Spin structures on almost flat 4-manifolds

Rafał Lutowski

joint with Nansen Petrosyan and Andrzej Szczepański

Institute of Mathematics, University of Gdańsk

Nikolaus Conference 2016

Introduction

- Almost flat manifolds
- Spin structures

- The algorithm
- Dimension 4

- N connected, simply connected nilpotent Lie group.
- $\operatorname{Aff}(N) := N \rtimes \operatorname{Aut}(N)$ acts on N by

$$(n,\varphi)\cdot m = n\varphi(m),$$

where $n, m \in N, \varphi \in Aut(N)$.

- A discrete and cocompact subgroup Γ of N × C is called an almost crystallographic (AC) group.
- A torsionfree AC-group is called an almost Bieberbach (AB) group.
- Γ AB-group. N/Γ almost flat manifold (modeled on N).

- N connected, simply connected nilpotent Lie group.
- $\operatorname{Aff}(N) := N \rtimes \operatorname{Aut}(N)$ acts on N by

$$(n,\varphi)\cdot m=n\varphi(m).$$

• C – maximal compact subgroup of Aut(N).

- A discrete and cocompact subgroup Γ of $N \rtimes C$ is called an almost crystallographic (AC) group.
- A torsionfree AC-group is called an almost Bieberbach (AB) group.
- Γ AB-group. N/Γ almost flat manifold (modeled on N).

- N connected, simply connected nilpotent Lie group.
- $\operatorname{Aff}(N) := N \rtimes \operatorname{Aut}(N)$ acts on N by

$$(n,\varphi)\cdot m=n\varphi(m).$$

• C – maximal compact subgroup of Aut(N).

- A discrete and cocompact subgroup Γ of $N \rtimes C$ is called an almost crystallographic (AC) group.
- A torsionfree AC-group is called an almost Bieberbach (AB) group.
- Γ AB-group. N/Γ almost flat manifold (modeled on N).

- N connected, simply connected nilpotent Lie group.
- $\operatorname{Aff}(N) := N \rtimes \operatorname{Aut}(N)$ acts on N by

$$(n,\varphi)\cdot m=n\varphi(m).$$

• C – maximal compact subgroup of Aut(N).

Definition

- A discrete and cocompact subgroup Γ of $N \rtimes C$ is called an almost crystallographic (AC) group.
- A torsionfree AC-group is called an almost Bieberbach (AB) group.

• Γ – AB-group. N/Γ – almost flat manifold (modeled on N).

- N connected, simply connected nilpotent Lie group.
- $\operatorname{Aff}(N) := N \rtimes \operatorname{Aut}(N)$ acts on N by

$$(n,\varphi)\cdot m=n\varphi(m).$$

• C – maximal compact subgroup of Aut(N).

- A discrete and cocompact subgroup Γ of $N \rtimes C$ is called an almost crystallographic (AC) group.
- A torsionfree AC-group is called an almost Bieberbach (AB) group.
- Γ AB-group. N/Γ almost flat manifold (modeled on N).

Representations of AC-groups

Theorem (Auslander 1960 - Generalized 1st Bieberbach)

Let $\Gamma \subset N \rtimes C$ be an AC-group. We have the following short exact sequence

$$1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1$$

where $\Lambda = \Gamma \cap N$ is a lattice and F – finite.

Definition

- $F \subset C$. Using a monomorphism $C \hookrightarrow O(n)$ we construct
 - holonomy representation $\varphi \colon F \to O(n)$;
 - classyfying representation $\varphi \circ \pi \colon \Gamma \to O(n)$.

Remark

 $\Gamma - \mathsf{AB}$ -group. Then N/Γ is orientable $\Leftrightarrow \operatorname{Im}(\varphi) \subset \operatorname{SO}(n)$.

Representations of AC-groups

Theorem (Auslander 1960 – Generalized 1st Bieberbach)

Let $\Gamma \subset N \rtimes C$ be an AC-group. We have the following short exact sequence

$$1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1$$

where $\Lambda = \Gamma \cap N$ is a lattice and F – finite.

Definition

 $F \subset C$. Using a monomorphism $C \hookrightarrow O(n)$ we construct

- holonomy representation $\varphi \colon F \to O(n);$
- classyfying representation $\varphi \circ \pi \colon \Gamma \to O(n)$.

Remark

 $\Gamma - \mathsf{AB}$ -group. Then N/Γ is orientable $\Leftrightarrow \operatorname{Im}(\varphi) \subset \operatorname{SO}(n)$.

