

The R_{∞} property for nilpotent quotients of free groups and surface groups

Karel Dekimpe

(joint with D.L.Gonçalves, USP, Brazil)

Gdansk, May 25, 2013

G is a group, φ an endomorphism of *G*.

G is a group, φ an endomorphism of G.

Definition

Let $x, y \in G$, then $x \sim y \Leftrightarrow \exists z \in G : x = z \cdot y \cdot \varphi(z)^{-1}$.

G is a group, φ an endomorphism of G.

Definition

Let $x, y \in G$, then $x \sim y \Leftrightarrow \exists z \in G : x = z \cdot y \cdot \varphi(z)^{-1}$.

Twisted conjugacy classes (Reidmeister classes)

G is a group, φ an endomorphism of G.

Definition

Let $x, y \in G$, then $x \sim y \Leftrightarrow \exists z \in G : x = z \cdot y \cdot \varphi(z)^{-1}$.

KU LEUVEN kulak

- Twisted conjugacy classes (Reidmeister classes)
- E.g. when $\varphi = \mathbb{1}_{G}$, ordinary conjugacy classes

G is a group, φ an endomorphism of G.

Definition

Let $x, y \in G$, then $x \sim y \Leftrightarrow \exists z \in G : x = z \cdot y \cdot \varphi(z)^{-1}$.

KU LEUVEN kulak

- Twisted conjugacy classes (Reidmeister classes)
- E.g. when $\varphi = \mathbb{1}_{G}$, ordinary conjugacy classes
- $R(\varphi) = \#$ of Twisted conjugacy classes

G is a group, φ an endomorphism of G.

Definition

Let $x, y \in G$, then $x \sim y \Leftrightarrow \exists z \in G : x = z \cdot y \cdot \varphi(z)^{-1}$.

- Twisted conjugacy classes (Reidmeister classes)
- E.g. when $\varphi = \mathbb{1}_{G}$, ordinary conjugacy classes
- $R(\varphi) = \#$ of Twisted conjugacy classes

E.g. Let $G = C_n$ and $\varphi(x) = -x$

$$x \sim y \Leftrightarrow x = z + y - (-z) \Leftrightarrow x = y + 2z$$

G is a group, φ an endomorphism of G.

Definition

Let $x, y \in G$, then $x \sim y \Leftrightarrow \exists z \in G : x = z \cdot y \cdot \varphi(z)^{-1}$.

- Twisted conjugacy classes (Reidmeister classes)
- E.g. when $\varphi = \mathbb{1}_{G}$, ordinary conjugacy classes
- $R(\varphi) = \#$ of Twisted conjugacy classes

E.g. Let $G = C_n$ and $\varphi(x) = -x$

$$x \sim y \Leftrightarrow x = z + y - (-z) \Leftrightarrow x = y + 2z$$
$$R(\varphi) = \begin{cases} 2 \text{ if } n \text{ is even.} \\ 1 \text{ if } n \text{ is odd.} \end{cases}$$

KU LEUVEN kulak

Motivation from topology: A tiny bit of fixed point theory

Let X be a space and $f : X \to X$ a self map.

Motivation from topology: A tiny bit of fixed point theory

Let X be a space and $f: X \to X$ a self map.

 $\operatorname{Fix}(f) = \{ x \in X \mid f(x) = x \}.$

Motivation from topology: A tiny bit of fixed point theory

Let X be a space and $f: X \to X$ a self map.

 $\operatorname{Fix}(f) = \{ x \in X \mid f(x) = x \}.$

Let $p: \widetilde{X} \to X$ be the universal cover of X, then

$$\operatorname{Fix}(f) = \bigcup_{\tilde{f}} p\left(\operatorname{Fix}(\tilde{f})\right)$$

where \tilde{f} ranges over all lifts of f to \tilde{X} .

Let $\Gamma \cong \pi(X)$ be the group of covering transformations.

Let $\Gamma \cong \pi(X)$ be the group of covering transformations.

Two lifts \tilde{f}_1, \tilde{f}_2 are equivalent iff

$$ilde{f}_1 = \gamma \circ ilde{f}_2 \circ \gamma^{-1}$$
 for a $\gamma \in \mathsf{F}$

Let $\Gamma \cong \pi(X)$ be the group of covering transformations.

Two lifts \tilde{f}_1, \tilde{f}_2 are equivalent iff

$$ilde{f}_1 = \gamma \circ ilde{f}_2 \circ \gamma^{-1}$$
 for a $\gamma \in \mathsf{\Gamma}$

equivalence classes = lift classes

Let $\Gamma \cong \pi(X)$ be the group of covering transformations.

Two lifts \tilde{f}_1, \tilde{f}_2 are equivalent iff

$$ilde{f}_1 = \gamma \circ ilde{f}_2 \circ \gamma^{-1}$$
 for a $\gamma \in \mathsf{\Gamma}$

equivalence classes = lift classes

•
$$\tilde{f}_1 \sim \tilde{f}_2 \Rightarrow p\left(\operatorname{Fix}(\tilde{f}_1)\right) = p\left(\operatorname{Fix}(\tilde{f}_2)\right)$$

Let $\Gamma \cong \pi(X)$ be the group of covering transformations.

Two lifts \tilde{f}_1, \tilde{f}_2 are equivalent iff

$$ilde{f}_1 = \gamma \circ ilde{f}_2 \circ \gamma^{-1}$$
 for a $\gamma \in \Gamma$

equivalence classes = lift classes

•
$$\tilde{f}_1 \sim \tilde{f}_2 \Rightarrow \rho\left(\operatorname{Fix}(\tilde{f}_1)\right) = \rho\left(\operatorname{Fix}(\tilde{f}_2)\right)$$

• $\tilde{f}_1 \not\sim \tilde{f}_2 \Rightarrow \rho\left(\operatorname{Fix}(\tilde{f}_1)\right) \cap \rho\left(\operatorname{Fix}(\tilde{f}_2)\right) = \emptyset$

Let $\Gamma \cong \pi(X)$ be the group of covering transformations.

Two lifts \tilde{f}_1, \tilde{f}_2 are equivalent iff

$$ilde{f}_1 = \gamma \circ ilde{f}_2 \circ \gamma^{-1}$$
 for a $\gamma \in \mathsf{\Gamma}$

equivalence classes = lift classes

•
$$\tilde{f}_1 \sim \tilde{f}_2 \Rightarrow \rho\left(\operatorname{Fix}(\tilde{f}_1)\right) = \rho\left(\operatorname{Fix}(\tilde{f}_2)\right)$$

• $\tilde{f}_1 \not\sim \tilde{f}_2 \Rightarrow \rho\left(\operatorname{Fix}(\tilde{f}_1)\right) \cap \rho\left(\operatorname{Fix}(\tilde{f}_2)\right) = \emptyset$

lift classes \leftrightarrow fixed point classes $p\left(\operatorname{Fix}(\widetilde{f})\right) \subseteq \operatorname{Fix}(f)$

Let $\Gamma \cong \pi(X)$ be the group of covering transformations.

