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» Twisted conjugacy classes (Reidmeister classes)
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Twisted conjugacy classes

G is a group,  an endomorphism of G.

Definition

Let x,y € G, thenx~y <3z G: x=z-y-p(z)~ L.

» Twisted conjugacy classes (Reidmeister classes)
» E.g. when ¢ = 1, ordinary conjugacy classes
» R(¢) = # of Twisted conjugacy classes

E.g. Let G = G, and p(x) = —x

x~vyex=z+y—(—z)&x=y+2z

2 if nis even.
Re) = { 1if nis odd.
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IViotivation from topology:
A tiny bit of fixed point theory

Let X be a space and f : X — X a self map.
Fix(f) = {x € X | f(x) = x}.

Let p: X — X be the universal cover of X, then

Fix(f) = | Jp (Fix(?))

f

where f ranges over all lifts of f to X.
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Equivalences of lifts

Let I = m(X) be the group of covering transformations.
Two lifts 7‘1, 7‘2 are equivalent iff

E:’yo?go’)/—l fora~vyerl
equivalence classes = lift classes

- R~ (Fix(R)) = p (Fix(h)
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Two lifts 7‘1, 7‘2 are equivalent iff
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Let I = m(X) be the group of covering transformations.
Two lifts 7‘1, 7‘2 are equivalent iff
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> h~b = p (Fix(h)) = p (Fix(h))
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Equivalences of lifts
Let I = m(X) be the group of covering transformations.

Two lifts 7‘1, 7‘2 are equivalent iff
ﬁ:fyofgoy_l fora~vyerl
equivalence classes = lift classes
> h~b = p (Fix(h)) = p (Fix(h))
> fobh=0p (Fix(?ﬂ) Np (le(?z)) =10
lift classes < fixed point classes p (F1x(?)) C Fix(f)

R(f) = #fixed point classes = # lift classes
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Fix a lift f of f.
Any other lift is of the form avo f, for a € T

lifts <>

There is a morphism f, : [ — I such that
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Fixed point classes and Reidemeister classes

Fix a lift f of f.
Any other lift is of the form avo f, for a € T

lifts & I
There is a morphism f, : [ — I such that
Vael: ?ooz:f*(oz)o?.
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Fixed point classes and Reidemeister classes

Fix a lift f of f.
Any other lift is of the form avo f, for a € T

lifts <>

There is a morphism f, : [ — I such that
Vael: ?ooz:f*(oz)o?.

aof~fof & Fyel: aof=rofofoy™?
& Tyel: aof=vyoBof(y) tof

& an~f (wrt f)
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Fixed point classes and Reidemeister classes

Fix a lift f of f.
Any other lift is of the form avo f, for a € T

lifts & I
There is a morphism f, : [ — I such that
Vael: ?ooz:f*(oz)o?.

aof~fof & Fyel: aof=rofofoy™?

& Tyel: aof=vyoBof(y) tof
& an~f (wrt f)

Conclusion R(f) = R(f.)
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Fixed point classes and Reidemeister classes

Fix a lift f of f.
Any other lift is of the form avo f, for a € T

lifts <>

There is a morphism f, : [ — I such that
Vael: ?ooz:f*(oz)o?.
aof~fof & Fyel: aof=rofofoy™?
& Tyel: aof=vyoBof(y) tof
& an~f (wrt f)

Conclusion R(f) = R(f.)
# fixed point classes = # twisted conjugacy classes
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R(p) = #Coker(1 - ¢)
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Abelian groups

Let G be abelian and ¢ an endomorphism of G, then

x~y & JzeGix=z+y—p(2)
& x—yelm(le— )

So
R(p) = #Coker(1 - ¢)

E.g. Let G =2 ZF then ¢ ~ A a k x k—matrix with entries in Z

|det(1 — A)| < det(l—A)#0
R(‘P):{ ) 0 & d:t(ﬂ—A)zo

R(¢) = oo iff 1 is an eigenvalue of .

ﬂ



Nilpotent groups

Let G be a finitely generated torsion free nilpotent group and
¢ € Endo(G).




Nilpotent groups

Let G be a finitely generated torsion free nilpotent group and
¢ € Endo(G).

Let Z1(G) = Z(G)




Nilpotent groups

Let G be a finitely generated torsion free nilpotent group and
¢ € Endo(G).

Let Z1(G) = Z(G) and Zi+1(G) be s.t. 2i+i(C) _ 5 ( ¢ >

Zi(G) Z(G)




Nilpotent groups
Let G be a finitely generated torsion free nilpotent group and
¢ € Endo(G).

Lemma

Zi(G)

has eigenvalue 1
Z_1(G) <

R(p) = 0o < Ji s.t.. induced morphism ¢; on
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Nilpotent groups
Let G be a finitely generated torsion free nilpotent group and
¢ € Endo(G).

Lemma

Zi(G)
Zi—1(G)

R(y) = 0o < Ji s.t.. induced morphism ¢; on has eigenvalue 1

Let Fl(G) = G, F2(G) = ’yz(G), o, r,'(G) = ’)/;(G),
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Nilpotent groups
Let G be a finitely generated torsion free nilpotent group and
¢ € Endo(G).

