Holonomy groups of flat manifolds with R_{∞} property

joint work with Andrzej Szczepański

Institute of Mathematics, University of Gdańsk

DMV & PTM Joint Meeting

17-20 September 2014

Outline

Introduction

- Fixed point theory
- R_{∞} property and flat manifolds

R_{∞} property for flat manifolds

- The conjecture
- The theorem
- The proof
- What's next?

Fixed point theory

• X – closed connected triangulable manifold (global assumption).

$$f\colon X\to X$$

- Fix $(f) := \{x \in X \mid f(x) = x\}$
- $MF(f) := \min\{\#Fix(h) \mid h \simeq f\}$
- L(f) Lefschetz number
- R(f) Reidemeister number
- N(f) Nielsen number

Lefschetz, Reidemeister and Nielsen numbers Short summary

- All are homotopy invariants.
- $L(f) \neq 0 \Rightarrow \operatorname{MF}(f) > 0.$
- $N(f) \leq R(f)$.
- $R(f) \in \mathbb{Z}_+ \cup \{\infty\}.$
- $N(f) \in \mathbb{N}$.
- $N(f) \leq \mathrm{MF}(f)$.

Theorem 1 (Wecken 1942)

Let $f: X \to X$ be a self-map of a compact connected triangulated *n*-manifold *X*, where $n \ge 3$. Then there exists a map $g \simeq f$, such that $N(g) = \# \operatorname{Fix}(g)$.

Jiang-type spaces

Definition 1

A manifold X is a Jiang-type space if for every map $f: X \to X$

$$N(f) = \begin{cases} 0 & \text{if } L(f) = 0, \\ R(f) & \text{if } L(f) \neq 0. \end{cases}$$

Example 1

- Simply-connected spaces.
- Lens spaces.
- Nilmanifolds.

R_{∞} property

Definition 2

A manifold X has the R_{∞} property, if for every homeomorphism $f: X \to X, R(f) = \infty$.

Remark 1

- The Reidemeister number (and thus the R_∞ property) can be defined at the level of fundamental group of X.
- This definition can be easily applied to every countable discrete group.

Example 2

A class of groups with the R_{∞} property includes:

- non-virtually cyclic Gromov hyperbolic groups (Fel'shtyn 2001),
- Baumslag-Solitar groups except from BS(1,1) (Fel'shtyn 2008).

Bieberbach groups

• $Iso(\mathbb{R}^n) = O(n) \ltimes \mathbb{R}^n$ – the group of isometries of \mathbb{R}^n :

$$\forall_{A \in O(n)} \forall_{a, x \in \mathbb{R}^n} (A, a) \cdot x = Ax + a.$$

- $\Gamma \subset \operatorname{Iso}(\mathbb{R}^n)$ Bieberbach group:
 - discrete,
 - cocompact,
 - torsion-free.
- X = ℝⁿ/Γ − flat manifold (closed connected Riemannian n-manifold with zero sectional curvature).

Structure of Bieberbach groups

Theorem 2 (Bieberbach 1911)

The subgroup $\Gamma \cap (1 \times \mathbb{R}^n)$ of pure translations of Γ is free abelian group of rank n. Moreover it is maximal abelian normal subgroup of Γ of finite index.

Γ fits into a short exact sequence

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \longrightarrow G \longrightarrow 1.$$

- G finite group holonomy group of Γ (of X).
- Holonomy representation ρ: G → GL_n(Z) of Γ (of X) is defined as follows:

$$\forall_{g\in G}\forall_{m\in\mathbb{Z}^n} \varphi_g(m) = \overline{g}m\overline{g}^{-1},$$

where $p(\overline{g}) = g$.

Holonomy representation and R_{∞} -property

Remark 2 (Dekimpe, De Rock, Penninckx 2009)

The R_{∞} property does not depend "directly" on the holonomy representation.

