Spin structures on almost flat 4-manifolds

Rafał Lutowski

joint with Nansen Petrosyan and Andrzej Szczepański
Institute of Mathematics, University of Gdańsk

Nikolaus Conference 2016
(9) Introduction

- Almost flat manifolds
- Spin structures
(2) Spin structures
- The algorithm
- Dimension 4

Almost crystallographic groups

- N - connected, simply connected nilpotent Lie group.
- $\operatorname{Aff}(N):=N \rtimes \operatorname{Aut}(N)$ acts on N by

$$
(n, \varphi) \cdot m=n \varphi(m)
$$

where $n, m \in N, \varphi \in \operatorname{Aut}(N)$.

Almost crystallographic groups

- N - connected, simply connected nilpotent Lie group.
- $\operatorname{Aff}(N):=N \rtimes \operatorname{Aut}(N)$ acts on N by

$$
(n, \varphi) \cdot m=n \varphi(m)
$$

- C - maximal compact subgroup of $\operatorname{Aut}(N)$.

Almost crystallographic groups

- N - connected, simply connected nilpotent Lie group.
- $\operatorname{Aff}(N):=N \rtimes \operatorname{Aut}(N)$ acts on N by

$$
(n, \varphi) \cdot m=n \varphi(m)
$$

- C - maximal compact subgroup of $\operatorname{Aut}(N)$.

Definition

- A discrete and cocompact subgroup Γ of $N \rtimes C$ is called an almost crystallographic (AC) group.
- A torsionfree AC-group is called an almost Bieberbach (AB) group.

Almost crystallographic groups

- N - connected, simply connected nilpotent Lie group.
- $\operatorname{Aff}(N):=N \rtimes \operatorname{Aut}(N)$ acts on N by

$$
(n, \varphi) \cdot m=n \varphi(m)
$$

- C - maximal compact subgroup of $\operatorname{Aut}(N)$.

Definition

- A discrete and cocompact subgroup Γ of $N \rtimes C$ is called an almost crystallographic (AC) group.
- A torsionfree AC-group is called an almost Bieberbach (AB) group.

Almost crystallographic groups

- N - connected, simply connected nilpotent Lie group.
- $\operatorname{Aff}(N):=N \rtimes \operatorname{Aut}(N)$ acts on N by

$$
(n, \varphi) \cdot m=n \varphi(m)
$$

- C - maximal compact subgroup of $\operatorname{Aut}(N)$.

Definition

- A discrete and cocompact subgroup Γ of $N \rtimes C$ is called an almost crystallographic (AC) group.
- A torsionfree AC-group is called an almost Bieberbach (AB) group.
- Γ - AB-group. N / Γ - almost flat manifold (modeled on N).

Representations of AC-groups

Theorem (Auslander 1960 - Generalized 1st Bieberbach)
Let $\Gamma \subset N \rtimes C$ be an AC-group. We have the following short exact sequence

$$
1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1
$$

where $\Lambda=\Gamma \cap N$ is a lattice and F - finite.

Representations of AC-groups

Theorem (Auslander 1960 - Generalized 1st Bieberbach)
Let $\Gamma \subset N \rtimes C$ be an AC-group. We have the following short exact sequence

$$
1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1
$$

where $\Lambda=\Gamma \cap N$ is a lattice and F - finite.

Definition

$F \subset C$. Using a monomorphism $C \hookrightarrow \mathrm{O}(n)$ we construct

- holonomy representation $\varphi: F \rightarrow \mathrm{O}(n)$;
- classyfying representation $\varphi \circ \pi: \Gamma \rightarrow \mathrm{O}(n)$.

Representations of AC-groups

Theorem (Auslander 1960 - Generalized 1st Bieberbach)
Let $\Gamma \subset N \rtimes C$ be an AC-group. We have the following short exact sequence

$$
1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1
$$

where $\Lambda=\Gamma \cap N$ is a lattice and F - finite.

Definition

$F \subset C$. Using a monomorphism $C \hookrightarrow \mathrm{O}(n)$ we construct

- holonomy representation $\varphi: F \rightarrow \mathrm{O}(n)$;
- classyfying representation $\varphi \circ \pi: \Gamma \rightarrow \mathrm{O}(n)$.

Remark

$\Gamma-\mathrm{AB}$-group. Then N / Γ is orientable $\Leftrightarrow \operatorname{Im}(\varphi) \subset \mathrm{SO}(n)$.