Representations of AC-groups

Theorem (Auslander 1960 - Generalized 1st Bieberbach)

Let $\Gamma \subset N \rtimes C$ be an AC-group. We have the following short exact sequence

$$1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1$$

where $\Lambda = \Gamma \cap N$ is a lattice and F – finite.

Definition

 $F \subset C$. Using a monomorphism $C \hookrightarrow O(n)$ we construct

- holonomy representation $\varphi \colon F \to O(n)$;
- classyfying representation $\varphi \circ \pi \colon \Gamma \to O(n)$.

Remark

 Γ – AB-group. Then N/Γ is orientable \Leftrightarrow Im $(\varphi) \subset$ SO(n).

Clifford algebra

Definition

Clifford algebra C_n – real associative algebra with 1 generated by e_1, \ldots, e_n with the following relations

$$e_i^2 = -1$$
 and $e_i e_j = -e_j e_i$

for $1 \le i < j \le n$.

Three involutions in C_n

Definition

• *: $C_n \rightarrow C_n$ defined on the basis of (the vector space) C_n by

$$(e_{i_1}\ldots e_{i_k})^* = e_{i_k}\ldots e_{i_1}$$

for $1 \le i_1 < i_2 < \ldots < i_k \le n$.

• ': $C_n \rightarrow C_n$ defined on the generators of (the algebra) C_n by

$$e_i' = -e_i$$

for $1 \le i \le n$. • $-: C_n \to C_n$ is the composition of the previous involutions

$$\forall_{a \in C_n} \ \overline{a} = (a')^*.$$

Three involutions in C_n

Definition

• *: $C_n \to C_n$ defined on the basis of (the vector space) C_n by

$$(e_{i_1}\ldots e_{i_k})^*=e_{i_k}\ldots e_{i_1}$$

• ': $C_n \rightarrow C_n$ defined on the generators of (the algebra) C_n by

$$e_i' = -e_i$$

for $1 \le i \le n$. • $-: C_n \to C_n$ defined on the basis of (the vector space) C_n by $\overline{e_{i_1} \dots e_{i_n}} = (-e_{i_1}) \dots (-e_{i_n})$

for $1 \le i_1 < i_2 < \ldots < i_k \le n$.

The spin group

Definition

$$Spin(n) := \{ x \in C_n \mid x = x' \text{ and } x\overline{x} = 1 \}$$

Example

- $I Spin(1) = O(1) = \{\pm 1\}$
- 2 Spin(2) \simeq U(1)
- 3 $\operatorname{Spin}(3) \simeq \operatorname{SU}(2)$
- $\operatorname{Spin}(4) \simeq \operatorname{SU}(2) \times \operatorname{SU}(2)$

The spin group

Definition

$$\operatorname{Spin}(n) := \{ x \in C_n \mid x = x' \text{ and } x\overline{x} = 1 \}$$

Example

- Spin(1) = $O(1) = \{\pm 1\}$
- $I Spin(3) \simeq SU(2)$

Spin structures

The spin group

Definition

$$Spin(n) := \{ x \in C_n \mid x = x' \text{ and } x\overline{x} = 1 \}$$

Proposition

We have a short exact sequence

$$1 \longrightarrow \{\pm 1\} \longrightarrow \operatorname{Spin}(n) \xrightarrow{\lambda_n} \operatorname{SO}(n) \longrightarrow 1$$

where for every $x \in \text{Spin}(n), v \in \mathbb{R}^n$

$$\lambda_n(x)v = xvx^{-1}.$$

Spin structures on almost flat manifolds

Theorem (Gasior, Petrosyan, Szczepański 2016) $\Gamma \subset N \rtimes C - AB$ -group with classifying representation $\rho \colon \Gamma \to SO(n)$. $\left\{ \text{spin structures on } N/\Gamma \right\} \leftrightarrow \left\{ \epsilon \colon \Gamma \to \operatorname{Spin}(n) \mid \lambda_n \epsilon = \rho \right\}$ $\operatorname{Spin}(n)$ $\Gamma \xrightarrow{\epsilon} \lambda_n \\ \lambda_n \\ \Sigma \xrightarrow{\rho} SO(n)$

• Take a finite presentation $\langle S|R \rangle$ corresponding to the extension $1 \longrightarrow \Lambda \longrightarrow \Gamma \longrightarrow F \longrightarrow 1$

2 For every $s \in S$ find an element $x_s \in \text{Spin}(n)$ st. $\lambda_n(x_s) = \rho(s)$.

$$\lambda_n^{-1}(\rho(s)) = \{\pm x_s\}$$

3 Check if there is a function $\epsilon' \colon S \to \text{Spin}(n), s \mapsto \pm x_s$ which preserves the relations of Γ :

$$s_1^{\alpha_1} \dots s_k^{\alpha_k} \in R \implies \epsilon'(s_1)^{\alpha_1} \dots \epsilon'(s_k)^{\alpha_k} = 1$$

for $s_i \in S, \alpha_i \in \mathbb{Z}, i = 1, \dots, k$.