Two lifts \tilde{f}_1, \tilde{f}_2 are equivalent iff

$$ilde{f}_1 = \gamma \circ ilde{f}_2 \circ \gamma^{-1}$$
 for a $\gamma \in \Gamma$

equivalence classes = lift classes

•
$$\tilde{f}_1 \sim \tilde{f}_2 \Rightarrow p\left(\operatorname{Fix}(\tilde{f}_1)\right) = p\left(\operatorname{Fix}(\tilde{f}_2)\right)$$

• $\tilde{f}_1 \not\sim \tilde{f}_2 \Rightarrow p\left(\operatorname{Fix}(\tilde{f}_1)\right) \cap p\left(\operatorname{Fix}(\tilde{f}_2)\right) = \emptyset$

lift classes \leftrightarrow fixed point classes $p\left(\operatorname{Fix}(\tilde{f})\right) \subseteq \operatorname{Fix}(f)$

R(f) = #fixed point classes = # lift classes

Fixed point classes and Reidemeister classes Fix a lift \tilde{f} of f.

Fix a lift \tilde{f} of f. Any other lift is of the form $\alpha \circ \tilde{f}$, for $\alpha \in \Gamma$

Fix a lift \tilde{f} of f. Any other lift is of the form $\alpha \circ \tilde{f}$, for $\alpha \in \Gamma$

lifts $\leftrightarrow \Gamma$

Fix a lift \tilde{f} of f. Any other lift is of the form $\alpha \circ \tilde{f}$, for $\alpha \in \Gamma$

lifts $\leftrightarrow \Gamma$

Fix a lift \tilde{f} of f. Any other lift is of the form $\alpha \circ \tilde{f}$, for $\alpha \in \Gamma$

lifts $\leftrightarrow \Gamma$

$$\alpha\circ \tilde{f}\sim\beta\circ \tilde{f} \ \Leftrightarrow \ \exists\gamma\in \mathsf{\Gamma}: \ \alpha\circ \tilde{f}=\gamma\circ\beta\circ \tilde{f}\circ\gamma^{-1}$$

Fix a lift \tilde{f} of f. Any other lift is of the form $\alpha \circ \tilde{f}$, for $\alpha \in \Gamma$

lifts $\leftrightarrow \Gamma$

$$\begin{split} \alpha \circ \tilde{f} \sim \beta \circ \tilde{f} & \Leftrightarrow & \exists \gamma \in \Gamma : \ \alpha \circ \tilde{f} = \gamma \circ \beta \circ \tilde{f} \circ \gamma^{-1} \\ & \Leftrightarrow & \exists \gamma \in \Gamma : \ \alpha \circ \tilde{f} = \gamma \circ \beta \circ f_*(\gamma)^{-1} \circ \tilde{f} \end{split}$$

Fix a lift \tilde{f} of f. Any other lift is of the form $\alpha \circ \tilde{f}$, for $\alpha \in \Gamma$

lifts $\leftrightarrow \Gamma$

$$\begin{split} \alpha \circ \tilde{f} \sim \beta \circ \tilde{f} & \Leftrightarrow \quad \exists \gamma \in \mathsf{\Gamma} : \ \alpha \circ \tilde{f} = \gamma \circ \beta \circ \tilde{f} \circ \gamma^{-1} \\ & \Leftrightarrow \quad \exists \gamma \in \mathsf{\Gamma} : \ \alpha \circ \tilde{f} = \gamma \circ \beta \circ f_*(\gamma)^{-1} \circ \tilde{f} \\ & \Leftrightarrow \quad \alpha \sim \beta \quad (\mathsf{w.r.t.} \ f_*) \end{split}$$

Fix a lift \tilde{f} of f. Any other lift is of the form $\alpha \circ \tilde{f}$, for $\alpha \in \Gamma$

lifts $\leftrightarrow \Gamma$

There is a morphism $f_* : \Gamma \to \Gamma$ such that $\forall \alpha \in \Gamma : \tilde{f} \circ \alpha = f_*(\alpha) \circ \tilde{f}.$

$$\begin{split} \alpha \circ \tilde{f} \sim \beta \circ \tilde{f} & \Leftrightarrow & \exists \gamma \in \mathsf{\Gamma} : \ \alpha \circ \tilde{f} = \gamma \circ \beta \circ \tilde{f} \circ \gamma^{-1} \\ & \Leftrightarrow & \exists \gamma \in \mathsf{\Gamma} : \ \alpha \circ \tilde{f} = \gamma \circ \beta \circ f_*(\gamma)^{-1} \circ \tilde{f} \\ & \Leftrightarrow & \alpha \sim \beta \quad (\text{w.r.t. } f_*) \end{split}$$

Conclusion $R(f) = R(f_*)$

Fix a lift \tilde{f} of f. Any other lift is of the form $\alpha \circ \tilde{f}$, for $\alpha \in \Gamma$

lifts $\leftrightarrow \Gamma$

There is a morphism $f_* : \Gamma \to \Gamma$ such that $\forall \alpha \in \Gamma : \tilde{f} \circ \alpha = f_*(\alpha) \circ \tilde{f}.$

$$\begin{split} \alpha \circ \tilde{f} \sim \beta \circ \tilde{f} & \Leftrightarrow & \exists \gamma \in \mathsf{\Gamma} : \ \alpha \circ \tilde{f} = \gamma \circ \beta \circ \tilde{f} \circ \gamma^{-1} \\ & \Leftrightarrow & \exists \gamma \in \mathsf{\Gamma} : \ \alpha \circ \tilde{f} = \gamma \circ \beta \circ f_*(\gamma)^{-1} \circ \tilde{f} \\ & \Leftrightarrow & \alpha \sim \beta \ (\text{w.r.t. } f_*) \end{split}$$

Conclusion $R(f) = R(f_*)$ # fixed point classes = # twisted conjugacy classes

Let G be abelian and φ an endomorphism of G, then

 $x \sim y \iff \exists z \in G : x = z + y - \varphi(z)$

Let G be abelian and φ an endomorphism of G, then

$$\begin{array}{rcl} x \sim y & \Leftrightarrow & \exists z \in \mathcal{G} : x = z + y - \varphi(z) \\ & \Leftrightarrow & x - y \in \operatorname{Im}(\mathbbm{1}_{\mathcal{G}} - \varphi) \end{array}$$

Let G be abelian and φ an endomorphism of G, then

$$\begin{array}{rcl} x \sim y & \Leftrightarrow & \exists z \in \mathcal{G} : x = z + y - \varphi(z) \\ & \Leftrightarrow & x - y \in \operatorname{Im}(\mathbbm{1}_{\mathcal{G}} - \varphi) \end{array}$$

 $R(\varphi) = \# \operatorname{Coker}(\mathbb{1}_{G} - \varphi)$

Let G be abelian and φ an endomorphism of G, then

$$\begin{array}{ll} x \sim y & \Leftrightarrow & \exists z \in G : x = z + y - \varphi(z) \\ & \Leftrightarrow & x - y \in \operatorname{Im}(\mathbbm{1}_G - \varphi) \end{array}$$

So

$$R(\varphi) = \# \operatorname{Coker}(\mathbb{1}_{G} - \varphi)$$

E.g. Let $G \cong \mathbb{Z}^k$ then $\varphi \approx A$ a $k \times k$ -matrix with entries in \mathbb{Z}