Lemma

Zi(G)

has eigenvalue 1
Z_1(G) <

R(p) = 0o < Ji s.t.. induced morphism ¢; on

Let I'1(G) = G, T2(G) = \/72(G), ..., [i(G) = /7i(G), then

Lemma

ri(G)
i1(G)

ﬂ
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Given an endomorphism ¢ of G (infinite), question becomes:
Is R(p) finite or infinite?

When ¢ : G — G : x — 1, then R(p) = oc.

A sub case: The above question for ¢ € Aut(G).

Definition
A group G has property R if and only if R(p) = oo for all ¢ € Aut(G).

E.g. A finitely generated abelian group A does not have property R..
Let p:A—= A:x+—= —x, then x ~y & x —y € 2A.
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In general? The R, property

Given an endomorphism ¢ of G (infinite), question becomes:
Is R(p) finite or infinite?

When ¢ : G — G : x — 1, then R(p) = oc.

A sub case: The above question for ¢ € Aut(G).

Definition
A group G has property R if and only if R(p) = oo for all ¢ € Aut(G).

E.g. A finitely generated abelian group A does not have property R..
Let p:A—= A:x+—= —x, then x ~y & x —y € 2A.
As [A: 2A] < 27815 we have that R(y) < co.
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Some known cases

» There are f.g. virtually abelian groups with property R.

E.g. G =ZxZy, ZXZ

Gongalves — Wong (2009), D. — De Rock — Penninckx (2009),
Lutowski — Szczepanski (preprint)
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Some known cases

» There are f.g. virtually abelian groups with property R.

E.g. G =ZxZy, ZXZ
Gongalves — Wong (2009), D. — De Rock — Penninckx (2009),
Lutowski — Szczepanski (preprint)

» There are f.g. torsion free nilpotent groups with property R.
Gongalves — Wong (2009), Roman’kov (2011)

» All non-elementary Gromov hyperbolic groups have property R
(e.g. free groups of finite rank > 1).
Levitt — Lustig (2000), Fel'shtyn (2004)
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Let F, be free on r generators.




The case of free nilpotent groups

Let F, be free on r generators.

F,
N - =
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is free c—step nilpotent on r generators.
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Fr

Ny e = ———
he ’Ychl(Fr)

is free c—step nilpotent on r generators.

Theorem (Roman’kov, 2011)

If r # 3 then for ¢ > 2r: N, . has property R..
If r =3 then for ¢ > 12: N3 . has property R.
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The case of free nilpotent groups

Let F, be free on r generators.

Fr

N e = —F—~
“ ’Ychl(Fr)

is free c—step nilpotent on r generators.

Theorem (Roman’kov, 2011)

If r # 3 then for ¢ > 2r: N, . has property R.
If r =3 then for ¢ > 12: N3 . has property R.

Improvement:

Theorem (D. — Gongalvez)

Ny . has property Ry, < ¢ > 2r.
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Sketch of proof

Let N be f.g. torsion free nilpotent. Define

L(N) @ @ ’YI(N)

rl+1 i—1 ’}/,+1(N
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Let N be f.g. torsion free nilpotent. Define

L(N) = @ @ \/%(N)

rl+1 i—1 ’}/,+1(N
Is a Lie algebra (over Z) with brackets:

[x + Tit1(N), y + Tjra(N)] = [x, y] + Tigjra(N).
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Sketch of proof

Let N be f.g. torsion free nilpotent. Define

L(N) @ @ \/rYI(N)

rl+1 i—1 ’}/,+1(N
Is a Lie algebra (over Z) with brackets:

[x + Tit1(N), y + Tjra(N)] = [x, y] + Tigjra(N).

@ € Aut(N) ~ o1 € Aut(L(N))
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Sketch of proof

Let N be f.g. torsion free nilpotent. Define

L(N):@ [ :@ 7i(N)
i=1

ri+1 i=1 ’7i+1(N)

Is a Lie algebra (over Z) with brackets:
[x+ Tiga(N), y + T (N)] = D, y] + Tigja(N).
@ € Aut(N) ~ o1 € Aut(L(N))

R(¢) = o0 < ¢ has eigenvalue 1
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Sketch of proof

L(Ny.c) is the free c-step nilpotent Lie algebra on r generators.
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L(Ny.c) is the free c-step nilpotent Lie algebra on r generators.
Let ¢ € Aut(N, ) and

(N
©; be the induced automorphism on r (Nr.c)

i+1(Nr,c) -




Sketch of proof

L(Ny.c) is the free c-step nilpotent Lie algebra on r generators.
Let ¢ € Aut(N, ) and

(N
©; be the induced automorphism on M
ri+1(Nr,c)

Lemma

If A1, A\2,..., A, are the eigenvalues of p1. Then, the eigenvalues of p; are
of the form N, - Aj, - -+ A

lj
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Sketch of proof

L(Ny.c) is the free c-step nilpotent Lie algebra on r generators.
Let ¢ € Aut(N, ) and

. : [i(Nr.c)
@ be the induced automorphism on —————.
I_i-i-l(Nr,c)

Lemma

If A1, A\2,..., A, are the eigenvalues of p1. Then, the eigenvalues of p; are
of the form \j - A\j, - -+ - A

lj

Proof: By taking C® L(N, ), we may assume that we are working over C.
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Sketch of proof

L(Ny.c) is the free c-step nilpotent Lie algebra on r generators.
Let ¢ € Aut(N, ) and

(N
©; be the induced automorphism on M
ri+1(Nr,c)

Lemma

If A1, A\2,..., A, are the eigenvalues of p1. Then, the eigenvalues of p; are
of the form )\,'1 . )\,'2 00000 )\,'j

Proof: By taking C® L(N, ), we may assume that we are working over C.