Take a finite presentation $\langle S|R \rangle$ corresponding to the extension

 $1 \longrightarrow \Lambda \longrightarrow \Gamma \longrightarrow F \longrightarrow 1$

2 For every $s \in S$ find an element $x_s \in \text{Spin}(n)$ st. $\lambda_n(x_s) = \rho(s)$.

$$\lambda_n^{-1}(\rho(s)) = \{\pm x_s\}$$

3 Check if there is a function $\epsilon' \colon S \to \text{Spin}(n), s \mapsto \pm x_s$ which preserves the relations of Γ :

$$s_1^{\alpha_1} \dots s_k^{\alpha_k} \in R \Rightarrow \epsilon'(s_1)^{\alpha_1} \dots \epsilon'(s_k)^{\alpha_k} = 1$$

for $s_i \in S, \alpha_i \in \mathbb{Z}, i = 1, \dots, k$.

Take a finite presentation $\langle S|R \rangle$ corresponding to the extension

 $1 \longrightarrow \Lambda \longrightarrow \Gamma \longrightarrow F \longrightarrow 1$

2 For every $s \in S$ find an element $x_s \in \text{Spin}(n)$ st. $\lambda_n(x_s) = \rho(s)$.

$$\lambda_n^{-1}(\rho(s)) = \{\pm x_s\}$$

3 Check if there is a function $\epsilon' \colon S \to \text{Spin}(n), s \mapsto \pm x_s$ which preserves the relations of Γ :

$$s_1^{\alpha_1} \dots s_k^{\alpha_k} \in R \implies \epsilon'(s_1)^{\alpha_1} \dots \epsilon'(s_k)^{\alpha_k} = 1$$

for $s_i \in S, \alpha_i \in \mathbb{Z}, i = 1, \dots, k$.

Take a finite presentation $\langle S|R \rangle$ corresponding to the extension

 $1 \longrightarrow \Lambda \longrightarrow \Gamma \longrightarrow F \longrightarrow 1$

2 For every $s \in S$ find an element $x_s \in \text{Spin}(n)$ st. $\lambda_n(x_s) = \rho(s)$.

$$\lambda_n^{-1}(\rho(s)) = \{\pm x_s\}$$

Oteck if there is a function ε': S → Spin(n), s ↦ ±x_s which preserves the relations of Γ:

$$s_1^{\alpha_1} \dots s_k^{\alpha_k} \in R \implies \epsilon'(s_1)^{\alpha_1} \dots \epsilon'(s_k)^{\alpha_k} = 1$$

for $s_i \in S, \alpha_i \in \mathbb{Z}, i = 1, \ldots, k$.

Step 3: preserving relations

In GAP package AClib by B. Eick and K. Dekimpe we have 4-dimensional AC-groups as matrix and polycyclic groups.

We can use any extension equivalent to

$$1 \longrightarrow \{\pm 1\} \longrightarrow \lambda_n^{-1}(F) = \widetilde{F} \longrightarrow F \longrightarrow 1.$$

Preserving presentation in GAP:

GroupHomomorphismByImages(Γ , \widetilde{F} , S, $\epsilon'(S)$)

Step 3: preserving relations

In GAP package AClib by B. Eick and K. Dekimpe we have 4-dimensional AC-groups as matrix and polycyclic groups.

We can use any extension equivalent to

$$1 \longrightarrow \{\pm 1\} \longrightarrow \lambda_n^{-1}(F) = \widetilde{F} \longrightarrow F \longrightarrow 1.$$

Preserving presentation in GAP:

GroupHomomorphismByImages(Γ , \widetilde{F} , S, $\epsilon'(S)$)

Step 3: preserving relations

In GAP package AClib by B. Eick and K. Dekimpe we have 4-dimensional AC-groups as matrix and polycyclic groups.