Let G be abelian and φ an endomorphism of G, then

$$\begin{array}{ll} x \sim y & \Leftrightarrow & \exists z \in \mathcal{G} : x = z + y - \varphi(z) \\ & \Leftrightarrow & x - y \in \operatorname{Im}(\mathbb{1}_{\mathcal{G}} - \varphi) \end{array}$$

So

$$R(\varphi) = \# \operatorname{Coker}(\mathbb{1}_{G} - \varphi)$$

E.g. Let $G \cong \mathbb{Z}^k$ then $\varphi \approx A$ a $k \times k$ -matrix with entries in \mathbb{Z}

$${\cal R}(arphi) = \left\{ egin{array}{ccc} |\det(\mathbbm{1}-A)| & \Leftrightarrow & \det(\mathbbm{1}-A)
eq 0 \ \infty & \Leftrightarrow & \det(\mathbbm{1}-A) = 0 \end{array}
ight.$$

Let G be abelian and φ an endomorphism of G, then

$$egin{array}{ll} x\sim y &\Leftrightarrow & \exists z\in {\cal G}: x=z+y-arphi(z) \ &\Leftrightarrow & x-y\in {
m Im}(\mathbbm{1}_{{\cal G}}-arphi) \end{array}$$

So

$$R(\varphi) = \# \operatorname{Coker}(\mathbb{1}_{G} - \varphi)$$

E.g. Let $G \cong \mathbb{Z}^k$ then $\varphi \approx A$ a $k \times k$ -matrix with entries in \mathbb{Z}

$$R(arphi) = \left\{ egin{array}{ccc} |\det(\mathbbm{1}-A)| & \Leftrightarrow & \det(\mathbbm{1}-A)
eq 0 \ \infty & \Leftrightarrow & \det(\mathbbm{1}-A) = 0 \end{array}
ight.$$

 $R(\varphi) = \infty$ iff 1 is an eigenvalue of φ .

Nilpotent groups

Let G be a finitely generated torsion free nilpotent group and $\varphi \in \operatorname{Endo}(G)$.

Nilpotent groups

Let G be a finitely generated torsion free nilpotent group and $\varphi \in \operatorname{Endo}(G)$.

Let $Z_1(G) = Z(G)$

Nilpotent groups

Let G be a finitely generated torsion free nilpotent group and $\varphi \in \operatorname{Endo}(G)$.

Let $Z_1(G) = Z(G)$ and $Z_{i+1}(G)$ be s.t. $\frac{Z_{i+i}(G)}{Z_i(G)} = Z\left(\frac{G}{Z_i(G)}\right)$

Nilpotent groups

Let G be a finitely generated torsion free nilpotent group and $\varphi \in \text{Endo}(G)$.

Let $Z_1(G) = Z(G)$ and $Z_{i+1}(G)$ be s.t. $\frac{Z_{i+i}(G)}{Z_i(G)} = Z\left(\frac{G}{Z_i(G)}\right)$

Lemma

 $R(\varphi) = \infty \Leftrightarrow \exists i \text{ s.t.. induced morphism } \varphi_i \text{ on } \frac{Z_i(G)}{Z_{i-1}(G)} \text{ has eigenvalue } 1$

Nilpotent groups

Let G be a finitely generated torsion free nilpotent group and $\varphi \in \operatorname{Endo}(G)$.

Let $Z_1(G) = Z(G)$ and $Z_{i+1}(G)$ be s.t. $\frac{Z_{i+i}(G)}{Z_i(G)} = Z\left(\frac{G}{Z_i(G)}\right)$

Lemma

 $R(\varphi) = \infty \Leftrightarrow \exists i \text{ s.t.. induced morphism } \varphi_i \text{ on } \frac{Z_i(G)}{Z_{i-1}(G)} \text{ has eigenvalue } 1$

Let
$$\Gamma_1(G) = G$$
, $\Gamma_2(G) = \sqrt{\gamma_2(G)}$, ..., $\Gamma_i(G) = \sqrt{\gamma_i(G)}$,

Nilpotent groups

Let G be a finitely generated torsion free nilpotent group and $\varphi \in \operatorname{Endo}(G)$.

Let $Z_1(G) = Z(G)$ and $Z_{i+1}(G)$ be s.t. $\frac{Z_{i+i}(G)}{Z_i(G)} = Z\left(\frac{G}{Z_i(G)}\right)$

Lemma

 $R(\varphi) = \infty \Leftrightarrow \exists i \text{ s.t.. induced morphism } \varphi_i \text{ on } \frac{Z_i(G)}{Z_{i-1}(G)} \text{ has eigenvalue } 1$

Let
$$\Gamma_1(G) = G$$
, $\Gamma_2(G) = \sqrt{\gamma_2(G)}$, ..., $\Gamma_i(G) = \sqrt{\gamma_i(G)}$, then

Lemma

 $R(\varphi) = \infty \Leftrightarrow \exists i \text{ s.t. induced morphism } \varphi_i \text{ on } \frac{\Gamma_i(G)}{\Gamma_{i+1}(G)} \text{ has eigenvalue } 1$

Given an endomorphism φ of G (infinite), question becomes:

Given an endomorphism φ of *G* (infinite), question becomes: Is $R(\varphi)$ finite or infinite?

Given an endomorphism φ of *G* (infinite), question becomes: Is $R(\varphi)$ finite or infinite?

When $\varphi: G \to G: x \mapsto 1$, then $R(\varphi) = \infty$.

Given an endomorphism φ of *G* (infinite), question becomes: Is $R(\varphi)$ finite or infinite?

When $\varphi: G \to G: x \mapsto 1$, then $R(\varphi) = \infty$.

A sub case: The above question for $\varphi \in Aut(G)$.

Given an endomorphism φ of *G* (infinite), question becomes: Is $R(\varphi)$ finite or infinite?

When $\varphi: G \to G: x \mapsto 1$, then $R(\varphi) = \infty$.

A sub case: The above question for $\varphi \in Aut(G)$.

Definition

A group G has property R_{∞} if and only if $R(\varphi) = \infty$ for all $\varphi \in Aut(G)$.

Given an endomorphism φ of *G* (infinite), question becomes: Is $R(\varphi)$ finite or infinite?

When $\varphi: G \to G: x \mapsto 1$, then $R(\varphi) = \infty$.

A sub case: The above question for $\varphi \in Aut(G)$.

Definition

A group G has property R_{∞} if and only if $R(\varphi) = \infty$ for all $\varphi \in Aut(G)$.

E.g. A finitely generated abelian group A does not have property R_{∞} .

Given an endomorphism φ of *G* (infinite), question becomes: Is $R(\varphi)$ finite or infinite?

When $\varphi: G \to G: x \mapsto 1$, then $R(\varphi) = \infty$.

A sub case: The above question for $\varphi \in Aut(G)$.

Definition

A group G has property R_{∞} if and only if $R(\varphi) = \infty$ for all $\varphi \in Aut(G)$.