- Examples of manifolds with and without the R_{∞} property, both with the same holonomy representation.
- If $f: X \to X$ is Anosov diffeomorphism, then $R(f) < \infty$.
 - Existence of Anosov diffeomorphisms is determined by the holonomy representation of X (Porteous 1972).

Multiplicity of image of representation

 $\varphi \colon G \to \operatorname{GL}_n(\mathbb{Q}), \rho \colon G \to \operatorname{GL}_m(\mathbb{Q})$ – representations of a group G.

Definition 3

We say, that the image of the representation ρ is of multiplicity k in φ , if there exist exactly k subrepresentations ρ_1, \ldots, ρ_k of φ such that

$$\forall_{1 \le i \le k} \exists_{C_i \in \mathrm{GL}_m(\mathbb{Q})} \rho(G) = C_i \rho_k(G) C_i^{-1}.$$

Remark 3

Multiplicity of an image of a representation is in general not the same as multiplicity of a representation ρ in φ . Those two numbers are equal in the case, when

$$N_{\operatorname{GL}_m(\mathbb{Q})}(\rho(G)) \twoheadrightarrow \operatorname{Aut}(G).$$

Holonomy representation and R_{∞} -property II

Theorem 3 (Dekimpe, De Rock, Penninckx 2009)

Let X be a flat manifold with holonomy representation

 $\varphi \colon G \to \mathrm{GL}_n(\mathbb{Z}).$

Let

 $\rho\colon G\to \mathrm{GL}_m(\mathbb{Z})$

be an irreducible \mathbb{Q} -subrepresentation of φ with the image of multiplicity 1. Suppose moreover that

$$\forall_{D \in N_{\operatorname{GL}_m(\mathbb{Z})}(\rho(G))} \exists_{g \in G} \det(I - \rho(g)D) = 0.$$

Then X has the R_{∞} property.

Can we simplify/drop any assumption from the above theorem?

The conjecture

Conjecture 1 (Dekimpe, De Rock, Penninckx 2009)

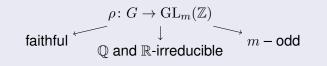
Let $\rho: G \to \operatorname{GL}_m(\mathbb{Z})$ be a faithful \mathbb{R} -irreducible representation of a non-trivial finite group G. Suppose that m is odd. Then for every $D \in N_{\operatorname{GL}_m(\mathbb{Z})}(\rho(G))$, there exists $g \in G$ such that $\det(I - \rho(g)D) = 0$.

- The conjecture cannot be generalized for any m (counterexample with m = 4).
- It is true for m = 1, 3, 5.

Conjecture 2

Let *X* be a flat manifold with holonomy representation $\varphi \colon G \to \operatorname{GL}_n(\mathbb{Z})$. Let $\rho \colon G \to \operatorname{GL}_m(\mathbb{Z})$ be an \mathbb{R} -irreducible \mathbb{Q} -subrepresentation of φ with an image of multiplicity 1 of odd degree. Then *X* has the R_∞ property.

Few facts and a question



- The normalizer $N_{\operatorname{GL}_m(\mathbb{Z})}(\rho(G))$ is finite (Szczepański 1996).
- Every odd degree matrix of finite order has an eigenvalue equal to ± 1 (characteristic polynomial).

Proposition 1

 ρ is absolutely (i.e. \mathbb{C} -) irreducible.

Corollary 1

$$C_{\mathrm{GL}_m(\mathbb{Z})}(\rho(G)) = \langle -\mathbf{I} \rangle$$

• For groups with non-trivial center, the conjecture is true.

Ok for nilpotent arouns.

The theorem

Every solvable group has an abelian non-trivial normal subgroup.

Theorem 4

Let *G* be a finite group with a non-trivial normal abelian subgroup *A* and let $\rho: G \to \operatorname{GL}_m(\mathbb{Z})$ be a faithful \mathbb{R} -irreducible representation. Suppose *m* is odd. Then for every $D \in N_{\operatorname{GL}_m(\mathbb{Z})}(\rho(G))$, there exists $g \in G$ such that $\rho(g)D$ has eigenvalue 1.