Clifford algebra

Definition

Clifford algebra C_{n} - real associative algebra with 1 generated by e_{1}, \ldots, e_{n} with the following relations

$$
e_{i}^{2}=-1 \text { and } e_{i} e_{j}=-e_{j} e_{i}
$$

for $1 \leq i<j \leq n$.

Three involutions in C_{n}

Definition

- *: $C_{n} \rightarrow C_{n}$ defined on the basis of (the vector space) C_{n} by

$$
\left(e_{i_{1}} \ldots e_{i_{k}}\right)^{*}=e_{i_{k}} \ldots e_{i_{1}}
$$

for $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$.

- ': $C_{n} \rightarrow C_{n}$ defined on the generators of (the algebra) C_{n} by

$$
e_{i}^{\prime}=-e_{i}
$$

for $1 \leq i \leq n$.

- - $C_{n} \rightarrow C_{n}$ is the composition of the previous involutions

$$
\forall_{a \in C_{n}} \bar{a}=\left(a^{\prime}\right)^{*} .
$$

Three involutions in C_{n}

Definition

- *: $C_{n} \rightarrow C_{n}$ defined on the basis of (the vector space) C_{n} by
- ': $C_{n} \rightarrow C_{n}$ defined on the generators of (the algebra) C_{n} by

$$
e_{i}^{\prime}=-e_{i}
$$

for $1 \leq i \leq n$.

- ${ }^{-}$: $C_{n} \rightarrow C_{n}$ defined on the basis of (the vector space) C_{n} by

$$
\begin{aligned}
& \qquad \overline{e_{i_{1}} \ldots e_{i_{k}}}=\left(-e_{i_{k}}\right) \ldots\left(-e_{i_{1}}\right) \\
& \text { for } 1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n
\end{aligned}
$$

The spin group

Definition

$$
\operatorname{Spin}(n):=\left\{x \in C_{n} \mid x=x^{\prime} \text { and } x \bar{x}=1\right\}
$$

The spin group

Definition

$$
\operatorname{Spin}(n):=\left\{x \in C_{n} \mid x=x^{\prime} \text { and } x \bar{x}=1\right\}
$$

Example

(1) $\operatorname{Spin}(1)=O(1)=\{ \pm 1\}$
(2) $\operatorname{Spin}(2) \simeq U(1)$
(3) $\operatorname{Sin}(3) \simeq \operatorname{SU}(2)$
(- $\operatorname{Spin}(4) \simeq \operatorname{SU}(2) \times \operatorname{SU}(2)$
(0) $\operatorname{Spin}(5) \simeq \operatorname{Sp}(2)$
(0) $\operatorname{Spin}(6) \simeq \operatorname{SU}(4)$

The spin group

Definition

$$
\operatorname{Spin}(n):=\left\{x \in C_{n} \mid x=x^{\prime} \text { and } x \bar{x}=1\right\}
$$

Proposition

We have a short exact sequence

$$
1 \longrightarrow\{ \pm 1\} \longrightarrow \operatorname{Spin}(n) \xrightarrow{\lambda_{n}} \mathrm{SO}(n) \longrightarrow 1
$$

where for every $x \in \operatorname{Spin}(n), v \in \mathbb{R}^{n}$

$$
\lambda_{n}(x) v=x v x^{-1} .
$$

Spin structures on almost flat manifolds

Theorem (Gąsior, Petrosyan, Szczepański 2016)
$\Gamma \subset N \rtimes C-A B$-group with classifying representation $\rho: \Gamma \rightarrow \mathrm{SO}(n)$.

$$
\{\text { spin structures on } N / \Gamma\} \leftrightarrow\left\{\epsilon: \Gamma \rightarrow \operatorname{Spin}(n) \mid \lambda_{n} \epsilon=\rho\right\}
$$

The algorithm

(1) Take a finite presentation $\langle S \mid R\rangle$ corresponding to the extension

(2) For every $s \in S$ find an element $x_{s} \in \operatorname{Spin}(n)$ st. $\lambda_{n}\left(x_{s}\right)=\rho(s)$.

$$
\lambda_{n}^{-1}(\rho(s))=\left\{ \pm x_{s}\right\}
$$

(3) Check if there is a function $\epsilon^{\prime}: S \rightarrow \operatorname{Spin}(n), s \mapsto \pm x_{s}$ which preserves the relations of Γ :
for $s_{i} \in S, \alpha_{i} \in \mathbb{Z}, i=1, \ldots, k$.