We can use any extension equivalent to

$$1 \longrightarrow \{\pm 1\} \longrightarrow \lambda_n^{-1}(F) = \widetilde{F} \longrightarrow F \longrightarrow 1.$$

Preserving presentation in GAP:

GroupHomomorphismByImages(Γ , \widetilde{F} , S, $\epsilon'(S)$)

Step 2: preimage

We have a central extension

$$1 \longrightarrow C_2 \longrightarrow \widetilde{F} \longrightarrow F \longrightarrow 1$$

() $\varphi \colon F \to \mathrm{SO}(n)$ – holonomy representation

Step 2: preimage

We have a central extension

$$1 \longrightarrow C_2 \longrightarrow \widetilde{F} \longrightarrow F \longrightarrow 1$$

• $\varphi \colon F \to SO(n)$ – holonomy representation

2 Iso class of \widetilde{F} is determined by equivalence class of φ

Step 2: preimage

We have a central extension

$$1 \longrightarrow C_2 \longrightarrow \widetilde{F} \longrightarrow F \longrightarrow 1$$

- $\varphi \colon F \to \mathrm{SO}(n)$ holonomy representation
- 2 Iso class of \widetilde{F} is determined by equivalence class of φ
- Enough to check when F is a 2-group

Lemma (Gąsior, Petrosyan, Szczepański 2016)

$$1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1$$

Let G be a Sylow 2-subgroup of F. Then

 N/Γ has a spin structure $\Leftrightarrow N/\pi^{-1}(G)$ has a spin structure.

Step 2: preimage

We have a central extension

$$1 \longrightarrow C_2 \longrightarrow \widetilde{F} \longrightarrow F \longrightarrow 1$$

() $\varphi \colon F \to \mathrm{SO}(n)$ – holonomy representation

- 2 Iso class of \widetilde{F} is determined by equivalence class of φ
- Enough to check when F is a 2-group
- F 2-group: can find $\varphi \colon F \to \mathrm{SO}(n,\mathbb{Z}) = \mathrm{SO}(n) \cap \mathrm{SL}(n,\mathbb{Z})$

Lemma

 φ is \mathbb{R} -equivalent to the representation of the form $F \to \operatorname{GL}(n, \mathbb{Z})$

Lemma (Putrycz, Lutowski 2015)

Every rational representation of a 2-group F is \mathbb{Q} -equivalent to the representation of the form $F \to O(n, \mathbb{Z}) = O(n) \cap GL(n, \mathbb{Z})$

Step 2: preimage

We have a central extension

$$1 \longrightarrow C_2 \longrightarrow \widetilde{F} \longrightarrow F \longrightarrow 1$$

() $\varphi \colon F \to \mathrm{SO}(n)$ – holonomy representation

- 2 Iso class of \widetilde{F} is determined by equivalence class of φ
- Enough to check when F is a 2-group
- F 2-group: can find $\varphi \colon F \to \mathrm{SO}(n,\mathbb{Z}) = \mathrm{SO}(n) \cap \mathrm{SL}(n,\mathbb{Z})$
- SO (n, \mathbb{Z}) is generated by $\lambda_n((1 + e_p e_q)/\sqrt{2}) \in \operatorname{Spin}(n)$ where $1 \leq p < q \leq n$.

Example (n = 3)

$$\lambda_3\left(\frac{1+e_1e_2}{\sqrt{2}}\right) = \begin{bmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Step 2: preimage

We have a central extension

$$1 \longrightarrow C_2 \longrightarrow \widetilde{F} \longrightarrow F \longrightarrow 1$$

() $\varphi \colon F \to \mathrm{SO}(n)$ – holonomy representation

- 2 Iso class of \widetilde{F} is determined by equivalence class of φ
- Enough to check when F is a 2-group
- F 2-group: can find $\varphi \colon F \to \mathrm{SO}(n,\mathbb{Z}) = \mathrm{SO}(n) \cap \mathrm{SL}(n,\mathbb{Z})$
- SO (n, \mathbb{Z}) is generated by $\lambda_n((1 + e_p e_q)/\sqrt{2}) \in \operatorname{Spin}(n)$ where $1 \leq p < q \leq n$.

Example (n = 3)

$$\lambda_3\left(\frac{1+e_1e_3}{\sqrt{2}}\right) = \begin{bmatrix} 0 & 0 & -1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{bmatrix}$$

Step 2: preimage

We have a central extension

$$1 \longrightarrow C_2 \longrightarrow \widetilde{F} \longrightarrow F \longrightarrow 1$$

 $\ \, \bullet \ \, : F \to \mathrm{SO}(n) - \text{holonomy representation}$

- 2 Iso class of \widetilde{F} is determined by equivalence class of φ
- Enough to check when F is a 2-group
- F 2-group: can find $\varphi \colon F \to \mathrm{SO}(n,\mathbb{Z}) = \mathrm{SO}(n) \cap \mathrm{SL}(n,\mathbb{Z})$
- SO (n, \mathbb{Z}) is generated by $\lambda_n((1 + e_p e_q)/\sqrt{2}) \in \operatorname{Spin}(n)$ where $1 \leq p < q \leq n$.