M . :
We can also assume that oo part has basis x1, x2, ..., x, of eigenvectors.
2
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Sketch of proof

L(Ny.c) is the free c-step nilpotent Lie algebra on r generators.
Let ¢ € Aut(N, ) and

(N
©; be the induced automorphism on M
ri+1(Nr,c)

Lemma

If A1, A\2,..., A, are the eigenvalues of p1. Then, the eigenvalues of p; are
of the form )\,'1 . )\,'2 00000 )\,'j

Proof: By taking C® L(N, ), we may assume that we are working over C.

M . :
We can also assume that oo part has basis x1, x2, ..., x, of eigenvectors.
2

. r
[xi,, x;,] are basis of r—z—part
3
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Sketch of proof

L(Ny.c) is the free c-step nilpotent Lie algebra on r generators.
Let ¢ € Aut(N, ) and

(N
©; be the induced automorphism on M
ri+1(Nr,c)

Lemma

If A1, A\2,..., A, are the eigenvalues of p1. Then, the eigenvalues of p; are
of the form )\,'1 . )\,'2 00000 )\,'j

Proof: By taking C® L(N, ), we may assume that we are working over C.

M . :
We can also assume that oo part has basis x1, x2, ..., x, of eigenvectors.
2

. >
[xi,, x;,] are basis of r—3—part & olxi, xi,] = [e(xiy), e (xi,)] = iy Aiy [Xiy s Xi]-
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Sketch of proof

L(Ny.c) is the free c-step nilpotent Lie algebra on r generators.
Let ¢ € Aut(N, ) and

(N
©; be the induced automorphism on M
ri+1(Nr,c)

Lemma

If A1, A\2,..., A, are the eigenvalues of p1. Then, the eigenvalues of p; are
of the form )\,'1 . )\,'2 00000 )\,'j

Proof: By taking C® L(N, ), we may assume that we are working over C.

M . :
We can also assume that oo part has basis x1, x2, ..., x, of eigenvectors.
2

. >
[xi,, x;,] are basis of r—3—part & olxi, xi,] = [e(xiy), e (xi,)] = iy Aiy [Xiy s Xi]-
etc. O
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If ¢ > 2r then N, . has property R,
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1 is an automorphism of
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Sketch of proof

If ¢ > 2r then N, . has property R,

rl(Nr c)
5 g ZI‘-
r2(Nr,C)

1 is an automorphism of

A2 A =21
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Sketch of proof

If ¢ > 2r then N, . has property R,

rl(Nr c)
5 g ZI‘-
r2(Nr,C)

1 is an automorphism of
A A, =1

A1A1 A2 A2 - A A, = 1 is an eigenvalue of o,
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Sketch of proof

If ¢ > 2r then N, . has property R,
r]_(Nr’c) g ZI‘-
r2(Nr,C)

1 is an automorphism of
A A, =1

A1A1 A2 A2 - A A, = 1 is an eigenvalue of o,

For the other direction, assume that c < 2r
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Sketch of proof

If ¢ > 2r then N, . has property R,

rl(Nr c)
5 g ZI‘-
r2(Nr,C)

1 is an automorphism of
A A, =1

A1A1 A2 A2 - A A, = 1 is an eigenvalue of o,

For the other direction, assume that c < 2r

The map Aut(N, ) — Aut(Z") is onto.
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Sketch of proof

If ¢ > 2r then N, . has property R,

rl(Nr c)
5 g ZI‘-
r2(Nr,C)

1 is an automorphism of
A A, =1

A1A1 A2 A2 - A A, = 1 is an eigenvalue of o,

For the other direction, assume that c < 2r

The map Aut(N, ) — Aut(Z") is onto.
So it suffices to find a matrix A € GL,(Z) with eigenvalues A1,..., A,
sucht that

AigAip -+ Xip, # 1 as long as k < 2r
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Sketch of proof

If ¢ > 2r then N, . has property R,

rl(Nr c)
5 g ZI‘-
r2(Nr,C)

1 is an automorphism of
A A, =1

A1A1 A2 A2 - A A, = 1 is an eigenvalue of o,

For the other direction, assume that c < 2r

The map Aut(N, ) — Aut(Z") is onto.
So it suffices to find a matrix A € GL,(Z) with eigenvalues A1,..., A,
sucht that

AigAip -+ Xip, # 1 as long as k < 2r

(We must have det(A) = —1) W



Sketch of proof

Lemma

Let p(x) = x" + ar_1x" "L+ -+ + apx® + ayx + (—=1)"*L, for some integers
a; with |a,_1| > |ar—2| + -+ + |a2| + |a1] + 2