The algorithm

(1) Take a finite presentation $\langle S \mid R\rangle$ corresponding to the extension

$$
1 \longrightarrow \Lambda \longrightarrow \Gamma \longrightarrow F \longrightarrow 1
$$

(2) For every $s \in S$ find an element $x_{s} \in \operatorname{Spin}(n)$ st. $\lambda_{n}\left(x_{s}\right)=\rho(s)$.
(3) Check if there is a function $\epsilon^{\prime}: S \rightarrow \operatorname{Spin}(n), s \mapsto \pm x_{s}$ which preserves the relations of Γ :

The algorithm

(1) Take a finite presentation $\langle S \mid R\rangle$ corresponding to the extension

$$
1 \longrightarrow \Lambda \longrightarrow \Gamma \longrightarrow F \longrightarrow 1
$$

(2) For every $s \in S$ find an element $x_{s} \in \operatorname{Spin}(n)$ st. $\lambda_{n}\left(x_{s}\right)=\rho(s)$.

$$
\lambda_{n}^{-1}(\rho(s))=\left\{ \pm x_{s}\right\}
$$

(8) Check if there is a function ϵ
preserves the relations of Γ :

The algorithm

(1) Take a finite presentation $\langle S \mid R\rangle$ corresponding to the extension

$$
1 \longrightarrow \Lambda \longrightarrow \Gamma \longrightarrow F \longrightarrow 1
$$

(2) For every $s \in S$ find an element $x_{s} \in \operatorname{Spin}(n)$ st. $\lambda_{n}\left(x_{s}\right)=\rho(s)$.

$$
\lambda_{n}^{-1}(\rho(s))=\left\{ \pm x_{s}\right\}
$$

(3) Check if there is a function $\epsilon^{\prime}: S \rightarrow \operatorname{Spin}(n), s \mapsto \pm x_{s}$ which preserves the relations of Γ :

$$
s_{1}^{\alpha_{1}} \ldots s_{k}^{\alpha_{k}} \in R \Rightarrow \epsilon^{\prime}\left(s_{1}\right)^{\alpha_{1}} \ldots \epsilon^{\prime}\left(s_{k}\right)^{\alpha_{k}}=1
$$

for $s_{i} \in S, \alpha_{i} \in \mathbb{Z}, i=1, \ldots, k$.

The algorithm - remarks

Step 3: preserving relations
(1) Γ - always finitely presented.

In GAP package AClib by B. Eick and K. Dekimpe we have 4-dimensional AC-groups as matrix and polycyclic groups.
(2) We can use any extension equivalent to
(3) Preserving presentation in GAP:

The algorithm - remarks

Step 3: preserving relations
(1) Γ - always finitely presented.

In GAP package AClib by B. Eick and K. Dekimpe we have 4-dimensional AC-groups as matrix and polycyclic groups.
(2) We can use any extension equivalent to

$$
1 \longrightarrow\{ \pm 1\} \longrightarrow \lambda_{n}^{-1}(F)=\widetilde{F} \longrightarrow F \longrightarrow 1
$$

(3) Preserving presentation in GAP:

GroupHomomorphismByImages(Γ,

The algorithm - remarks

Step 3: preserving relations
(1) Γ - always finitely presented.

In GAP package AClib by B. Eick and K. Dekimpe we have 4-dimensional AC-groups as matrix and polycyclic groups.
(2) We can use any extension equivalent to

$$
1 \longrightarrow\{ \pm 1\} \longrightarrow \lambda_{n}^{-1}(F)=\widetilde{F} \longrightarrow F \longrightarrow 1
$$

(3) Preserving presentation in GAP:

$$
\text { GroupHomomorphismByImages }\left(\Gamma, \widetilde{F}, S, \epsilon^{\prime}(S)\right)
$$

The algorithm - remarks

Step 2: preimage

We have a central extension

$$
1 \longrightarrow C_{2} \longrightarrow \widetilde{F} \longrightarrow F \longrightarrow 1
$$

(1) $\varphi: F \rightarrow \mathrm{SO}(n)$ - holonomy representation

The algorithm - remarks

Step 2: preimage
We have a central extension

$$
1 \longrightarrow C_{2} \longrightarrow \widetilde{F} \longrightarrow F \longrightarrow 1
$$

(1) $\varphi: F \rightarrow \mathrm{SO}(n)$ - holonomy representation
(2) Iso class of \widetilde{F} is determined by equivalence class of φ

The algorithm - remarks

Step 2: preimage
We have a central extension

$$
1 \longrightarrow C_{2} \longrightarrow \widetilde{F} \longrightarrow F \longrightarrow 1
$$

(1) $\varphi: F \rightarrow \mathrm{SO}(n)$ - holonomy representation
(2) Iso class of \widetilde{F} is determined by equivalence class of φ
(3) Enough to check when F is a 2-group

Lemma (Gąsior, Petrosyan, Szczepański 2016)

$$
1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1
$$

Let G be a Sylow 2-subgroup of F. Then
N / Γ has a spin structure $\Leftrightarrow N / \pi^{-1}(G)$ has a spin structure.