Example (n = 3)

$$\lambda_3\left(\frac{1+e_2e_3}{\sqrt{2}}\right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

Step 1: presentation

• We have a s.e.s.

$$1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1$$

- $\rho = \varphi \pi$, where $\varphi \colon F \to \mathrm{SO}(n)$ holonomy representation
- $\Lambda^2-{\rm normal}$ closure of group generated by squares of all elements of Λ
- If ϵ exists then $\Lambda^2 \subset \ker \epsilon$. Isomorphism theorem:

Step 1: presentation

• We have a s.e.s.

$$1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1$$

- $\rho = \varphi \pi$, where $\varphi \colon F \to \mathrm{SO}(n)$ holonomy representation
- $\Lambda^2-\mbox{normal}$ closure of group generated by squares of all elements of Λ
- If ϵ exists then $\Lambda^2 \subset \ker \epsilon$. Isomorphism theorem:

Step 1: presentation

• We have a s.e.s.

$$1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1$$

- $\rho = \varphi \pi$, where $\varphi \colon F \to \mathrm{SO}(n)$ holonomy representation
- Λ^2- normal closure of group generated by squares of all elements of Λ
- If ϵ exists then $\Lambda^2 \subset \ker \epsilon$. Isomorphism theorem:

Step 1: presentation

• We have a s.e.s.

$$1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1$$

- $\rho = \varphi \pi$, where $\varphi \colon F \to \mathrm{SO}(n)$ holonomy representation
- Λ^2 normal closure of group generated by squares of all elements of Λ
- If ϵ exists then $\Lambda^2 \subset \ker \epsilon$. Isomorphism theorem:

Step 1: presentation

• We have a s.e.s.

$$1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1$$

- $\rho = \varphi \pi$, where $\varphi \colon F \to \mathrm{SO}(n)$ holonomy representation
- Λ^2 normal closure of group generated by squares of all elements of Λ
- If ϵ exists then $\Lambda^2 \subset \ker \epsilon$. Isomorphism theorem:

The algorithm – remarks

Step 1: presentation

• We have a s.e.s.

$$1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1$$

- $\rho = \varphi \pi$, where $\varphi \colon F \to \mathrm{SO}(n)$ holonomy representation
- Λ^2 normal closure of group generated by squares of all elements of Λ
- If ϵ exists then $\Lambda^2 \subset \ker \epsilon$. Isomorphism theorem:

Existence of $\epsilon \Leftrightarrow$ existence of ϵ_2

The algorithm – remarks

Step 1: presentation

$$\Gamma/\Lambda^2 \xrightarrow{\epsilon_2} \operatorname{Spin}(n)$$

$$\uparrow \xrightarrow{\epsilon} \qquad \downarrow \lambda_n$$

$$\Gamma \xrightarrow{\rho} \operatorname{SO}(n)$$

Existence of $\epsilon \Leftrightarrow$ existence of ϵ_2

Fact

Up to isomorphism there is a finite number of the groups Γ/Λ^2 in dimension 4.

Almost Bieberbach groups in dimension 4

Remark

Classification for AB-groups with abelian Fitting subgroup was made by B. Putrycz and A. Szczepański in 2010.

- 9 holonomy groups (up to isomorphism);
- 9 holonomy representations (up to equivalence) one for each group;
- 43 infinite families of AB-groups; in each family
 - every group Γ is defined by a sequence of natural numbers (k_1,\ldots,k_m) and
 - Γ/Λ^2 depends only on $(k_1, \ldots, k_m) \mod 2$;
- 0 127 groups of the form Γ/Λ^2 (up to isomorphism and family);

Almost Bieberbach groups in dimension 4

Remark

Classification for AB-groups with abelian Fitting subgroup was made by B. Putrycz and A. Szczepański in 2010.

- 9 holonomy groups (up to isomorphism);
- 9 holonomy representations (up to equivalence) one for each group;
- 43 infinite families of AB-groups; in each family
 - every group Γ is defined by a sequence of natural numbers (k_1,\ldots,k_m) and
 - Γ/Λ^2 depends only on $(k_1, \ldots, k_m) \mod 2$;
- (127 groups of the form Γ/Λ^2 (up to isomorphism and family);

Almost Bieberbach groups in dimension 4

Remark

Classification for AB-groups with abelian Fitting subgroup was made by B. Putrycz and A. Szczepański in 2010.

