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Introduction Almost flat manifolds

Almost crystallographic groups

N – connected, simply connected nilpotent Lie group.
Aff(N) := N o Aut(N) acts on N by

(n, ϕ) ·m = nϕ(m),

where n,m ∈ N,ϕ ∈ Aut(N).

Definition
A discrete and cocompact subgroup Γ of N o C is called an
almost crystallographic (AC) group.
A torsionfree AC-group is called an almost Bieberbach (AB) group.
Γ – AB-group. N/Γ – almost flat manifold (modeled on N ).
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Introduction Almost flat manifolds

Representations of AC-groups

Theorem (Auslander 1960 – Generalized 1st Bieberbach)
Let Γ ⊂ N o C be an AC-group. We have the following short exact
sequence

1 −→ Λ −→ Γ
π−→ F −→ 1

where Λ = Γ ∩N is a lattice and F – finite.

Definition
F ⊂ C. Using a monomorphism C ↪→ O(n) we construct

holonomy representation ϕ : F → O(n);
classyfying representation ϕ ◦ π : Γ→ O(n).

Remark
Γ – AB-group. Then N/Γ is orientable⇔ Im(ϕ) ⊂ SO(n).
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Introduction Spin structures

Clifford algebra

Definition
Clifford algebra Cn – real associative algebra with 1 generated by
e1, . . . , en with the following relations

e2i = −1 and eiej = −ejei

for 1 ≤ i < j ≤ n.
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Introduction Spin structures

Three involutions in Cn

Definition
∗ : Cn → Cn defined on the basis of (the vector space) Cn by

(ei1 . . . eik)∗ = eik . . . ei1

for 1 ≤ i1 < i2 < . . . < ik ≤ n.
′ : Cn → Cn defined on the generators of (the algebra) Cn by

e′i = −ei

for 1 ≤ i ≤ n.
: Cn → Cn is the composition of the previous involutions

∀a∈Cn a = (a′)∗.
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Introduction Spin structures

The spin group

Definition

Spin(n) := {x ∈ Cn | x = x′ and xx = 1}

Example
1 Spin(1) = O(1) = {±1}
2 Spin(2) ' U(1)

3 Spin(3) ' SU(2)

4 Spin(4) ' SU(2)× SU(2)

5 Spin(5) ' Sp(2)

6 Spin(6) ' SU(4)
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Introduction Spin structures

The spin group

Definition

Spin(n) := {x ∈ Cn | x = x′ and xx = 1}

Proposition
We have a short exact sequence

1 −→ {±1} −→ Spin(n)
λn−→ SO(n) −→ 1

where for every x ∈ Spin(n), v ∈ Rn

λn(x)v = xvx−1.
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Spin structures The algorithm

Spin structures on almost flat manifolds

Theorem (Gąsior, Petrosyan, Szczepański 2016)
Γ ⊂ N o C – AB-group with classifying representation ρ : Γ→ SO(n).{

spin structures on N/Γ
}
↔
{
ε : Γ→ Spin(n) | λnε = ρ

}
Spin(n)

Γ SO(n)

λn

ρ

ε
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Spin structures The algorithm

The algorithm
Spin(n)

Γ SO(n)

λn

ρ

ε

1 Take a finite presentation 〈S|R〉corresponding to the extension

1 −→ Λ −→ Γ −→ F −→ 1

2 For every s ∈ S find an element xs ∈ Spin(n) st. λn(xs) = ρ(s).

λ−1n (ρ(s)) = {±xs}

3 Check if there is a function ε′ : S → Spin(n), s 7→ ±xs which
preserves the relations of Γ:

sα1
1 . . . sαk

k ∈ R ⇒ ε′(s1)
α1 . . . ε′(sk)

αk = 1

for si ∈ S, αi ∈ Z, i = 1, . . . , k.
Rafał Lutowski (University of Gdańsk) Spin structures on almost flat 4-manifolds 8 / 15



Spin structures The algorithm

The algorithm
Spin(n)

Γ SO(n)

λn

ρ

ε

1 Take a finite presentation 〈S|R〉corresponding to the extension

1 −→ Λ −→ Γ −→ F −→ 1

2 For every s ∈ S find an element xs ∈ Spin(n) st. λn(xs) = ρ(s).

λ−1n (ρ(s)) = {±xs}

3 Check if there is a function ε′ : S → Spin(n), s 7→ ±xs which
preserves the relations of Γ:

sα1
1 . . . sαk

k ∈ R ⇒ ε′(s1)
α1 . . . ε′(sk)

αk = 1

for si ∈ S, αi ∈ Z, i = 1, . . . , k.
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Spin structures The algorithm

The algorithm – remarks
Step 3: preserving relations

1 Γ – always finitely presented.

In GAP package AClib by B. Eick and K. Dekimpe we have
4-dimensional AC-groups as matrix and polycyclic groups.

2 We can use any extension equivalent to

1 −→ {±1} −→ λ−1n (F ) = F̃ −→ F −→ 1.