E.g. A finitely generated abelian group A does not have property R_{∞} . Let $\varphi : A \to A : x \mapsto -x$, then $x \sim y \Leftrightarrow x - y \in 2A$.

Given an endomorphism φ of *G* (infinite), question becomes: Is $R(\varphi)$ finite or infinite?

When $\varphi: G \to G: x \mapsto 1$, then $R(\varphi) = \infty$.

A sub case: The above question for $\varphi \in Aut(G)$.

Definition

A group G has property R_{∞} if and only if $R(\varphi) = \infty$ for all $\varphi \in Aut(G)$.

E.g. A finitely generated abelian group A does not have property R_{∞} . Let $\varphi: A \to A: x \mapsto -x$, then $x \sim y \Leftrightarrow x - y \in 2A$. As $[A: 2A] \leq 2^{\text{#gens}}$, we have that $R(\varphi) < \infty$.

Some known cases

• There are f.g. virtually abelian groups with property R_{∞} .

E.g. $G = \mathbb{Z} \rtimes \mathbb{Z}_2, \mathbb{Z} \rtimes \mathbb{Z}$

Gonçalves – Wong (2009), D. – De Rock – Penninckx (2009), Lutowski – Szczepański (preprint)

Some known cases

• There are f.g. virtually abelian groups with property R_{∞} .

E.g.
$$G = \mathbb{Z} \rtimes \mathbb{Z}_2, \ \mathbb{Z} \rtimes \mathbb{Z}$$

Gonçalves – Wong (2009), D. – De Rock – Penninckx (2009), Lutowski – Szczepański (preprint)

► There are f.g. torsion free nilpotent groups with property R_∞. Gonçalves – Wong (2009), Roman'kov (2011)

Some known cases

• There are f.g. virtually abelian groups with property R_{∞} .

E.g.
$$G = \mathbb{Z} \rtimes \mathbb{Z}_2, \ \mathbb{Z} \rtimes \mathbb{Z}$$

Gonçalves – Wong (2009), D. – De Rock – Penninckx (2009), Lutowski – Szczepański (preprint)

- ► There are f.g. torsion free nilpotent groups with property R_∞. Gonçalves – Wong (2009), Roman'kov (2011)
- ► All non-elementary Gromov hyperbolic groups have property R_∞ (e.g. free groups of finite rank > 1). Levitt – Lustig (2000), Fel'shtyn (2004)

Let F_r be free on r generators.

Let F_r be free on r generators.

$$N_{r,c} = \frac{F_r}{\gamma_{c+1}(F_r)}$$

is free c-step nilpotent on r generators.

Let F_r be free on r generators.

$$N_{r,c} = \frac{F_r}{\gamma_{c+1}(F_r)}$$

is free c-step nilpotent on r generators.

Theorem (Roman'kov, 2011) If $r \neq 3$ then for $c \geq 2r$: $N_{r,c}$ has property R_{∞} . If r = 3 then for $c \geq 12$: $N_{3,c}$ has property R_{∞} .

Let F_r be free on r generators.

$$N_{r,c} = \frac{F_r}{\gamma_{c+1}(F_r)}$$

is free c-step nilpotent on r generators.

Theorem (Roman'kov, 2011) If $r \neq 3$ then for $c \geq 2r$: $N_{r,c}$ has property R_{∞} . If r = 3 then for $c \geq 12$: $N_{3,c}$ has property R_{∞} .

Improvement:

Theorem (D. – Gonçalvez)

 $N_{r,c}$ has property $R_{\infty} \Leftrightarrow c \geq 2r$.

Let N be f.g. torsion free nilpotent. Define

$$L(N) = \bigoplus_{i=1}^{\infty} \frac{\Gamma_i}{\Gamma_{i+1}} = \bigoplus_{i=1}^{\infty} \frac{\sqrt{\gamma_i(N)}}{\sqrt{\gamma_{i+1}(N)}}$$

Let N be f.g. torsion free nilpotent. Define

$$L(N) = \bigoplus_{i=1}^{\infty} \frac{\Gamma_i}{\Gamma_{i+1}} = \bigoplus_{i=1}^{\infty} \frac{\sqrt{\gamma_i(N)}}{\sqrt{\gamma_{i+1}(N)}}$$

Is a Lie algebra (over \mathbb{Z}) with brackets:

 $[x + \Gamma_{i+1}(N), y + \Gamma_{j+1}(N)] = [x, y] + \Gamma_{i+j+1}(N).$

Let N be f.g. torsion free nilpotent. Define

$$L(N) = \bigoplus_{i=1}^{\infty} \frac{\Gamma_i}{\Gamma_{i+1}} = \bigoplus_{i=1}^{\infty} \frac{\sqrt{\gamma_i(N)}}{\sqrt{\gamma_{i+1}(N)}}$$

Is a Lie algebra (over \mathbb{Z}) with brackets:

$$[x + \Gamma_{i+1}(N), y + \Gamma_{j+1}(N)] = [x, y] + \Gamma_{i+j+1}(N).$$

 $\varphi \in \operatorname{Aut}(N) \rightsquigarrow \varphi_L \in \operatorname{Aut}(L(N))$

Let N be f.g. torsion free nilpotent. Define

$$L(N) = \bigoplus_{i=1}^{\infty} \frac{\Gamma_i}{\Gamma_{i+1}} = \bigoplus_{i=1}^{\infty} \frac{\sqrt{\gamma_i(N)}}{\sqrt{\gamma_{i+1}(N)}}$$

Is a Lie algebra (over \mathbb{Z}) with brackets:

 $[x + \Gamma_{i+1}(N), y + \Gamma_{j+1}(N)] = [x, y] + \Gamma_{i+j+1}(N).$

 $\varphi \in \operatorname{Aut}(N) \rightsquigarrow \varphi_L \in \operatorname{Aut}(L(N))$

 $R(\varphi) = \infty \Leftrightarrow \varphi_L$ has eigenvalue 1

 $L(N_{r,c})$ is the free *c*-step nilpotent Lie algebra on *r* generators.

 $L(N_{r,c})$ is the free *c*-step nilpotent Lie algebra on *r* generators. Let $\varphi \in Aut(N_{r,c})$ and

 φ_i be the induced automorphism on $\frac{\Gamma_i(N_{r,c})}{\Gamma_{i+1}(N_{r,c})}$.

 $L(N_{r,c})$ is the free *c*-step nilpotent Lie algebra on *r* generators. Let $\varphi \in Aut(N_{r,c})$ and

 φ_i be the induced automorphism on $\frac{\Gamma_i(N_{r,c})}{\Gamma_{i+1}(N_{r,c})}$.

Lemma

If $\lambda_1, \lambda_2, \ldots, \lambda_r$ are the eigenvalues of φ_1 . Then, the eigenvalues of φ_j are of the form $\lambda_{i_1} \cdot \lambda_{i_2} \cdot \cdots \cdot \lambda_{i_j}$

 $L(N_{r,c})$ is the free *c*-step nilpotent Lie algebra on *r* generators. Let $\varphi \in Aut(N_{r,c})$ and

 φ_i be the induced automorphism on $\frac{\Gamma_i(N_{r,c})}{\Gamma_{i+1}(N_{r,c})}$.