- 9 holonomy groups (up to isomorphism);
- 9 holonomy representations (up to equivalence) one for each group;
- 43 infinite families of AB-groups; in each family
 - every group Γ is defined by a sequence of natural numbers (k_1,\ldots,k_m) and
 - Γ/Λ^2 depends only on $(k_1, \ldots, k_m) \mod 2$;
- (127 groups of the form Γ/Λ^2 (up to isomorphism and family);

Almost Bieberbach groups in dimension 4

Remark

Classification for AB-groups with abelian Fitting subgroup was made by B. Putrycz and A. Szczepański in 2010.

- 9 holonomy groups (up to isomorphism);
- 9 holonomy representations (up to equivalence) one for each group;
- 43 infinite families of AB-groups; in each family
 - every group Γ is defined by a sequence of natural numbers (k_1,\ldots,k_m) and
 - Γ/Λ^2 depends only on $(k_1, \ldots, k_m) \mod 2$;
- (127 groups of the form Γ/Λ^2 (up to isomorphism and family);

Almost Bieberbach groups in dimension 4

Remark

Classification for AB-groups with abelian Fitting subgroup was made by B. Putrycz and A. Szczepański in 2010.

Based on classification made by Dekimpe in 1996 (GAP package AClib) for oriented AB-groups with non-abelian Fitting sbgp we have:

- 9 holonomy groups (up to isomorphism);
- 9 holonomy representations (up to equivalence) one for each group;
- 43 infinite families of AB-groups; in each family
 - every group Γ is defined by a sequence of natural numbers (k_1,\ldots,k_m) and
 - Γ/Λ^2 depends only on $(k_1, \ldots, k_m) \mod 2$;

(127 groups of the form Γ/Λ^2 (up to isomorphism and family);

Almost Bieberbach groups in dimension 4

Remark

Classification for AB-groups with abelian Fitting subgroup was made by B. Putrycz and A. Szczepański in 2010.

- 9 holonomy groups (up to isomorphism);
- 9 holonomy representations (up to equivalence) one for each group;
- 43 infinite families of AB-groups; in each family
 - every group Γ is defined by a sequence of natural numbers (k_1,\ldots,k_m) and
 - Γ/Λ^2 depends only on $(k_1, \ldots, k_m) \mod 2$;
- (127 groups of the form Γ/Λ^2 (up to isomorphism and family);

Almost Bieberbach groups in dimension 4

- **4** 127 groups of the form Γ/Λ^2 (up to isomorphism and family);
- 127 infinite families of AB-groups with the same spin info in each family

no. of families	15	16	42	44	10
no. of spin structures	0	2	4	8	16

Dimension 4

Some facts

Almost Bieberbach groups in dimension 4

- (1) 127 groups of the form Γ/Λ^2 (up to isomorphism and family);
- 127 infinite families of AB-groups with the same spin info in each family

no. of families	15	16	42	44	10	
no. of spin structures	0	2	4	8	16	

Family no. 103: presentation

$$1 \longrightarrow \Lambda \longrightarrow \Gamma \stackrel{\pi}{\longrightarrow} F \longrightarrow 1$$

$$\begin{split} \Gamma &= \langle a,b,c,d,\alpha,\beta \mid \begin{bmatrix} b,a \end{bmatrix} = d^{k_1} & \begin{bmatrix} c,a \end{bmatrix} = 1 & \begin{bmatrix} d,a \end{bmatrix} = 1 \\ \begin{bmatrix} c,b \end{bmatrix} = 1 & \begin{bmatrix} d,b \end{bmatrix} = 1 & \begin{bmatrix} d,c \end{bmatrix} = 1 \\ \alpha^4 = d^{k_4} & \alpha a = b\alpha d^{k_2} & \alpha b = a^{-1}\alpha d^{k_3} \\ \alpha c = c\alpha & \alpha d = d\alpha \\ \beta^2 = cd^{k_5} & \beta a = a\beta d^{k_2+k_3} & \beta b = b^{-1}\beta \\ \beta c = c\beta d^{-2k_5} & \beta d = d^{-1}\beta & \alpha\beta = \beta\alpha^3 d^{-k_4} \end{split}$$