Sketch of proof

Lemma

Let p(x) = x" + ar_1x" "L+ -+ + apx® + ayx + (—=1)"*L, for some integers
a; with |a,_1| > |ar—2| + -+ + |a2| + |a1] + 2
Then

El p(x) has one real root 01 > 1, other roots lie inside the unit circle.
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Sketch of proof

Lemma

Let p(x) = x" + ar_1x" "L+ -+ + apx® + ayx + (—=1)"*L, for some integers
a; with |a,_1| > |ar—2| + -+ + |a2| + |a1] + 2
Then

El p(x) has one real root 01 > 1, other roots lie inside the unit circle.
B If0,,03,...,0, € C are the other roots, then 0105 ...0, = —1.
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Sketch of proof

Lemma

Let p(x) = x" + ar_1x" "L+ -+ + apx® + ayx + (—=1)"*L, for some integers
a;j with |a,_1| > |ar—2| + -+ + |az| + |a1]| + 2
Then

El p(x) has one real root 01 > 1, other roots lie inside the unit circle.

B If0,,03,...,0, € C are the other roots, then 0105 ...0, = —1.

El If for some dy, dy, . .., d, € Z we have that 631652 ... 0% =1, then
there exists an integer z € 7 such that dy = dp = --- = d, = 2z.
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Sketch of proof

Lemma
Let p(x) = x" + ar_1x" "L+ -+ + apx® + ayx + (—=1)"*L, for some integers
a;j with |a,_1| > |ar—2| + -+ + |az| + |a1]| + 2
Then

El p(x) has one real root 01 > 1, other roots lie inside the unit circle.

B If0,,03,...,0, € C are the other roots, then 0105 ...0, = —1.

El If for some dy, dy, . .., d, € Z we have that 631652 ... 0% =1, then

there exists an integer z € 7 such that dy = dp = --- = d, = 2z.

Example: take p(x) = x" — 3x"~1 + (—1)r+L.
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Sketch of proof

Lemma
Let p(x) = x" + ar_1x" L+ + ax® + ayx + (=1)"*1, for some integers
a;j with |a,_1| > |ar—2| + -+ + |az| + |a1]| + 2
Then

El p(x) has one real root 01 > 1, other roots lie inside the unit circle.

B If0,,03,...,0, € C are the other roots, then 0105 ...0, = —1.

El If for some dy, dy, . .., d, € Z we have that 631652 ... 0% =1, then
there exists an integer z € 7 such that dy = dp = --- = d, = 2z.

Example: take p(x) = x" — 3x"~1 + (—1)r+L.

The proof finishes by taking for A the companion matrix of p(x). O
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The case of free solvable groups

Let F, be free on r generators.




The case of free solvable groups

Let F, be free on r generators.

Sr where £V = [F,, F,] and () = [F\) F9)]

d = Fr(d)a

is free d—step solvable on r generators.

ﬂ



The case of free solvable groups

Let F, be free on r generators.

Sr where £V = [F,, F,] and () = [F\) F9)]

d = Fr(d)a

is free d—step solvable on r generators.

Theorem (D.—Gongalves)

S;.d has property Ry, < d > 2.

ﬂ



The case of free solvable groups

Let F, be free on r generators.

Sr.d where F{Y) = [F,, F] and A& = [F{9), £\

) = Fr(d)?

is free d—step solvable on r generators.

Theorem (D.—Gongalves)
S;.d has property Ry, < d > 2.
Sr,d

Proof: S, > =
5
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The case of free solvable groups

Let F, be free on r generators.

Srd= ,:IZI)’ where F( ) — = [F,,F,] and F; (d+1) _ [F,(d), Fr(d)]

is free d—step solvable on r generators.

Theorem (D.—Gongalves)

|

S;.d has property Ry, < d > 2.

Proof: S, > = so it is enough to prove that S, > has property Ry

Srd
5(2)
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The case of free solvable groups

Let F, be free on r generators.

Srd= ,:IZI)’ where F( ) — = [F,,F,] and F; (d+1) _ [F,(d), Fr(d)]

is free d—step solvable on r generators.

Theorem (D.—Gongalves)

|

S;.d has property Ry, < d > 2.

Proof: S, > = so it is enough to prove that S, > has property Ry

Srd
5(2)

5r,2 o Fr o
Ver1(Sr2) ey i (F)FP

ﬂ
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The case of free solvable groups

Let F, be free on r generators.

Srd= ,:IZ/)’ where F( ) — = [F,,F,] and F; (d+1) _ [F,(d), Fr(d)]

is free d—step solvable on r generators.

Theorem (D.—Gongalves)

|

S;.d has property Ry, < d > 2.

Proof: S, > = so it is enough to prove that S, > has property Ry

Srd
5(2)

5r,2 o Fr

Yer1(Sr2) er1(Fr) R N
With the same techniques as for the free nilpotent group, we can show
that M, . has property R iff ¢ > 2r. O

ﬂ
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Free groups of infinite rank
Recall
» F, has Ry, for all r > 1.
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Free groups of infinite rank
Recall

» F, has Ry for all r > 1.

» N, ¢ has Ry if c is big enough.

Perhaps we should expect Fo, to have Ry, too.