Lemma

If $\lambda_1, \lambda_2, \ldots, \lambda_r$ are the eigenvalues of φ_1 . Then, the eigenvalues of φ_j are of the form $\lambda_{i_1} \cdot \lambda_{i_2} \cdot \cdots \cdot \lambda_{i_j}$

Proof: By taking $\mathbb{C} \otimes L(N_{r,c})$, we may assume that we are working over \mathbb{C} .

 $L(N_{r,c})$ is the free *c*-step nilpotent Lie algebra on *r* generators. Let $\varphi \in Aut(N_{r,c})$ and

 φ_i be the induced automorphism on $\frac{\Gamma_i(N_{r,c})}{\Gamma_{i+1}(N_{r,c})}$.

Lemma

If $\lambda_1, \lambda_2, \ldots, \lambda_r$ are the eigenvalues of φ_1 . Then, the eigenvalues of φ_j are of the form $\lambda_{i_1} \cdot \lambda_{i_2} \cdot \cdots \cdot \lambda_{i_j}$

<u>Proof</u>: By taking $\mathbb{C} \otimes L(N_{r,c})$, we may assume that we are working over \mathbb{C} . We can also assume that $\frac{\Gamma_1}{\Gamma_2}$ – part has basis x_1, x_2, \ldots, x_r of eigenvectors.

 $L(N_{r,c})$ is the free *c*-step nilpotent Lie algebra on *r* generators. Let $\varphi \in Aut(N_{r,c})$ and

 φ_i be the induced automorphism on $\frac{\Gamma_i(N_{r,c})}{\Gamma_{i+1}(N_{r,c})}$.

Lemma

If $\lambda_1, \lambda_2, \ldots, \lambda_r$ are the eigenvalues of φ_1 . Then, the eigenvalues of φ_j are of the form $\lambda_{i_1} \cdot \lambda_{i_2} \cdot \cdots \cdot \lambda_{i_j}$

<u>**Proof:</u>** By taking $\mathbb{C} \otimes L(N_{r,c})$, we may assume that we are working over \mathbb{C} . We can also assume that $\frac{\Gamma_1}{\Gamma_2}$ – part has basis x_1, x_2, \ldots, x_r of eigenvectors. $[x_{i_1}, x_{i_2}]$ are basis of $\frac{\Gamma_2}{\Gamma_3}$ -part</u>

 $L(N_{r,c})$ is the free *c*-step nilpotent Lie algebra on *r* generators. Let $\varphi \in Aut(N_{r,c})$ and

 φ_i be the induced automorphism on $\frac{\Gamma_i(N_{r,c})}{\Gamma_{i+1}(N_{r,c})}$.

Lemma

If $\lambda_1, \lambda_2, \ldots, \lambda_r$ are the eigenvalues of φ_1 . Then, the eigenvalues of φ_j are of the form $\lambda_{i_1} \cdot \lambda_{i_2} \cdot \cdots \cdot \lambda_{i_j}$

<u>Proof:</u> By taking $\mathbb{C} \otimes L(N_{r,c})$, we may assume that we are working over \mathbb{C} . We can also assume that $\frac{\Gamma_1}{\Gamma_2}$ – part has basis x_1, x_2, \ldots, x_r of eigenvectors. $[x_{i_1}, x_{i_2}]$ are basis of $\frac{\Gamma_2}{\Gamma_3}$ -part & $\varphi[x_{i_1}, x_{i_2}] = [\varphi(x_{i_1}), \varphi(x_{i_2})] = \lambda_{i_1}\lambda_{i_2}[x_{i_1}, x_{i_2}].$

 $L(N_{r,c})$ is the free *c*-step nilpotent Lie algebra on *r* generators. Let $\varphi \in Aut(N_{r,c})$ and

 φ_i be the induced automorphism on $\frac{\Gamma_i(N_{r,c})}{\Gamma_{i+1}(N_{r,c})}$.

Lemma

If $\lambda_1, \lambda_2, \ldots, \lambda_r$ are the eigenvalues of φ_1 . Then, the eigenvalues of φ_j are of the form $\lambda_{i_1} \cdot \lambda_{i_2} \cdot \cdots \cdot \lambda_{i_j}$

Proof: By taking $\mathbb{C} \otimes L(N_{r,c})$, we may assume that we are working over \mathbb{C} . We can also assume that $\frac{\Gamma_1}{\Gamma_2}$ – part has basis x_1, x_2, \ldots, x_r of eigenvectors. $[x_{i_1}, x_{i_2}]$ are basis of $\frac{\Gamma_2}{\Gamma_3}$ -part & $\varphi[x_{i_1}, x_{i_2}] = [\varphi(x_{i_1}), \varphi(x_{i_2})] = \lambda_{i_1}\lambda_{i_2}[x_{i_1}, x_{i_2}].$ etc.

If $c \geq 2r$ then $N_{r,c}$ has property R_{∞}

If $c \ge 2r$ then $N_{r,c}$ has property R_{∞} φ_1 is an automorphism of $\frac{\Gamma_1(N_{r,c})}{\Gamma_2(N_{r,c})} \cong \mathbb{Z}^r$.

If $c \ge 2r$ then $N_{r,c}$ has property R_{∞} φ_1 is an automorphism of $\frac{\Gamma_1(N_{r,c})}{\Gamma_2(N_{r,c})} \cong \mathbb{Z}^r$. $\lambda_1 \lambda_2 \cdots \lambda_r = \pm 1$

If $c \ge 2r$ then $N_{r,c}$ has property R_{∞} φ_1 is an automorphism of $\frac{\Gamma_1(N_{r,c})}{\Gamma_2(N_{r,c})} \cong \mathbb{Z}^r$. $\lambda_1 \lambda_2 \cdots \lambda_r = \pm 1$

 $\lambda_1\lambda_1\lambda_2\lambda_2\cdots\lambda_r\lambda_r=1$ is an eigenvalue of φ_{2r}

If $c \ge 2r$ then $N_{r,c}$ has property R_{∞} φ_1 is an automorphism of $\frac{\Gamma_1(N_{r,c})}{\Gamma_2(N_{r,c})} \cong \mathbb{Z}^r$. $\lambda_1 \lambda_2 \cdots \lambda_r = \pm 1$

 $\lambda_1\lambda_1\lambda_2\lambda_2\cdots\lambda_r\lambda_r=1$ is an eigenvalue of φ_{2r}

For the other direction, assume that c < 2r

If $c \ge 2r$ then $N_{r,c}$ has property R_{∞} φ_1 is an automorphism of $\frac{\Gamma_1(N_{r,c})}{\Gamma_2(N_{r,c})} \cong \mathbb{Z}^r$. $\lambda_1 \lambda_2 \cdots \lambda_r = \pm 1$

 $\lambda_1\lambda_1\lambda_2\lambda_2\cdots\lambda_r\lambda_r=1$ is an eigenvalue of φ_{2r}

For the other direction, assume that c < 2r

The map $\operatorname{Aut}(N_{r,c}) \to \operatorname{Aut}(\mathbb{Z}^r)$ is onto.