Corollary 2

Let *X* be a flat manifold with a solvable holonomy group *G* and a holonomy representation $\varphi \colon G \to \operatorname{GL}_n(\mathbb{Z})$. Let $\rho \colon G \to \operatorname{GL}_m(\mathbb{Z})$ be an \mathbb{R} -irreducible \mathbb{Q} -subrepresentation of φ of odd degree, with the image of multiplicity 1. Then *X* has the R_∞ property.

The proof Clifford's theorem

Theorem 5 (Clifford)

Let $\rho: G \to \operatorname{GL}_m(\mathbb{K})$ be an irreducible representation of a group *G* over a field \mathbb{K} . Let $H \triangleleft G$ and τ be an irreducible component of $\rho_{|H}$. Then

$$\rho_{|H} = e\tau^{(g_1)} \oplus \ldots \oplus e\tau^{(g_k)},$$

where $e \in \mathbb{Z}_+$ is the multiplicity of τ in $\rho_{|H}$, $g_1, \ldots, g_k \in G$ and

$$\forall_{1 \le i \le k} \forall_{a \in A} \ \tau^{(g_i)}(a) = \tau(g_i^{-1}ag_i).$$

Remark 4

In our case $\mathbb{K} = \mathbb{Q}$, H = A is abelian. We get $m = ke \operatorname{deg}(\tau)$ (recall that m is odd).

The proof

Normal abelian subgroup

•
$$\rho_{|A} = e\tau^{(g_1)} \oplus \ldots \oplus e\tau^{(g_k)}.$$

• $m = ke \deg(\tau)$.

Proposition 2

Let *G* be a finite group with normal nontrivial abelian subgroup *A*. Let $\rho: G \to \operatorname{GL}_m(\mathbb{Q})$ be an absolutely irreducible faithful representation of odd degree *m*. Then *A* is an elementary abelian 2-group.

$$\rho(A) \lhd \rho(G) \subset N_{\mathrm{GL}_m(\mathbb{Z})}(\rho(A))$$

- Elementary abelian 2-groups have very nice (diagonal) rational representations (with ±1 on diagonal).
- For every $1 \le i \le k$ there exists $a \in A$, such that $\tau^{(g_i)}(a) = -1$.
- From now on we assume, that $\rho(A)$ is a group of diagonal matrices (proper basis).

The proof

The normalizer

$$\rho_{|A} = e \tau^{(g_1)} \oplus \ldots \oplus e \tau^{(g_k)}$$
 – diagonal representation

The centralizer

(

$$C_{\mathrm{GL}_m(\mathbb{Q})}(\rho(A)) = \{c_1 \oplus \ldots \oplus c_k \mid c_i \in \mathrm{GL}(e, \mathbb{Q}), i = 1, \ldots, k\}$$
$$= \underbrace{\mathrm{GL}(e, \mathbb{Q}) \oplus \ldots \oplus \mathrm{GL}(e, \mathbb{Q})}_k.$$

2 The normalizer. If $D \in N_{\operatorname{GL}_m(\mathbb{Q})}(\rho(A))$, then there exists $\sigma \in S_k$, such that

$$D(a_1 \oplus \ldots \oplus a_k)D^{-1} = a_{\sigma(1)} \oplus \ldots \oplus a_{\sigma(k)}$$

for every $a_1 \oplus \ldots \oplus a_k \in \rho(A)$.

