operatorname{ind} \rho_H$$
, where $H < G, [G:H] = 2$ and $\rho_H \colon H \to \operatorname{GL}(k/2, \mathbb{Q})$:

$$ho_H \sim \varphi_H$$
, where $\varphi_H \colon H \to O(k/2, \mathbb{Z})$.

$$\rho = \operatorname{ind} \rho_H \sim \operatorname{ind} \varphi_H$$
 and $\operatorname{ind} \varphi_H \colon G \to \mathcal{O}(k, \mathbb{Z})$.

Proof of Corollary A.

We may assume that ρ is irreducible.

Assume that the statement is true for every 2-group of order less than |G|. Let $\rho: G \to \operatorname{GL}(k, \mathbb{Q})$ be an irreducible representation of G.

2
$$[G : \ker \rho] = 2$$
:

Proof of Corollary A.

We may assume that ρ is irreducible.

Assume that the statement is true for every 2-group of order less than |G|. Let $\rho: G \to \operatorname{GL}(k, \mathbb{Q})$ be an irreducible representation of G.

2
$$[G: \ker \rho] = 2$$
:

$$\rho(G) \subset \{\pm 1\} = O(1, \mathbb{Z}).$$

Let Γ be a Bieberbach group:

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1,$$

where $G \subset SO(n)$, i.e. \mathbb{R}^n / Γ is orientable.

• Calculate a Sylow 2-subgroup F of G and deal with $\pi^{-1}(F) \subset \Gamma$. Let

$$\pi^{-1}(F) = \langle X \mid R \rangle$$

- 2 Determine a representation $\varphi \colon F \to SO(n, \mathbb{Z})$ equivalent to $id \colon F \to F \subset SO(n)$.
- Obtermine $\lambda_n^{-1}(\varphi \pi(X))$.
- Check if any function $\epsilon: X \to \text{Spin}(n)$ which satisfies $\lambda_n \epsilon = \varphi \pi$ preserves the relations of $\pi^{-1}(F)$.

Let Γ be a Bieberbach group:

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1,$$

where $G \subset SO(n)$, i.e. \mathbb{R}^n / Γ is orientable.

• Calculate a Sylow 2-subgroup F of G and deal with $\pi^{-1}(F) \subset \Gamma$. Let

$$\pi^{-1}(F) = \langle X \mid R \rangle$$

- 2 Determine a representation $\varphi \colon F \to SO(n, \mathbb{Z})$ equivalent to $id \colon F \to F \subset SO(n)$.
- 3 Determine $\lambda_n^{-1}(\varphi \pi(X))$.
- Check if any function $\epsilon: X \to \text{Spin}(n)$ which satisfies $\lambda_n \epsilon = \varphi \pi$ preserves the relations of $\pi^{-1}(F)$.

Let Γ be a Bieberbach group:

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1,$$

where $G \subset SO(n)$, i.e. \mathbb{R}^n / Γ is orientable.

• Calculate a Sylow 2-subgroup F of G and deal with $\pi^{-1}(F) \subset \Gamma$. Let

$$\pi^{-1}(F) = \langle X \mid R \rangle$$

- ② Determine a representation *φ*: *F* → SO(*n*, ℤ) equivalent to *id*: *F* → *F* ⊂ SO(*n*).
- Optimize $\lambda_n^{-1}(\varphi \pi(X))$.
- Otheck if any function ε: X → Spin(n) which satisfies λ_nε = φπ preserves the relations of π⁻¹(F).

Let Γ be a Bieberbach group:

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1,$$

where $G \subset SO(n)$, i.e. \mathbb{R}^n / Γ is orientable.

• Calculate a Sylow 2-subgroup F of G and deal with $\pi^{-1}(F) \subset \Gamma$. Let

$$\pi^{-1}(F) = \langle X \mid R \rangle$$

- ② Determine a representation *φ*: *F* → SO(*n*, ℤ) equivalent to *id*: *F* → *F* ⊂ SO(*n*).
- 3 Determine $\lambda_n^{-1}(\varphi \pi(X))$.
- Otheck if any function ε: X → Spin(n) which satisfies λ_nε = φπ preserves the relations of π⁻¹(F).

Let Γ be a Bieberbach group:

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \xrightarrow{\pi} G \longrightarrow 1,$$

where $G \subset SO(n)$, i.e. \mathbb{R}^n / Γ is orientable.

• Calculate a Sylow 2-subgroup F of G and deal with $\pi^{-1}(F) \subset \Gamma$. Let

$$\pi^{-1}(F) = \langle X \mid R \rangle$$

- ② Determine a representation φ: F → SO(n, Z) equivalent to id: F → F ⊂ SO(n).
- 3 Determine $\lambda_n^{-1}(\varphi \pi(X))$.
- **Output** Check if any function $\epsilon: X \to \text{Spin}(n)$ which satisfies $\lambda_n \epsilon = \varphi \pi$ preserves the relations of $\pi^{-1}(F)$.

Spin structures in dimensions 5 and 6

dim	flat mflds	orientable f.m.	spin f.m.
5	1060	174	88
6	38746	3314	760

Thank you!