Theorem (D. — Gongalves)

Fo does not have R.
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Free groups of infinite rank
Recall

» F, has Ry for all r > 1.

» N, ¢ has Ry if c is big enough.

Perhaps we should expect Fo, to have Ry, too.

Theorem (D. — Gongalves)

Foo does not have R.. In fact, for any positive integer n there is an
automorphism ¢, € Aut(F) with R(p,) = n.
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Free groups of infinite rank
Recall

» F, has Ry for all r > 1.

» N, ¢ has Ry if c is big enough.

Perhaps we should expect Fo, to have Ry, too.

Theorem (D. — Gongalves)

Foo does not have R.. In fact, for any positive integer n there is an
automorphism ¢, € Aut(F) with R(p,) = n.

Proof:
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Free groups of infinite rank
Recall

» F, has Ry for all r > 1.

» N, ¢ has Ry if c is big enough.

Perhaps we should expect Fo, to have Ry, too.

Theorem (D. — Gongalves)

Foo does not have R.. In fact, for any positive integer n there is an
automorphism ¢, € Aut(F) with R(p,) = n.

Proof: (n=1)
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Free groups of infinite rank
Recall

» F, has Ry for all r > 1.

» N, ¢ has Ry if c is big enough.

Perhaps we should expect Fo, to have Ry, too.

Theorem (D. — Gongalves)

Foo does not have R.. In fact, for any positive integer n there is an
automorphism ¢, € Aut(F) with R(p,) = n.

Proof: (n=1) Choose 0 : {xg, x1,x2, ...} — Fs with : 0 is onto and
0(x;) is a word in {xg,x1,...,Xj—1}.
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Free groups of infinite rank
Recall

» F, has Ry for all r > 1.

» N, ¢ has Ry if c is big enough.

Perhaps we should expect Fo, to have Ry, too.

Theorem (D. — Gongalves)

Foo does not have R.. In fact, for any positive integer n there is an

automorphism ¢, € Aut(F) with R(p,) = n.

Proof: (n=1) Choose 0 : {xg, x1,x2,...} — Fs with : 6 is onto and
0(x;) is a word in {xg,x1,...,Xj—1}.

Take ¢ € Aut(Fx) with o(x;) = 0(x;)x;.
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Free groups of infinite rank
Recall

» F, has Ry for all r > 1.

» N, ¢ has Ry if c is big enough.
Perhaps we should expect Fo, to have Ry, too.

Theorem (D. — Gongalves)

Foo does not have R.. In fact, for any positive integer n there is an

automorphism ¢, € Aut(F) with R(p,) = n.

Proof: (n=1) Choose 0 : {xg, x1,x2, ...} — Fs with : 0 is onto and
0(x;) is a word in {xg,x1,...,Xj—1}.

Take ¢ € Aut(Fx) with o(x;) = 0(x;)x;.

Vw € Foo, Ixi 0 w = 0(x;) = p(xi)x;

ﬂ



Free groups of infinite rank
Recall

» F, has Ry for all r > 1.

» N, ¢ has Ry if c is big enough.

Perhaps we should expect Fo, to have Ry, too.

Theorem (D. — Gongalves)

Foo does not have R.. In fact, for any positive integer n there is an

automorphism ¢, € Aut(F) with R(p,) = n.

Proof: (n=1) Choose 0 : {xg, x1,x2,...} — Fs with : 6 is onto and
0(x;) is a word in {xg,x1,...,Xj—1}.

Take ¢ € Aut(Fx) with o(x;) = 0(x;)x;.

Yw € Foo, Ixi 0 w = 0(x;) = p(xi)x:

Vv € Foo, 3x 1 v = xi0(x) L
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Free groups of infinite rank
Recall

» F, has Ry for all r > 1.

» N, ¢ has Ry if c is big enough.

Perhaps we should expect Fo, to have Ry, too.

Theorem (D. — Gongalves)

Foo does not have R.. In fact, for any positive integer n there is an

automorphism ¢, € Aut(F) with R(p,) = n.

Proof: (n=1) Choose 0 : {xg, x1,x2,...} — Fs with : 6 is onto and
0(x;) is a word in {xg,x1,...,Xj—1}.

Take ¢ € Aut(Fx) with o(x;) = 0(x;)x;.

Yw € Foo, Ixi 0 w = 0(x;) = p(xi)x:

Vv € Foo, 3% 1 v =x0(x)"1 = x;-1-(x;)7?
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Free groups of infinite rank
Recall

» F, has Ry for all r > 1.

» N, ¢ has Ry if c is big enough.

Perhaps we should expect Fo, to have Ry, too.

Theorem (D. — Gongalves)

Foo does not have R.. In fact, for any positive integer n there is an

automorphism ¢, € Aut(F) with R(p,) = n.

Proof: (n=1) Choose 0 : {xg, x1,x2,...} — Fs with : 6 is onto and
0(x;) is a word in {xg,x1,...,Xj—1}.

Take ¢ € Aut(Fx) with o(x;) = 0(x;)x;.