3 Preserving presentation in GAP:

GroupHomomorphismByImages(Γ, F̃, S, ε′(S))
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Spin structures The algorithm

The algorithm – remarks
Step 2: preimage

We have a central extension

1 −→ C2 −→ F̃ −→ F −→ 1

1 ϕ : F → SO(n) – holonomy representation
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Spin structures The algorithm

The algorithm – remarks
Step 2: preimage

We have a central extension

1 −→ C2 −→ F̃ −→ F −→ 1

1 ϕ : F → SO(n) – holonomy representation
2 Iso class of F̃ is determined by equivalence class of ϕ
3 Enough to check when F is a 2-group

Lemma (Gąsior, Petrosyan, Szczepański 2016)

1 −→ Λ −→ Γ
π−→ F −→ 1

Let G be a Sylow 2-subgroup of F . Then

N/Γ has a spin structure ⇔ N/π−1(G) has a spin structure.
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Spin structures The algorithm

The algorithm – remarks
Step 2: preimage

We have a central extension

1 −→ C2 −→ F̃ −→ F −→ 1

1 ϕ : F → SO(n) – holonomy representation
2 Iso class of F̃ is determined by equivalence class of ϕ
3 Enough to check when F is a 2-group
4 F – 2-group: can find ϕ : F → SO(n,Z) = SO(n) ∩ SL(n,Z)

Lemma
ϕ is R-equivalent to the representation of the form F → GL(n,Z)

Lemma (Putrycz, Lutowski 2015)
Every rational representation of a 2-group F is Q-equivalent to the
representation of the form F → O(n,Z) = O(n) ∩GL(n,Z)

Rafał Lutowski (University of Gdańsk) Spin structures on almost flat 4-manifolds 10 / 15



Spin structures The algorithm

The algorithm – remarks
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1 + e1e2√

2

)
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1 0 0
0 0 1
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Spin structures The algorithm

The algorithm – remarks
Step 1: presentation

Spin(n)

Γ SO(n)

λn

ρ

ε

We have a s.e.s.

1 −→ Λ −→ Γ
π−→ F −→ 1

ρ = ϕπ, where ϕ : F → SO(n) – holonomy representation
Λ2 – normal closure of group generated by squares of all
elements of Λ

If ε exists then Λ2 ⊂ ker ε. Isomorphism theorem:

Existence of ε⇔ existence of ε2
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Spin structures The algorithm

The algorithm – remarks
Step 1: presentation

Γ/Λ2 Spin(n)

Γ SO(n)

ε2

λn

ρ

ε

We have a s.e.s.

1 −→ Λ −→ Γ
π−→ F −→ 1

ρ = ϕπ, where ϕ : F → SO(n) – holonomy representation
Λ2 – normal closure of group generated by squares of all
elements of Λ

If ε exists then Λ2 ⊂ ker ε. Isomorphism theorem:
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Spin structures The algorithm

The algorithm – remarks
Step 1: presentation

Γ/Λ2 Spin(n)

Γ SO(n)

ε2

λn

ρ

ε

Existence of ε⇔ existence of ε2

Fact
Up to isomorphism there is a finite number of the groups Γ/Λ2 in
dimension 4.
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Spin structures Dimension 4

Some facts
Almost Bieberbach groups in dimension 4

Remark
Classification for AB-groups with abelian Fitting subgroup was made
by B. Putrycz and A. Szczepański in 2010.

Based on classification made by Dekimpe in 1996 (GAP package
AClib) for oriented AB-groups with non-abelian Fitting sbgp we have:

1 9 holonomy groups (up to isomorphism);
2 9 holonomy representations (up to equivalence) – one for each

group;
3 43 infinite families of AB-groups; in each family

I every group Γ is defined by a sequence of natural numbers
(k1, . . . , km) and

I Γ/Λ2 depends only on (k1, . . . , km) mod 2;
4 127 groups of the form Γ/Λ2 (up to isomorphism and family);
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Spin structures Dimension 4

Some facts
Almost Bieberbach groups in dimension 4
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Spin structures Dimension 4

Example
Family no. 103: presentation

1 −→ Λ −→ Γ
π−→ F −→ 1

Γ = 〈a, b, c, d, α, β | [b, a] = dk1 [c, a] = 1 [d, a] = 1 〉
[c, b] = 1 [d, b] = 1 [d, c] = 1
α4 = dk4 αa = bαdk2 αb = a−1αdk3

αc = cα αd = dα
β2 = cdk5 βa = aβdk2+k3 βb = b−1β
βc = cβd−2k5 βd = d−1β αβ = βα3d−k4

Λ = 〈a, b, c, d〉
F = 〈α = π(α), β = π(β)〉
(k1, k2, k3, k4, k5) for AB-groups:

∀k > 0, k ≡ 0 mod 2, (k, 0, 0, 1, 0)
∀k > 0, k ≡ 0 mod 4, (k, 0, 0, 3, 0)

}
≡ (0, 0, 0, 1, 0) mod 2
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Spin structures Dimension 4

Example
Family no. 103: preimage in Spin(4)

1 −→ C2 −→ F̃
λ4−→ F −→ 1

Holonomy representation F → SO(4,Z)

α 7→


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

 β 7→


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


F̃ = 〈A,B,C〉 where C = −1 and

A = (1 + e2e3)/
√

2, B = e1e3

F̃ = 〈A,B,C | C2 = [C,A] = [C,B] = 1, A4 = B2 = (AB)2 = C〉 ' Q16
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Spin structures Dimension 4

Example
Family no. 103: relations

S = {a, b, c, d, α, β}
For every ε′ : S → F̃ where

ε′(a), ε′(b), ε′(c), ε′(d) ∈ {1, C}
ε′(α) ∈ {A,AC}
ε′(β) ∈ {B,BC}

check relations of Γ in F̃ .

Out of 32 such functions, 8 preserves the relations.

Corollary
Every almost-flat manifold corresponding to a group in the family no.
103 admits 8 spin structures.
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Thank you!
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