•
$$\Lambda = \langle a, b, c, d \rangle$$

• $F = \langle \overline{\alpha} = \pi(\alpha), \overline{\beta} = \pi(\beta) \rangle$
• $(k_1, k_2, k_3, k_4, k_5)$ for AB-groups:
 $\forall k > 0, k \equiv 0 \mod 2, (k, 0, 0, 1, 0) \rangle = (0, 0, 0, 1, 0) \mod 2$

 $\forall k > 0, k \equiv 0 \mod 4, (k, 0, 0, 3, 0) \int (0, 0, 0, 1, 0) \mod 4$

Dimension 4

Example

Family no. 103: presentation

$$1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1$$

$$\begin{split} \Gamma &= \langle a,b,c,d,\alpha,\beta \mid \begin{bmatrix} b,a \end{bmatrix} = d^{k_1} & \begin{bmatrix} c,a \end{bmatrix} = 1 & \begin{bmatrix} d,a \end{bmatrix} = 1 \\ \begin{bmatrix} c,b \end{bmatrix} = 1 & \begin{bmatrix} d,b \end{bmatrix} = 1 & \begin{bmatrix} d,c \end{bmatrix} = 1 \\ \alpha^4 = d^{k_4} & \alpha a = b\alpha d^{k_2} & \alpha b = a^{-1}\alpha d^{k_3} \\ \alpha c = c\alpha & \alpha d = d\alpha \\ \beta^2 = cd^{k_5} & \beta a = a\beta d^{k_2+k_3} & \beta b = b^{-1}\beta \\ \beta c = c\beta d^{-2k_5} & \beta d = d^{-1}\beta & \alpha\beta = \beta\alpha^3 d^{-k_4} \end{split}$$

- $\Lambda = \langle a, b, c, d \rangle$ • $F = \langle \overline{\alpha} = \pi(\alpha), \overline{\beta} = \pi(\beta) \rangle$
- $(k_1, k_2, k_3, k_4, k_5)$ for AB-groups:

 $\begin{cases} \forall k > 0, k \equiv 0 \mod 2, (k, 0, 0, 1, 0) \\ \forall k > 0, k \equiv 0 \mod 4, (k, 0, 0, 3, 0) \end{cases} \\ \end{cases} \equiv (0, 0, 0, 1, 0) \mod 2$

Family no. 103: presentation

$$1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1$$

$$\begin{split} \Gamma = \langle a, b, c, d, \alpha, \beta \mid & [b, a] = d^{k_1} & [c, a] = 1 & [d, a] = 1 \\ & [c, b] = 1 & [d, b] = 1 & [d, c] = 1 \\ & \alpha^4 = d^{k_4} & \alpha a = b\alpha d^{k_2} & \alpha b = a^{-1}\alpha d^{k_3} \\ & \alpha c = c\alpha & \alpha d = d\alpha \\ & \beta^2 = cd^{k_5} & \beta a = a\beta d^{k_2+k_3} & \beta b = b^{-1}\beta \\ & \beta c = c\beta d^{-2k_5} & \beta d = d^{-1}\beta & \alpha\beta = \beta\alpha^3 d^{-k_4} \end{split}$$

•
$$\Lambda = \langle a, b, c, d \rangle$$

•
$$F = \langle \overline{\alpha} = \pi(\alpha), \overline{\beta} = \pi(\beta) \rangle$$

•
$$(k_1, k_2, k_3, k_4, k_5) \text{ for AB-groups:}$$

$$\forall k > 0, k \equiv 0 \mod 2, (k, 0, 0, 1, 0)$$

$$\forall k > 0, k \equiv 0 \mod 4, (k, 0, 0, 3, 0)$$

$$B \equiv (0, 0, 0, 1, 0) \mod 2$$

Family no. 103: presentation

$$\begin{split} 1 &\longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1 \\ \Gamma &= \langle a, b, c, d, \alpha, \beta \mid [b, a] = 1 \quad [c, a] = 1 \quad [d, a] = 1 \quad \rangle \\ &= [c, b] = 1 \quad [d, b] = 1 \quad [d, c] = 1 \\ &= \alpha^4 = d \quad \alpha a = b\alpha \quad \alpha b = a^{-1}\alpha \\ &= \alpha c = c\alpha \quad \alpha d = d\alpha \\ &= \beta^2 = c \quad \beta a = a\beta \quad \beta b = b^{-1}\beta \\ &= \beta c = c\beta \quad \beta d = d^{-1}\beta \quad \alpha \beta = \beta \alpha^3 d^{-1} \end{split}$$