Yw € Foo, Ixi 0 w = 0(x;) = p(xi)x:

YW E Fo, 3xi: v=xp(xi) t=x-1-p(x) torv~1l=R(p)=1 O
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What did we do?
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Given the free group F, of finite rank r,

F
we found the largest ¢ such that ———— does not have R...
Yet+1(Fr)




General strategy

What did we do?
Given the free group F, of finite rank r,

F
we found the largest ¢ such that ———— does not have R...
Yet+1(Fr)

We can ask the same question in general:

Given a group G, which probably has property R,
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General strategy

What did we do?
Given the free group F, of finite rank r,

Fr
we found the largest ¢ such that ———~ does not have R..
Yet+1(Fr)

We can ask the same question in general:

Given a group G, which probably has property R,

does not have R.,?

What is the largest c such that
’\/"C*‘rl( )
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General strategy

What did we do?
Given the free group F, of finite rank r,

F
we found the largest ¢ such that ———— does not have R...
Yet+1(Fr)

We can ask the same question in general:

Given a group G, which probably has property R,
G
What is the largest ¢ such that ﬁ does not have R,,?
Ye+1

We solved this question for fundamental groups of closed surfaces.

ﬂ
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Tg = (a1, b1, a2, bo, ..., ag, by | [a1, b1][a2, bo] - - [ag, b = 1) (g > 2)
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Orientable Surface groups
Tg = (a1, b1, a2, bo, ..., ag, by | [a1, b1][a2, bo] - - [ag, b = 1) (g > 2)

Let 31, by, 32, by, . . ., g, l_)g be generators of 7y /y2(mg) = Z%€.

Then ¢ € Aut(mg) ~ @ € Aut(Z?€) so ¢ ++ S € Gl (Z).




Orientable Surface groups
mg = (a1, b1, a2, ba, ..., ag, bg | [a1, b1][a2, b2] - - - [ag, bg] = 1) (g >2)

Let 31, b1, 32, ba, . . ., 3g, by be generators of 74 /v2(mg) = 728,

Then ¢ € Aut(mg) ~ @ € Aut(Z?€) so ¢ ++ S € Gl (Z).

Theorem (Magnus — Karrass — Solitar, 1966)

S € GLoy(Z) corresponds to a ¢ < STQS = £Q,

o1 0 O -+~ 0 O
-10 0 0 --- 0 O
0 0 0 1 0 0
where Q = 0 0 -10 0 0
0 0o 0 - 0 1




Eigenvalues of the matrices S

Lemma

Let S € GLog(Z) be matrix satisfying STQS = —Q, then the eigenvalues
of S are of the form

1 1 1

A, ——, Aoy, —— e Ay, ——
1, )\1) 2, )\27 y NgH >\g
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Eigenvalues of the matrices S

Lemma

Let S € GLog(Z) be matrix satisfying STQS = —Q, then the eigenvalues
of S are of the form

1 1 1

A, ——, Aoy, —— e Ay, ——
1, )\1) 2, )\27 y NgH >\g

Lemma

Let S € GLog(Z) be matrix satisfying STQS = Q, then the eigenvalues of

S are of the form
1 1 1

>\1a N )‘2a aAga)\_
g

)\1, )\—2,



Eigenvalues of the matrices S

Lemma

Let S € GLog(Z) be matrix satisfying STQS = —Q, then the eigenvalues
of S are of the form

1 1 1

A, ——, Aoy, —— e Ay, ——
1, )\1) 2, )\27 y NgH >\g

Lemma

Let S € GLog(Z) be matrix satisfying STQS = Q, then the eigenvalues of

S are of the form . " "
A1, —, Ay, —,...
1 )\1’ 2, )\25

Remark: X\ - % =1and \- <—> = —1.




The Lie algebra associated to 7,

. N 7i(77g)
) =0 ()




The Lie algebra associated to Tg

N ilmg) i(Fag)
L = —_—=r L(F
(ﬂ-g) ~ 7i+1(7rg) ( g)

1 it (F2g)




The Lie algebra associated to Tg

L(rg) = ™ (7). L(Fay) = € ilF2e)_
8 yia(mg) % 7 vit1(Fag)

There is a natural morphism of Lie rings ¢ : L(Fpg) — L(7g).




The Lie algebra associated to Tg

L(ﬂ' ): = ')’i(ﬂg) L(F2 Vi F2g
8 yia(mg) ¢ < viv1(Fag)

There is a natural morphism of Lie rings v : L(Fgg) — L(mg).

Lemma (Labute, 1970)
Let r = [31, b1][ag, b2] cee [ag, bg] + ’73(F2g) € L(Fzg).
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The Lie algebra associated to Tg

L(ﬂ' ): = ')’i(ﬂg) L(F2 Vi F2g
8 yia(mg) ¢ < viv1(Fag)

There is a natural morphism of Lie rings v : L(Fgg) — L(mg).

Lemma (Labute, 1970)
Let r = [31, b1][ag, b2] cee [ag, bg] + ’73(F2g) € L(Fgg). Then
» Ker(v)) = the ideal R of L(Fyg) generated by r.

ﬂ



The Lie algebra associated to Tg
T ilme) ilFag)
Lirg) =@ 08 L(F,
(7s) = Yir1(7e) (F2s) 7 Yir1(Fag)

There is a natural morphism of Lie rings v : L(Fgg) — L(mg).