The algorithm - remarks

Step 2: preimage
We have a central extension

$$
1 \longrightarrow C_{2} \longrightarrow \widetilde{F} \longrightarrow F \longrightarrow 1
$$

(1) $\varphi: F \rightarrow \mathrm{SO}(n)$ - holonomy representation
(2) Iso class of \widetilde{F} is determined by equivalence class of φ
(3) Enough to check when F is a 2-group
(4) F-2-group: can find $\varphi: F \rightarrow \mathrm{SO}(n, \mathbb{Z})=\mathrm{SO}(n) \cap \mathrm{SL}(n, \mathbb{Z})$

Lemma

φ is \mathbb{R}-equivalent to the representation of the form $F \rightarrow \mathrm{GL}(n, \mathbb{Z})$

Lemma (Putrycz, Lutowski 2015)

Every rational representation of a 2-group F is \mathbb{Q}-equivalent to the representation of the form $F \rightarrow \mathrm{O}(n, \mathbb{Z})=O(n) \cap \mathrm{GL}(n, \mathbb{Z})$

The algorithm - remarks

Step 2: preimage
We have a central extension

$$
1 \longrightarrow C_{2} \longrightarrow \widetilde{F} \longrightarrow F \longrightarrow 1
$$

(1) $\varphi: F \rightarrow \mathrm{SO}(n)$-holonomy representation
(2) Iso class of \widetilde{F} is determined by equivalence class of φ
(3) Enough to check when F is a 2-group
(4) F-2-group: can find $\varphi: F \rightarrow \mathrm{SO}(n, \mathbb{Z})=\mathrm{SO}(n) \cap \mathrm{SL}(n, \mathbb{Z})$
(5) $\mathrm{SO}(n, \mathbb{Z})$ is generated by $\lambda_{n}\left(\left(1+e_{p} e_{q}\right) / \sqrt{2}\right) \in \operatorname{Spin}(n)$ where $1 \leq p<q \leq n$.

Example $(n=3)$

$$
\lambda_{3}\left(\frac{1+e_{1} e_{2}}{\sqrt{2}}\right)=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The algorithm - remarks

Step 2: preimage
We have a central extension

$$
1 \longrightarrow C_{2} \longrightarrow \widetilde{F} \longrightarrow F \longrightarrow 1
$$

(1) $\varphi: F \rightarrow \mathrm{SO}(n)$ - holonomy representation
(2) Iso class of \widetilde{F} is determined by equivalence class of φ
(3) Enough to check when F is a 2-group
(4) F-2-group: can find $\varphi: F \rightarrow \mathrm{SO}(n, \mathbb{Z})=\mathrm{SO}(n) \cap \mathrm{SL}(n, \mathbb{Z})$
(5) $\mathrm{SO}(n, \mathbb{Z})$ is generated by $\lambda_{n}\left(\left(1+e_{p} e_{q}\right) / \sqrt{2}\right) \in \operatorname{Spin}(n)$ where $1 \leq p<q \leq n$.

Example $(n=3)$

$$
\lambda_{3}\left(\frac{1+e_{1} e_{3}}{\sqrt{2}}\right)=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

The algorithm - remarks

Step 2: preimage
We have a central extension

$$
1 \longrightarrow C_{2} \longrightarrow \widetilde{F} \longrightarrow F \longrightarrow 1
$$

(1) $\varphi: F \rightarrow \mathrm{SO}(n)$-holonomy representation
(2) Iso class of \widetilde{F} is determined by equivalence class of φ
(3) Enough to check when F is a 2-group
(4) F-2-group: can find $\varphi: F \rightarrow \mathrm{SO}(n, \mathbb{Z})=\mathrm{SO}(n) \cap \mathrm{SL}(n, \mathbb{Z})$
(5) $\mathrm{SO}(n, \mathbb{Z})$ is generated by $\lambda_{n}\left(\left(1+e_{p} e_{q}\right) / \sqrt{2}\right) \in \operatorname{Spin}(n)$ where $1 \leq p<q \leq n$.