• $\Lambda = \langle a, b, c, d \rangle$ • $F = \langle \overline{\alpha} = \pi(\alpha), \overline{\beta} = \pi(\beta) \rangle$ • $(k_1, k_2, k_3, k_4, k_5) \text{ for AB-groups:}$ $\forall k > 0, k \equiv 0 \mod 2, (k, 0, 0, 1, 0) \\ \forall k > 0, k \equiv 0 \mod 4, (k, 0, 0, 3, 0)$ $\equiv (0, 0, 0, 1, 0) \mod 2$

Family no. 103: preimage in Spin(4)

$$1 \longrightarrow C_2 \longrightarrow \widetilde{F} \xrightarrow{\lambda_4} F \longrightarrow 1$$

• Holonomy representation $F \to SO(4, \mathbb{Z})$

$$\overline{\alpha} \mapsto \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \overline{\beta} \mapsto \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• $\widetilde{F} = \langle A, B, C \rangle$ where C = -1 and

 $A = (1 + e_2 e_3) / \sqrt{2}, B = e_1 e_3$

 $\widetilde{F}=\langle A,B,C\mid C^2=[C,A]=[C,B]=1, A^4=B^2=(AB)^2=C\rangle\simeq Q_{16}$

Family no. 103: preimage in Spin(4)

$$1 \longrightarrow C_2 \longrightarrow \widetilde{F} \xrightarrow{\lambda_4} F \longrightarrow 1$$

• Holonomy representation $F \to SO(4, \mathbb{Z})$

$$\overline{\alpha} \mapsto \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \overline{\beta} \mapsto \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• $\widetilde{F} = \langle A, B, C \rangle$ where C = -1 and

 $A = (1 + e_2 e_3) / \sqrt{2}, B = e_1 e_3$

 $\widetilde{F} = \langle A, B, C \mid C^2 = [C, A] = [C, B] = 1, A^4 = B^2 = (AB)^2 = C \rangle \simeq Q_{16}$

Family no. 103: preimage in Spin(4)

$$1 \longrightarrow C_2 \longrightarrow \widetilde{F} \xrightarrow{\lambda_4} F \longrightarrow 1$$

• Holonomy representation $F \to SO(4, \mathbb{Z})$

$$\overline{\alpha} \mapsto \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \overline{\beta} \mapsto \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• $\widetilde{F} = \langle A, B, C \rangle$ where C = -1 and

$$A = (1 + e_2 e_3) / \sqrt{2}, B = e_1 e_3$$

 $\widetilde{F} = \langle A, B, C \mid C^2 = [C, A] = [C, B] = 1, A^4 = B^2 = (AB)^2 = C \rangle \simeq Q_{16}$

Family no. 103: relations

- $S = \{a, b, c, d, \alpha, \beta\}$
- For every $\epsilon'\colon S\to \widetilde{F}$ where

$$\epsilon'(a), \epsilon'(b), \epsilon'(c), \epsilon'(d) \in \{1, C\}$$
$$\epsilon'(\alpha) \in \{A, AC\}$$
$$\epsilon'(\beta) \in \{B, BC\}$$

check relations of Γ in \widetilde{F} .

Out of 32 such functions, 8 preserves the relations.

Corollary

Every almost-flat manifold corresponding to a group in the family no. 103 admits 8 spin structures.

Family no. 103: relations

•
$$S = \{a, b, c, d, \alpha, \beta\}$$

• For every $\epsilon'\colon S\to \widetilde{F}$ where

$$\epsilon'(a), \epsilon'(b), \epsilon'(c), \epsilon'(d) \in \{1, C\}$$
$$\epsilon'(\alpha) \in \{A, AC\}$$
$$\epsilon'(\beta) \in \{B, BC\}$$

check relations of Γ in \widetilde{F} .

Out of 32 such functions, 8 preserves the relations.

Corollary

Every almost-flat manifold corresponding to a group in the family no. 103 admits 8 spin structures.

Family no. 103: relations

•
$$S = \{a, b, c, d, \alpha, \beta\}$$

• For every $\epsilon' \colon S \to \widetilde{F}$ where

$$\epsilon'(a), \epsilon'(b), \epsilon'(c), \epsilon'(d) \in \{1, C\}$$
$$\epsilon'(\alpha) \in \{A, AC\}$$
$$\epsilon'(\beta) \in \{B, BC\}$$

check relations of Γ in \widetilde{F} .

Out of 32 such functions, 8 preserves the relations.

Corollary

Every almost-flat manifold corresponding to a group in the family no. 103 admits 8 spin structures.

Thank you!