Lemma (Labute, 1970)
Let r = [31, b1][ag, b2] °o0 [ag, bg] aF ’73(F2g) € L(Fzg). Then
» Ker(v)) = the ideal R of L(Fyg) generated by r.
7i(7g)
Yi+1(7g)

» All factors are torsion free.
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The Lie algebra associated to Tg

o0

L(ﬂ' ): ')’i(ﬂg) L(F Vi F2g
8 yia(mg) 7 vit1(Fag)

There is a natural morphism of Lie rings ¢ : L(Fpg) — L(7g).

Let r = [a1, b1][an, ba] - - - [ag, bg] + 73(F2g) € L(Fag). Then
» Ker(v)) = the ideal R of L(Fyg) generated by r.
7i(7"g)
’7i+1(7rg)
Tg
'Yc-l—l(ﬂ'g)

ﬂ

» All factors are torsion free.

All quotients are torsion free.



The Lie algebra associated to Tg

o0

’)/i(ﬂg) L(F Vi F2g

L(mg) =
(7s) = Yir1(7e) 7 vit1(Fag)

There is a natural morphism of Lie rings ¢ : L(Fpg) — L(7g).

Let r = [ay, bi][az, bo] - - - [ag, bg] + 73(F2g) € L(Fag). Then
» Ker(v)) = the ideal R of L(Fyg) generated by r.
7i(7g)
’7i+1(7rg)
Tg
'Yc—i—l(ﬂ'g)

» All factors are torsion free.

All quotients are torsion free.

Important' The Magnus — Karrass — Solitar theorem also holds for
Aut (

Vet (7"g)




Main result for orientable surface groups

Theorem (D. — Gongalves)

Let g > 2: 7g/vcr1(mg) has property Ry < ¢ > 4.
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Main result for orientable surface groups

Theorem (D. — Gongalves)

Let g > 2: 7g/vcr1(mg) has property Ry < ¢ > 4.

Proof: Let ¢ = 4 and consider any ¢ € Aut(mg/vct1(mg)) ~+ S

1 1 1
—, Ay, E—, . A, E—
)\17 2, Az’ s NG

S has eigenvalues A\, £+
Ag
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Main result for orientable surface groups

Theorem (D. — Gongalves)
Let g > 2: 7g/vcr1(mg) has property Ry < ¢ > 4.
Proof: Let ¢ = 4 and consider any ¢ € Aut(mg/vct1(mg)) ~+ S

1 1 1
—, Ay, E—, . A, E—
)\17 2, Az’ s NG

S has eigenvalues A\, £+
Ag

“Lift" ¢ to Foq
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Main result for orientable surface groups

Theorem (D. — Gongalves)
Let g > 2: 7g/vcr1(mg) has property Ry < ¢ > 4.
Proof: Let ¢ = 4 and consider any ¢ € Aut(mg/vct1(mg)) ~+ S

1 1 1
—, Ay, E—, . A, E—
)\17 2, Az’ s NG )\g

1 1
“Lift" ¢ to Fog, as A; - Ve Aj - Vi 1, there are a lot of eigenvectors for

S has eigenvalues A\, £+

j j
eigenvalue 1 in v4(Fog)/75(Fag)
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Main result for orientable surface groups

Theorem (D. — Gongalves)

Let g > 2: 7g/vcr1(mg) has property Ry < ¢ > 4.

Proof: Let ¢ = 4 and consider any ¢ € Aut(mg/vct1(mg)) ~+ S

1 1 1
—, Ay, E—, . A, E—
)\17 2, AQ’ s NG

S has eigenvalues A\, £+
Ag
1
“Lift" ¢ to Fog, as A; - Ve Aj

1

-A— =1, there are a lot of eigenvectors for
i )

eigenvalue 1 in v4(Fog)/v5(F2g)

Not all of them can lie in R.
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Main result for orientable surface groups

Theorem (D. — Gongalves)

Let g > 2: 7g/vcr1(mg) has property Ry < ¢ > 4.

Proof: Let ¢ = 4 and consider any ¢ € Aut(mg/vct1(mg)) ~+ S
1 1 1

—, Ao, E— A, E—

)\17 2, AQ’ s NG

Ag
1
“Lift" ¢ to Fog, as A; - Ve Aj =1, there are a lot of eigenvectors for

S has eigenvalues A\, £+
1
i >\_]
eigenvalue 1 in v4(Fog)/v5(F2g)
Not all of them can lie in R.

So there are also eigenvectors for eigenvalue 1 in v4(mg)/v5(7g), hence
R(yp) = .
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Main result for orientable surface groups

Theorem (D. — Gongalves)

Let g > 2: 7g/vcr1(mg) has property Ry < ¢ > 4.

Proof: Let ¢ = 4 and consider any ¢ € Aut(mg/vct1(mg)) ~+ S

1 1 1
—, Ay, E—, . A, E—
)\17 2, AQ’ s NG

Ag
1
“Lift" ¢ to Fog, as A; - Ve Aj =1, there are a lot of eigenvectors for

S has eigenvalues A\, £+
1
i >\_]
eigenvalue 1 in v4(Fog)/v5(F2g)
Not all of them can lie in R.

So there are also eigenvectors for eigenvalue 1 in v4(mg)/v5(7g), hence
R(yp) = .