Example $(n=3)$

$$
\lambda_{3}\left(\frac{1+e_{2} e_{3}}{\sqrt{2}}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]
$$

The algorithm - remarks

Step 1: presentation

- We have a s.e.s.

- $\rho=\varphi \pi$, where $\varphi: F \rightarrow \mathrm{SO}(n)$ - holonomy representation
- Λ^{2} - normal closure of group generated by squares of all elements of Λ
- If ϵ exists then $\Lambda^{2} \subset \operatorname{ker} \epsilon$.

$$
\text { Existence of } \epsilon \Leftrightarrow \text { existence of } \epsilon_{2}
$$

The algorithm - remarks

Step 1: presentation

- We have a s.e.s.

$$
1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1
$$

- $\rho=\varphi \pi$, where $\varphi: F \rightarrow \mathrm{SO}(n)$ - holonomy representation
- Λ^{2} - normal closure of group generated by squares of all elements of Λ
- If ϵ exists then $\Lambda^{2} \subset \operatorname{ker} \epsilon$.

Fxistence of $\epsilon \Leftrightarrow$ existence of ϵ_{2}

The algorithm - remarks

Step 1: presentation

- We have a s.e.s.

$$
1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1
$$

- $\rho=\varphi \pi$, where $\varphi: F \rightarrow \mathrm{SO}(n)$ - holonomy representation
- Λ^{2} - normal closure of group generated by squares of all elements of Λ
- If ϵ exists then $\Lambda^{2} \subset$ ker ϵ.

Existence of $\epsilon \Leftrightarrow$ existence of ϵ_{2}

The algorithm - remarks

Step 1: presentation

- We have a s.e.s.

$$
1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1
$$

- $\rho=\varphi \pi$, where $\varphi: F \rightarrow \mathrm{SO}(n)$ - holonomy representation
- Λ^{2} - normal closure of group generated by squares of all elements of Λ
- If ϵ exists then $\Lambda^{2} \subset \operatorname{ker} \epsilon$.

Existence of $\epsilon \Leftrightarrow$ existence of ϵ_{2}

The algorithm - remarks

Step 1: presentation

- We have a s.e.s.

$$
1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1
$$

- $\rho=\varphi \pi$, where $\varphi: F \rightarrow \mathrm{SO}(n)$ - holonomy representation
- Λ^{2} - normal closure of group generated by squares of all elements of Λ
- If ϵ exists then $\Lambda^{2} \subset \operatorname{ker} \epsilon$. Isomorphism theorem:

Existence of $\epsilon \Leftrightarrow$ existence of ϵ_{2}

The algorithm - remarks

Step 1: presentation

$$
\begin{aligned}
& \Gamma / \Lambda^{2}-\epsilon_{2} \rightarrow \operatorname{Spin}(n)
\end{aligned}
$$

- We have a s.e.s.

$$
1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1
$$

- $\rho=\varphi \pi$, where $\varphi: F \rightarrow \mathrm{SO}(n)$ - holonomy representation
- Λ^{2} - normal closure of group generated by squares of all elements of Λ
- If ϵ exists then $\Lambda^{2} \subset \operatorname{ker} \epsilon$. Isomorphism theorem:

Existence of $\epsilon \Leftrightarrow$ existence of ϵ_{2}

The algorithm - remarks

Step 1: presentation

Existence of $\epsilon \Leftrightarrow$ existence of ϵ_{2}

Fact

Up to isomorphism there is a finite number of the groups Γ / Λ^{2} in dimension 4.

Some facts

Almost Bieberbach groups in dimension 4

Remark

Classification for AB-groups with abelian Fitting subgroup was made by B. Putrycz and A. Szczepański in 2010.

Based on classification made by Dekimpe in 1996 (GAP package

 AClib) for oriented AB-groups with non-abelian Fitting sbgp we have:a 9 holonomy grouns (up to isomorphism);9 holonomy representations (up to equivalence) - one for each group;
3 43 infinite families of AB-groups; in each family

- every group Γ is defined by a sequence of natural numbers
- Γ / Λ^{2} depends only on $\left(k_{1}, \ldots, k_{m}\right) \bmod 2$;
(127 groups of the form Γ / Λ^{2} (up to isomorphism and family);

Some facts

Almost Bieberbach groups in dimension 4

Remark

Classification for AB-groups with abelian Fitting subgroup was made by B. Putrycz and A. Szczepański in 2010.