Theorem 6

The normalizer $N := N_{\operatorname{GL}_m(\mathbb{Q})}(\rho(A))$ is isomorphic to a wreath product of $\operatorname{GL}_e(\mathbb{Q})$ and a subgroup S of S_k

The proof Further properties of *G*

We have the following short exact sequence

$$1 \longrightarrow C \longrightarrow G \stackrel{p}{\longrightarrow} Q \longrightarrow 1.$$

•
$$C := C_G(A) = \rho^{-1}(C_{\operatorname{GL}_m(\mathbb{Q})}(\rho(G))).$$

• $Q \subset S \subset S_k$ and for every $\sigma \in Q$ we have
 $\rho(\bar{\sigma})(e\tau^{(g_1)} \oplus \ldots \oplus e\tau^{(g_k)})\rho(\bar{\sigma})^{-1} = e\tau^{(g_{\sigma(1)})} \oplus \ldots \oplus e\tau^{(g_{\sigma(k)})},$
where $p(\bar{\sigma}) = \sigma.$

Lemma 1

Q is a transitive group of permutations.

$1 \longrightarrow C \longrightarrow G \longrightarrow Q \longrightarrow 1$

Additional assumption: A is a maximal (normal abelian) subgroup of G.

Lemma 2

A is unique in C.

Lemma 3

Q does not contain any non-trivial abelian normal 2-subgroup.

Proposition 3

A is a characteristic subgroup of G. Hence

$$N_{\mathrm{GL}_m(\mathbb{Q})}(\rho(G)) \subset N_{\mathrm{GL}_m(\mathbb{Q})}(\rho(A)).$$

The proof

The end

• Let $D \in N_{\operatorname{GL}_m(\mathbb{Q})}(\rho(G))$ be of finite order. It is of the form

 $D = P_{\sigma}(c_1 \oplus \ldots \oplus c_k),$

where P_{σ} – "block permutation matrix" corresponding to $\sigma \in S \subset S_k$.

- Q = p(G) transitive subgroup of S_k . Take $\pi \in Q$ such that $\pi(1) = \sigma^{-1}(1).$
- Take any $\bar{\pi} \in p^{-1}(\pi)$. We get $\rho(\bar{\pi}) = (d_1 \oplus \ldots \oplus d_k)P_{\pi}$ and

$$(d_1 \oplus \ldots \oplus d_k) P_{\pi} P_{\sigma}(c_1 \oplus \ldots \oplus c_k) = (d_1 \oplus \ldots \oplus d_k) P_{\sigma\pi}(c_1 \oplus \ldots \oplus c_k) = d_1 c_1 \oplus X$$

• Pick $a \in A$, such that $\tau^{(g_1)}(a)d_1c_1$ has eigenvalue 1.

$$\det(\mathbf{I} - \rho(a\bar{\pi})D) = 0.$$

Questions remaining

- The conjecture is true for "small" class of finite groups. What about other groups (e.g. finite simple groups)?
- The conjecture cannot be generalized to all integers, but maybe we can simplify the theorem without assuming *m* being odd?

Simple alternating groups

Proposition 4

Let $\rho: A_n \to \operatorname{GL}_m(\mathbb{Z})$ be an \mathbb{R} -irreducible representation of a simple alternating group A_n $(n \ge 5)$. Let m be odd. Then for every $D \in N := N_{\operatorname{GL}_m(\mathbb{Z})}(\rho(A_n))$ there exists $g \in A_n$ such that $\rho(g)D$ has an eigenvalue 1.

- A_6 by computer.
- **2** For $n \neq 6, n \geq 5$ we have $\operatorname{Aut}(A_n) \cong S_n \cong A_n \rtimes C_2$.
- Solution Let $D \in N$ st. D^2 induces the identity automorphism of A_n :

$$D^2 \in C_{\mathrm{GL}_m(\mathbb{Z})}(\rho(A_n)) = \{\pm \mathbf{I}\}.$$

- D has an eigenvalue ± 1 , hence $D^2 = I$.
- $D \neq -\mathbf{I} \Rightarrow \det(\mathbf{I} D) = 0.$
- **(**) If D = -I take any $g \in A_n$ of order 2. Then $det(I \rho(g)D) = 0$.

Thank you!