Then ¢ > 4 also follows. W



Main result for orientable surface groups

(Proof ctd.)

When ¢ = 1,2 or 3, we can take

1200 00
1100 00
00 1 2 00

s—|oo011 00
0000 12




Main result for orientable surface groups

(Proof ctd.)

When ¢ = 1,2 or 3, we can take

1200 00
1100 00
0012 00
s—| o011 00
0000 12
0000 11

Then SgTQSg = —Q and has eigenvalues A = 1 + V2 and —% =1—-+2.
O

ﬂ
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Tg = (a1, @, -+, 3 a%a§'~a§:1> (g>1)




Non Orientable Surface groups

Tg:<al7 a27':. aglala2...a

Remark:
» 71 = 7(RP?) 22 Z, is finite
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Non Orientable Surface groups

Tg = (a1, a2, -+, ag | 3132"'a§:1> (g=>1)
Remark:
» 71 = m(RP?) 2 Zj is finite
> ik 2 7o X7 does not have property R.., but 7 does!
’Yc+1(7'2)
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Non Orientable Surface groups

22
Tg = (a1, a2, -+ ,ag |ajas---a

Remark:

» 11 = 7(RP?) 2 Z is finite

N Zocx7 does not have property R, but 7 does!

Yer1(72)
‘g is not torsion free! E.g. e ~ygelg Zy.

Yet1(7g) Y2(7g)

>
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Non Orientable Surface groups

Tg = (a1, @, -+, 3 a%a§'~a§:1> (g>1)

Remark:

» 71 = 7(RP?) 22 Z, is finite

N Zocx7 does not have property R, but 7 does!
’Yc+1(7'2)

Tg
Ye+1(Tg)
This causes quit some problems.

is not torsion free! E.g. e ~ge-lg 7.
72(7g)

>

ﬂ



Important observation
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Important observation

Although — "8 s not torsion free, we do have
Yetr1(Tg)

Lemma

|

g

contains Ng_1 . as a characteristic subgroup of finite index.
Ye+1(7g)
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Important observation

Although — "8 s not torsion free, we do have
Yetr1(Tg)

Lemma

|

g

contains Ng_1 . as a characteristic subgroup of finite index.
Ye+1(7g)

Using this we can show

Corollary

|

If c >2(g — 1) then —=-— has property Rs..
’7c+1(7-g)
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Main result in the non orientable case

Theorem (D. — Gongalves)
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has property Ry, < ¢ > 2(g — 1).
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Main result in the non orientable case

Theorem (D. — Gongalves)

|

g
’Yc+1(7g)

has property Ry, < ¢ > 2(g — 1).

Proof:
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Main result in the non orientable case

Theorem (D. — Gongalves)

|

g

has property Ry, < ¢ > 2(g — 1).
Yer1(7g)

Proof:
The "<" part is given by the corollary.
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Theorem (D. — Gongalves)

|

—£& __ has property R, < ¢ >2(g — 1).
Yer1(7g)

Proof:
The "<" part is given by the corollary.
The “=" part is quite hard.
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Main result in the non orientable case

Theorem (D. — Gongalves)

|

—£& __ has property R, < ¢ >2(g — 1).
Yer1(7g)

Proof:

The "<" part is given by the corollary.

The "=" part is quite hard.

-
We do not completely know the structure of £

'7c+1(7_g) .
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Main result in the non orientable case

Theorem (D. — Gongalves)

|

—£& __ has property R, < ¢ >2(g — 1).
Yer1(7g)

Proof:

The "<" part is given by the corollary.

The "=" part is quite hard.

We do not completely know the structure of -
'7c+1(7_g)
But for ¢ < 2(g — 1), we need a ¢ € Aut <Tg , with R(p) < 0.
fYC-l—l(Tg)
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Main result in the non orientable case

Theorem (D. — Gongalves)

|

g

——=—— has property Ry, < ¢ > 2(g — 1).
Yer1(7g)

Proof:
The "<" part is given by the corollary.
The "=" part is quite hard.

We do not completely know the structure of -
'7c+1(7_g)
But for ¢ < 2(g — 1), we need a ¢ € Aut <Tg , with R(p) < 0.
fYC-l—l(Tg)

| think
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Main result in the non orientable case

Theorem (D. — Gongalves)

|

g

——=—— has property Ry, < ¢ > 2(g — 1).
Yer1(7g)

Proof:
The "<" part is given by the corollary.
The "=" part is quite hard.

We do not completely know the structure of -
'7c+1(7_g)
But for ¢ < 2(g — 1), we need a ¢ € Aut <Tg , with R(p) < 0.
fYC-l—l(Tg)

| think (hope)
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Main result in the non orientable case

Theorem (D. — Gongalves)

|

g

——=—— has property Ry, < ¢ > 2(g — 1).
Yer1(7g)

Proof:

The "<" part is given by the corollary.

The "=" part is quite hard.

We do not completely know the structure of -

'7c+1(7_g)

But for ¢ < 2(g — 1), we need a ¢ € Aut <Tg , with R(p) < 0.
fYC-l—l(Tg)

| think (hope) we found such a ¢ ... O
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Thank you!
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