Based on classification made by Dekimpe in 1996 (GAP package AClib) for oriented AB-groups with non-abelian Fitting sbgp we have:
43 infinite families of AB-groups; in each family - every group Γ is defined by a sequence of natural numbers - Γ / Λ^{2} depends only on $\left(k_{1}, \ldots, k_{m}\right) \bmod 2$; 4 127 groups of the form Γ / Λ^{2} (up to isomorphism and family) ;

Some facts

Almost Bieberbach groups in dimension 4

Remark

Classification for AB-groups with abelian Fitting subgroup was made by B. Putrycz and A. Szczepański in 2010.

Based on classification made by Dekimpe in 1996 (GAP package AClib) for oriented AB-groups with non-abelian Fitting sbgp we have:
(0) 9 holonomy groups (up to isomorphism);43 infinite families of AB-groups; in each family - every group Γ is defined by a sequence of natural numbers - Γ / Λ^{2} depends only on $\left(k_{1}, \ldots, k_{m}\right)$ mod 2 ; © 127 groups of the form Γ / Λ^{2} (up to isomorphism and family):

Some facts

Almost Bieberbach groups in dimension 4

Remark

Classification for AB-groups with abelian Fitting subgroup was made by B. Putrycz and A. Szczepański in 2010.

Based on classification made by Dekimpe in 1996 (GAP package AClib) for oriented AB-groups with non-abelian Fitting sbgp we have:
(1) holonomy groups (up to isomorphism);
(2) 9 holonomy representations (up to equivalence) - one for each group;

43 infinite families of AB-groups; in each family - every group Γ is defined by a sequence of natural numbers - Γ / Λ^{2} depends only on (127 groups of the form Γ / Λ^{2} (up to isomorphism and family)

Some facts

Almost Bieberbach groups in dimension 4

Remark

Classification for AB-groups with abelian Fitting subgroup was made by B. Putrycz and A. Szczepański in 2010.

Based on classification made by Dekimpe in 1996 (GAP package AClib) for oriented AB-groups with non-abelian Fitting sbgp we have:
(1) 9 holonomy groups (up to isomorphism);
(2) 9 holonomy representations (up to equivalence) - one for each group;
(3) 43 infinite families of $A B$-groups; in each family

- every group Γ is defined by a sequence of natural numbers $\left(k_{1}, \ldots, k_{m}\right)$ and
- Γ / Λ^{2} depends only on $\left(k_{1}, \ldots, k_{m}\right) \bmod 2$;
(1) 127 groups of the form Γ / Λ^{2} (up to isomorphism and family);

Some facts

Almost Bieberbach groups in dimension 4

Remark

Classification for AB-groups with abelian Fitting subgroup was made by B. Putrycz and A. Szczepański in 2010.

Based on classification made by Dekimpe in 1996 (GAP package AClib) for oriented AB-groups with non-abelian Fitting sbgp we have:
(1) 9 holonomy groups (up to isomorphism);
(2) 9 holonomy representations (up to equivalence) - one for each group;
(3) 43 infinite families of $A B$-groups; in each family

- every group Γ is defined by a sequence of natural numbers $\left(k_{1}, \ldots, k_{m}\right)$ and
- Γ / Λ^{2} depends only on $\left(k_{1}, \ldots, k_{m}\right) \bmod 2$;
(4) 127 groups of the form Γ / Λ^{2} (up to isomorphism and family);

Some facts

Almost Bieberbach groups in dimension 4

Based on classification made by Dekimpe in 1996 (GAP package AClib) for oriented AB-groups with non-abelian Fitting sbgp we have:
(4) 127 groups of the form Γ / Λ^{2} (up to isomorphism and family);
(5) 127 infinite families of $A B$-groups with the same spin info in each family

Some facts

Almost Bieberbach groups in dimension 4

Based on classification made by Dekimpe in 1996 (GAP package AClib) for oriented AB-groups with non-abelian Fitting sbgp we have:
(5) 127 infinite families of $A B$-groups with the same spin info in each family

no. of families	15	16	42	44	10
no. of spin structures	0	2	4	8	16

Example

Family no. 103: presentation

$$
1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1
$$

$$
\begin{array}{rlll}
\Gamma=\langle a, b, c, d, \alpha, \beta| & {[b, a]=d^{k_{1}}} & {[c, a]=1} & {[d, a]=1} \\
& {[c, b]=1} & {[d, b]=1} & {[d, c]=1} \\
& \alpha^{4}=d^{k_{4}} & \alpha a=b \alpha d^{k_{2}} & \alpha b=a^{-1} \alpha d^{k_{3}} \\
\alpha c=c \alpha & \alpha d=d \alpha & \\
& \beta^{2}=c d^{k_{5}} & \beta a=a \beta d^{k_{2}+k_{3}} & \beta b=b^{-1} \beta \\
& \beta c=c \beta d^{-2 k_{5}} & \beta d=d^{-1} \beta & \alpha \beta=\beta \alpha^{3} d^{-k_{4}}
\end{array}
$$