If $c \ge 2r$ then $N_{r,c}$ has property R_{∞} φ_1 is an automorphism of $\frac{\Gamma_1(N_{r,c})}{\Gamma_2(N_{r,c})} \cong \mathbb{Z}^r$. $\lambda_1 \lambda_2 \cdots \lambda_r = \pm 1$

 $\lambda_1\lambda_1\lambda_2\lambda_2\cdots\lambda_r\lambda_r=1$ is an eigenvalue of φ_{2r}

For the other direction, assume that c < 2r

The map $\operatorname{Aut}(N_{r,c}) \to \operatorname{Aut}(\mathbb{Z}^r)$ is onto. So it suffices to find a matrix $A \in \operatorname{GL}_r(\mathbb{Z})$ with eigenvalues $\lambda_1, \ldots, \lambda_r$ such that

$$\lambda_{i_1}\lambda_{i_2}\cdots\lambda_{i_k}
eq 1$$
 as long as $k<2r$

If $c \ge 2r$ then $N_{r,c}$ has property R_{∞} φ_1 is an automorphism of $\frac{\Gamma_1(N_{r,c})}{\Gamma_2(N_{r,c})} \cong \mathbb{Z}^r$. $\lambda_1 \lambda_2 \cdots \lambda_r = \pm 1$

 $\lambda_1\lambda_1\lambda_2\lambda_2\cdots\lambda_r\lambda_r=1$ is an eigenvalue of φ_{2r}

For the other direction, assume that c < 2r

The map $\operatorname{Aut}(N_{r,c}) \to \operatorname{Aut}(\mathbb{Z}^r)$ is onto. So it suffices to find a matrix $A \in \operatorname{GL}_r(\mathbb{Z})$ with eigenvalues $\lambda_1, \ldots, \lambda_r$ sucht that

$$\lambda_{i_1}\lambda_{i_2}\cdots\lambda_{i_k}
eq 1$$
 as long as $k<2r$

(We must have det(A) = -1)

Lemma

Let $p(x) = x^r + a_{r-1}x^{r-1} + \dots + a_2x^2 + a_1x + (-1)^{r+1}$, for some integers a_i with $|a_{r-1}| > |a_{r-2}| + \dots + |a_2| + |a_1| + 2$

Lemma

Let $p(x) = x^r + a_{r-1}x^{r-1} + \dots + a_2x^2 + a_1x + (-1)^{r+1}$, for some integers a_i with $|a_{r-1}| > |a_{r-2}| + \dots + |a_2| + |a_1| + 2$ Then

1 p(x) has one real root $\theta_1 > 1$, other roots lie inside the unit circle.

KU LEUVEN Kulak

Lemma

Let $p(x) = x^r + a_{r-1}x^{r-1} + \dots + a_2x^2 + a_1x + (-1)^{r+1}$, for some integers a_i with $|a_{r-1}| > |a_{r-2}| + \dots + |a_2| + |a_1| + 2$ Then

p(x) has one real root θ₁ > 1, other roots lie inside the unit circle.
 If θ₂, θ₃,..., θ_r ∈ C are the other roots, then θ₁θ₂...θ_r = −1.

Lemma

- Let $p(x) = x^r + a_{r-1}x^{r-1} + \dots + a_2x^2 + a_1x + (-1)^{r+1}$, for some integers a_i with $|a_{r-1}| > |a_{r-2}| + \dots + |a_2| + |a_1| + 2$ Then
 - **1** p(x) has one real root $\theta_1 > 1$, other roots lie inside the unit circle.
 - **2** If $\theta_2, \theta_3, \ldots, \theta_r \in \mathbb{C}$ are the other roots, then $\theta_1 \theta_2 \ldots \theta_r = -1$.
 - 3 If for some $d_1, d_2, \ldots, d_r \in \mathbb{Z}$ we have that $\theta_1^{d_1} \theta_2^{d_2} \ldots \theta_r^{d_r} = 1$, then there exists an integer $z \in \mathbb{Z}$ such that $d_1 = d_2 = \cdots = d_r = 2z$.

Lemma

- Let $p(x) = x^r + a_{r-1}x^{r-1} + \dots + a_2x^2 + a_1x + (-1)^{r+1}$, for some integers a_i with $|a_{r-1}| > |a_{r-2}| + \dots + |a_2| + |a_1| + 2$ Then
 - **1** p(x) has one real root $\theta_1 > 1$, other roots lie inside the unit circle.
 - **2** If $\theta_2, \theta_3, \ldots, \theta_r \in \mathbb{C}$ are the other roots, then $\theta_1 \theta_2 \ldots \theta_r = -1$.
 - 3 If for some $d_1, d_2, \ldots, d_r \in \mathbb{Z}$ we have that $\theta_1^{d_1} \theta_2^{d_2} \ldots \theta_r^{d_r} = 1$, then there exists an integer $z \in \mathbb{Z}$ such that $d_1 = d_2 = \cdots = d_r = 2z$.

Example: take $p(x) = x^r - 3x^{r-1} + (-1)^{r+1}$.

Lemma

- Let $p(x) = x^r + a_{r-1}x^{r-1} + \dots + a_2x^2 + a_1x + (-1)^{r+1}$, for some integers a_i with $|a_{r-1}| > |a_{r-2}| + \dots + |a_2| + |a_1| + 2$ Then
 - **1** p(x) has one real root $\theta_1 > 1$, other roots lie inside the unit circle.
 - **2** If $\theta_2, \theta_3, \ldots, \theta_r \in \mathbb{C}$ are the other roots, then $\theta_1 \theta_2 \ldots \theta_r = -1$.
 - 3 If for some $d_1, d_2, \ldots, d_r \in \mathbb{Z}$ we have that $\theta_1^{d_1} \theta_2^{d_2} \ldots \theta_r^{d_r} = 1$, then there exists an integer $z \in \mathbb{Z}$ such that $d_1 = d_2 = \cdots = d_r = 2z$.
- Example: take $p(x) = x^r 3x^{r-1} + (-1)^{r+1}$.

The proof finishes by taking for A the companion matrix of p(x).

Let F_r be free on r generators.

Let F_r be free on r generators.

$$S_{r,d} = \frac{F_r}{F_r^{(d)}}$$
, where $F_r^{(1)} = [F_r, F_r]$ and $F_r^{(d+1)} = [F_r^{(d)}, F_r^{(d)}]$

is free d-step solvable on r generators.

Let F_r be free on r generators.

$$S_{r,d} = rac{F_r}{F_r^{(d)}}$$
, where $F_r^{(1)} = [F_r, F_r]$ and $F_r^{(d+1)} = [F_r^{(d)}, F_r^{(d)}]$

is free d-step solvable on r generators.

Theorem (D.—Gonçalves)

 $S_{r,d}$ has property $R_{\infty} \Leftrightarrow d \geq 2$.

Let F_r be free on r generators.

$$S_{r,d} = rac{F_r}{F_r^{(d)}}$$
, where $F_r^{(1)} = [F_r, F_r]$ and $F_r^{(d+1)} = [F_r^{(d)}, F_r^{(d)}]$

KU LEUVEN kulak

is free d-step solvable on r generators.