Example

Family no. 103: presentation

$$
1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1
$$

$$
\begin{array}{llll}
\Gamma=\langle a, b, c, d, \alpha, \beta| & {[b, a]=d^{k_{1}}} & {[c, a]=1} & {[d, a]=1} \\
& {[c, b]=1} & {[d, b]=1} & {[d, c]=1} \\
& \alpha^{4}=d^{k_{4}} & \alpha a=b \alpha d^{k_{2}} & \alpha b=a^{-1} \alpha d^{k_{3}} \\
\alpha c=c \alpha & \alpha d=d \alpha & \\
& \beta^{2}=c d^{k_{5}} & \beta a=a \beta d^{k_{2}+k_{3}} & \beta b=b^{-1} \beta \\
& \beta c=c \beta d^{-2 k_{5}} & \beta d=d^{-1} \beta & \alpha \beta=\beta \alpha^{3} d^{-k_{4}}
\end{array}
$$

- $\Lambda=\langle a, b, c, d\rangle$
- $F=\langle\bar{\alpha}=\pi(\alpha), \bar{\beta}=\pi(\beta)\rangle$

Example

Family no. 103: presentation

$$
1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1
$$

$$
\begin{array}{llll}
\Gamma=\langle a, b, c, d, \alpha, \beta| & {[b, a]=d^{k_{1}}} & {[c, a]=1} & {[d, a]=1} \\
& {[c, b]=1} & {[d, b]=1} & {[d, c]=1} \\
& \alpha^{4}=d^{k_{4}} & \alpha a=b \alpha d^{k_{2}} & \alpha b=a^{-1} \alpha d^{k_{3}} \\
\alpha c=c \alpha & \alpha d=d \alpha & \\
& \beta^{2}=c d^{k_{5}} & \beta a=a \beta d^{k_{2}+k_{3}} & \beta b=b^{-1} \beta \\
& \beta c=c \beta d^{-2 k_{5}} & \beta d=d^{-1} \beta & \alpha \beta=\beta \alpha^{3} d^{-k_{4}}
\end{array}
$$

- $\Lambda=\langle a, b, c, d\rangle$
- $F=\langle\bar{\alpha}=\pi(\alpha), \bar{\beta}=\pi(\beta)\rangle$
- $\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right)$ for AB-groups:

$$
\left.\begin{array}{l}
\forall k>0, k \equiv 0 \bmod 2,(k, 0,0,1,0) \\
\forall k>0, k \equiv 0 \bmod 4,(k, 0,0,3,0)
\end{array}\right\} \equiv(0,0,0,1,0) \bmod 2
$$

Example

Family no. 103: presentation

$$
1 \longrightarrow \Lambda \longrightarrow \Gamma \xrightarrow{\pi} F \longrightarrow 1
$$

$$
\begin{array}{clll}
\Gamma=\langle a, b, c, d, \alpha, \beta| & {[b, a]=1} & {[c, a]=1} & {[d, a]=1} \\
& {[c, b]=1} & {[d, b]=1} & {[d, c]=1} \\
& \alpha^{4}=d & \alpha a=b \alpha & \alpha b=a^{-1} \alpha \\
& \alpha c=c \alpha & \alpha d=d \alpha & \\
& \beta^{2}=c & \beta a=a \beta & \beta b=b^{-1} \beta \\
& \beta c=c \beta & \beta d=d^{-1} \beta & \alpha \beta=\beta \alpha^{3} d^{-1}
\end{array}
$$

- $\Lambda=\langle a, b, c, d\rangle$
- $F=\langle\bar{\alpha}=\pi(\alpha), \bar{\beta}=\pi(\beta)\rangle$
- $\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right)$ for AB-groups:
$\left.\begin{array}{l}\forall k>0, k \equiv 0 \bmod 2,(k, 0,0,1,0) \\ \forall k>0, k \equiv 0 \bmod 4,(k, 0,0,3,0)\end{array}\right\} \equiv(0,0,0,1,0) \bmod 2$

Example

Family no. 103: preimage in Spin(4)

$$
1 \longrightarrow C_{2} \longrightarrow \widetilde{F} \xrightarrow{\lambda_{4}} F \longrightarrow 1
$$

- Holonomy representation $F \rightarrow \mathrm{SO}(4, \mathbb{Z})$

$$
\bar{\alpha} \mapsto\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \bar{\beta} \mapsto\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- $\widetilde{F}=\langle A, B, C\rangle$ where $C=-1$ and

$$
A=\left(1+e_{2} e_{3}\right) / \sqrt{2}, B=e_{1} e_{3}
$$

Example

Family no. 103: preimage in $\operatorname{Spin}(4)$

$$
1 \longrightarrow C_{2} \longrightarrow \widetilde{F} \xrightarrow{\lambda_{4}} F \longrightarrow 1
$$

- Holonomy representation $F \rightarrow \mathrm{SO}(4, \mathbb{Z})$

$$
\bar{\alpha} \mapsto\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \bar{\beta} \mapsto\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- $\widetilde{F}=\langle A, B, C\rangle$ where $C=-1$ and

$$
A=\left(1+e_{2} e_{3}\right) / \sqrt{2}, B=e_{1} e_{3}
$$

Example

Family no. 103: preimage in $\operatorname{Spin}(4)$

$$
1 \longrightarrow C_{2} \longrightarrow \tilde{F} \xrightarrow{\lambda_{4}} F \longrightarrow 1
$$

- Holonomy representation $F \rightarrow \mathrm{SO}(4, \mathbb{Z})$

$$
\bar{\alpha} \mapsto\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \bar{\beta} \mapsto\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- $\widetilde{F}=\langle A, B, C\rangle$ where $C=-1$ and

$$
A=\left(1+e_{2} e_{3}\right) / \sqrt{2}, B=e_{1} e_{3}
$$

$$
\widetilde{F}=\left\langle A, B, C \mid C^{2}=[C, A]=[C, B]=1, A^{4}=B^{2}=(A B)^{2}=C\right\rangle \simeq Q_{16}
$$

Example

Family no. 103: relations

- $S=\{a, b, c, d, \alpha, \beta\}$
- For every $\epsilon^{\prime}: S \rightarrow \widetilde{F}$ where

$$
\begin{aligned}
\epsilon^{\prime}(a), \epsilon^{\prime}(b), \epsilon^{\prime}(c), \epsilon^{\prime}(d) & \in\{1, C\} \\
\epsilon^{\prime}(\alpha) & \in\{A, A C\} \\
\epsilon^{\prime}(\beta) & \in\{B, B C\}
\end{aligned}
$$

check relations of Γ in \widetilde{F}.

Out of 32 such functions, 8 preserves the relations.

Corollary
Every almost-flat manifold corresponding to a group in the family no.
103 admits 8 spin structures.

Example

Family no. 103: relations

- $S=\{a, b, c, d, \alpha, \beta\}$
- For every $\epsilon^{\prime}: S \rightarrow \widetilde{F}$ where

$$
\begin{aligned}
\epsilon^{\prime}(a), \epsilon^{\prime}(b), \epsilon^{\prime}(c), \epsilon^{\prime}(d) & \in\{1, C\} \\
\epsilon^{\prime}(\alpha) & \in\{A, A C\} \\
\epsilon^{\prime}(\beta) & \in\{B, B C\}
\end{aligned}
$$

check relations of Γ in \widetilde{F}.
Out of 32 such functions, 8 preserves the relations.

Corollary
Every almost-flat manifold corresponding to a group in the family no. 103 admits 8 spin structures.

Example

Family no. 103: relations

- $S=\{a, b, c, d, \alpha, \beta\}$
- For every $\epsilon^{\prime}: S \rightarrow \widetilde{F}$ where

$$
\begin{aligned}
\epsilon^{\prime}(a), \epsilon^{\prime}(b), \epsilon^{\prime}(c), \epsilon^{\prime}(d) & \in\{1, C\} \\
\epsilon^{\prime}(\alpha) & \in\{A, A C\} \\
\epsilon^{\prime}(\beta) & \in\{B, B C\}
\end{aligned}
$$

check relations of Γ in \widetilde{F}.
Out of 32 such functions, 8 preserves the relations.

Corollary

Every almost-flat manifold corresponding to a group in the family no. 103 admits 8 spin structures.