Theorem (D.—Gonçalves) $S_{r,d}$ has property $R_{\infty} \Leftrightarrow d \ge 2$. <u>Proof:</u> $S_{r,2} = \frac{S_{r,d}}{S_{r,d}^{(2)}}$

Let F_r be free on r generators.

$$S_{r,d} = \frac{F_r}{F_r^{(d)}}$$
, where $F_r^{(1)} = [F_r, F_r]$ and $F_r^{(d+1)} = [F_r^{(d)}, F_r^{(d)}]$

is free d-step solvable on r generators.

Theorem (D.—Gonçalves)

 $S_{r,d}$ has property $R_{\infty} \Leftrightarrow d \geq 2$.

<u>Proof:</u> $S_{r,2} = \frac{S_{r,d}}{S_{r,d}^{(2)}}$, so it is enough to prove that $S_{r,2}$ has property R_{∞} .

Let F_r be free on r generators.

$$S_{r,d} = \frac{F_r}{F_r^{(d)}}$$
, where $F_r^{(1)} = [F_r, F_r]$ and $F_r^{(d+1)} = [F_r^{(d)}, F_r^{(d)}]$

is free d-step solvable on r generators.

Theorem (D.—Gonçalves)

 $S_{r,d}$ has property $R_{\infty} \Leftrightarrow d \geq 2$.

Proof: $S_{r,2} = \frac{S_{r,d}}{S_{r,d}^{(2)}}$, so it is enough to prove that $S_{r,2}$ has property R_{∞} . Now, consider $\frac{S_{r,2}}{\gamma_{c+1}(S_{r,2})} = \frac{F_r}{\gamma_{c+1}(F_r)F_r^{(2)}} =: M_{r,c}$.

Let F_r be free on r generators.

$$S_{r,d} = \frac{F_r}{F_r^{(d)}}$$
, where $F_r^{(1)} = [F_r, F_r]$ and $F_r^{(d+1)} = [F_r^{(d)}, F_r^{(d)}]$

is free d-step solvable on r generators.

Theorem (D.—Gonçalves)

 $S_{r,d}$ has property $R_{\infty} \Leftrightarrow d \geq 2$.

Proof: $S_{r,2} = \frac{S_{r,d}}{S_{r,d}^{(2)}}$, so it is enough to prove that $S_{r,2}$ has property R_{∞} . Now, consider $\frac{S_{r,2}}{\gamma_{c+1}(S_{r,2})} = \frac{F_r}{\gamma_{c+1}(F_r)F_r^{(2)}} =: M_{r,c}$. With the same techniques as for the free nilpotent group, we can show that $M_{r,c}$ has property R_{∞} iff $c \ge 2r$.

Recall

• F_r has R_∞ for all r > 1.

Recall

- F_r has R_∞ for all r > 1.
- $N_{r,c}$ has R_{∞} if c is big enough.

Recall

- F_r has R_∞ for all r > 1.
- $N_{r,c}$ has R_{∞} if c is big enough.

Perhaps we should expect F_{∞} to have R_{∞} too.

Recall

- F_r has R_∞ for all r > 1.
- $N_{r,c}$ has R_{∞} if c is big enough.

Perhaps we should expect F_{∞} to have R_{∞} too.

Theorem (D. – Gonçalves)

 F_{∞} does not have R_{∞} .

Recall

- F_r has R_∞ for all r > 1.
- $N_{r,c}$ has R_{∞} if c is big enough.

Perhaps we should expect F_{∞} to have R_{∞} too.

Theorem (D. – Gonçalves)

 F_{∞} does not have R_{∞} . In fact, for any positive integer n there is an automorphism $\varphi_n \in Aut(F_{\infty})$ with $R(\varphi_n) = n$.

Recall

- F_r has R_∞ for all r > 1.
- $N_{r,c}$ has R_{∞} if c is big enough.

Perhaps we should expect F_{∞} to have R_{∞} too.

Theorem (D. – Gonçalves)

 F_{∞} does not have R_{∞} . In fact, for any positive integer n there is an automorphism $\varphi_n \in Aut(F_{\infty})$ with $R(\varphi_n) = n$.

Proof:

Recall

- F_r has R_∞ for all r > 1.
- $N_{r,c}$ has R_{∞} if c is big enough.

Perhaps we should expect F_{∞} to have R_{∞} too.

Theorem (D. – Gonçalves)

 F_{∞} does not have R_{∞} . In fact, for any positive integer n there is an automorphism $\varphi_n \in Aut(F_{\infty})$ with $R(\varphi_n) = n$.

Proof: (n = 1)

Recall

- F_r has R_∞ for all r > 1.
- $N_{r,c}$ has R_{∞} if c is big enough.

Perhaps we should expect F_{∞} to have R_{∞} too.

Theorem (D. – Gonçalves)

 F_{∞} does not have R_{∞} . In fact, for any positive integer n there is an automorphism $\varphi_n \in Aut(F_{\infty})$ with $R(\varphi_n) = n$.

Proof: (n = 1) Choose θ : $\{x_0, x_1, x_2, \ldots\} \rightarrow F_{\infty}$ with : θ is onto and $\theta(x_i)$ is a word in $\{x_0, x_1, \ldots, x_{i-1}\}$.

Recall

- F_r has R_∞ for all r > 1.
- $N_{r,c}$ has R_{∞} if c is big enough.

Perhaps we should expect F_{∞} to have R_{∞} too.

Theorem (D. – Gonçalves)

 F_{∞} does not have R_{∞} . In fact, for any positive integer n there is an automorphism $\varphi_n \in Aut(F_{\infty})$ with $R(\varphi_n) = n$.

<u>Proof:</u> (n = 1) Choose θ : $\{x_0, x_1, x_2, \ldots\} \rightarrow F_{\infty}$ with : θ is onto and $\theta(x_i)$ is a word in $\{x_0, x_1, \ldots, x_{i-1}\}$.

Take $\varphi \in \operatorname{Aut}(F_{\infty})$ with $\varphi(x_i) = \theta(x_i)x_i$.

Recall

- F_r has R_∞ for all r > 1.
- $N_{r,c}$ has R_{∞} if c is big enough.

Perhaps we should expect F_{∞} to have R_{∞} too.

Theorem (D. – Gonçalves)

 F_{∞} does not have R_{∞} . In fact, for any positive integer n there is an automorphism $\varphi_n \in Aut(F_{\infty})$ with $R(\varphi_n) = n$.

<u>Proof:</u> (n = 1) Choose θ : $\{x_0, x_1, x_2, ...\} \rightarrow F_{\infty}$ with : θ is onto and $\theta(x_i)$ is a word in $\{x_0, x_1, ..., x_{i-1}\}$. Take $\varphi \in \operatorname{Aut}(F_{\infty})$ with $\varphi(x_i) = \theta(x_i)x_i$.

 $\forall w \in F_{\infty}, \exists x_i : w = \theta(x_i) = \varphi(x_i)x_i^{-1}.$

Recall

- F_r has R_∞ for all r > 1.
- $N_{r,c}$ has R_{∞} if c is big enough.

Perhaps we should expect F_{∞} to have R_{∞} too.

Theorem (D. – Gonçalves)

 F_{∞} does not have R_{∞} . In fact, for any positive integer n there is an automorphism $\varphi_n \in Aut(F_{\infty})$ with $R(\varphi_n) = n$.

<u>Proof:</u> (n = 1) Choose $\theta : \{x_0, x_1, x_2, \ldots\} \to F_{\infty}$ with $: \theta$ is onto and $\theta(x_i)$ is a word in $\{x_0, x_1, \ldots, x_{i-1}\}$. Take $\varphi \in \operatorname{Aut}(F_{\infty})$ with $\varphi(x_i) = \theta(x_i)x_i$. $\forall w \in F_{\infty}, \exists x_i : w = \theta(x_i) = \varphi(x_i)x_i^{-1}$.

 $\forall v \in F_{\infty}, \exists x_i : v = x_i \varphi(x_i)^{-1}$

Recall

- F_r has R_∞ for all r > 1.
- $N_{r,c}$ has R_{∞} if c is big enough.

Perhaps we should expect F_{∞} to have R_{∞} too.

Theorem (D. – Gonçalves)

 F_{∞} does not have R_{∞} . In fact, for any positive integer n there is an automorphism $\varphi_n \in Aut(F_{\infty})$ with $R(\varphi_n) = n$.

<u>Proof:</u> (n = 1) Choose $\theta : \{x_0, x_1, x_2, \ldots\} \to F_{\infty}$ with $: \theta$ is onto and $\theta(x_i)$ is a word in $\{x_0, x_1, \ldots, x_{i-1}\}$. Take $\varphi \in \operatorname{Aut}(F_{\infty})$ with $\varphi(x_i) = \theta(x_i)x_i$.

 $\forall w \in F_{\infty}, \exists x_i : w = \theta(x_i) = \varphi(x_i)x_i^{-1}.$ $\forall v \in F_{\infty}, \exists x_i : v = x_i\varphi(x_i)^{-1} = x_i \cdot 1 \cdot \varphi(x_i)^{-1}$

Recall

- F_r has R_∞ for all r > 1.
- $N_{r,c}$ has R_{∞} if c is big enough.

Perhaps we should expect F_{∞} to have R_{∞} too.

Theorem (D. – Gonçalves)

 F_{∞} does not have R_{∞} . In fact, for any positive integer n there is an automorphism $\varphi_n \in Aut(F_{\infty})$ with $R(\varphi_n) = n$.

Proof: (n = 1) Choose $\theta : \{x_0, x_1, x_2, \ldots\} \to F_{\infty}$ with $: \theta$ is onto and $\theta(x_i)$ is a word in $\{x_0, x_1, \ldots, x_{i-1}\}$. Take $\varphi \in \operatorname{Aut}(F_{\infty})$ with $\varphi(x_i) = \theta(x_i)x_i$. $\forall w \in F_{\infty}, \exists x_i : w = \theta(x_i) = \varphi(x_i)x_i^{-1}$. $\forall v \in F_{\infty}, \exists x_i : v = x_i\varphi(x_i)^{-1} = x_i \cdot 1 \cdot \varphi(x_i)^{-1}$ or $v \sim 1 \Rightarrow R(\varphi) = 1$. \Box

What did we do?

What did we do? Given the free group F_r of finite rank r, we found the largest c such that $\frac{F_r}{\gamma_{c+1}(F_r)}$ does not have R_{∞} .

What did we do? Given the free group F_r of finite rank r, we found the largest c such that $\frac{F_r}{\gamma_{c+1}(F_r)}$ does not have R_{∞} .

We can ask the same question in general:

Given a group G, which probably has property R_{∞} ,

What did we do? Given the free group F_r of finite rank r, we found the largest c such that $\frac{F_r}{\gamma_{c+1}(F_r)}$ does not have R_{∞} .

We can ask the same question in general:

Given a group G, which probably has property R_{∞} ,

What is the largest c such that $\frac{G}{\gamma_{c+1}(G)}$ does not have R_{∞} ?

What did we do? Given the free group F_r of finite rank r, we found the largest c such that $\frac{F_r}{\gamma_{c+1}(F_r)}$ does not have R_{∞} .

We can ask the same question in general:

Given a group G, which probably has property R_{∞} ,

What is the largest c such that $\frac{G}{\gamma_{c+1}(G)}$ does not have R_{∞} ?

We solved this question for fundamental groups of closed surfaces.

Orientable Surface groups

 $\pi_g = \langle a_1, b_1, a_2, b_2, \dots, a_g, b_g \mid [a_1, b_1][a_2, b_2] \cdots [a_g, b_g] = 1 \rangle \ (g \ge 2)$

Orientable Surface groups

 $\pi_{g} = \langle a_{1}, b_{1}, a_{2}, b_{2}, \dots, a_{g}, b_{g} \mid [a_{1}, b_{1}][a_{2}, b_{2}] \cdots [a_{g}, b_{g}] = 1 \rangle \ (g \geq 2)$

Let $\bar{a}_1, \bar{b}_1, \bar{a}_2, \bar{b}_2, \dots, \bar{a}_g, \bar{b}_g$ be generators of $\pi_g / \gamma_2(\pi_g) \cong \mathbb{Z}^{2g}$.

Orientable Surface groups $\pi_g = \langle a_1, b_1, a_2, b_2, \dots, a_g, b_g \mid [a_1, b_1][a_2, b_2] \cdots [a_g, b_g] = 1 \rangle \ (g \ge 2)$ Let $\bar{a}_1, \bar{b}_1, \bar{a}_2, \bar{b}_2, \dots, \bar{a}_g, \bar{b}_g$ be generators of $\pi_g / \gamma_2(\pi_g) \cong \mathbb{Z}^{2g}$. Then $\varphi \in \operatorname{Aut}(\pi_g) \rightsquigarrow \bar{\varphi} \in \operatorname{Aut}(\mathbb{Z}^{2g})$ so $\bar{\varphi} \leftrightarrow S \in \operatorname{GL}_{2g}(\mathbb{Z})$.

Orientable Surface groups $\pi_g = \langle a_1, b_1, a_2, b_2, \dots, a_g, b_g \mid [a_1, b_1][a_2, b_2] \cdots [a_g, b_g] = 1 \rangle \ (g \ge 2)$ Let $\bar{a}_1, \bar{b}_1, \bar{a}_2, \bar{b}_2, \dots, \bar{a}_g, \bar{b}_g$ be generators of $\pi_g / \gamma_2(\pi_g) \cong \mathbb{Z}^{2g}$. Then $\varphi \in \operatorname{Aut}(\pi_g) \rightsquigarrow \bar{\varphi} \in \operatorname{Aut}(\mathbb{Z}^{2g})$ so $\bar{\varphi} \leftrightarrow S \in \operatorname{GL}_{2g}(\mathbb{Z})$.

Theorem (Magnus – Karrass – Solitar, 1966)								
$S \in GL_{2g}(\mathbb{Z})$ corresponds to a $ar{arphi} \Leftrightarrow S^{T}\Omega S = \pm \Omega$,								
	(0	1	0	0	•••	0	0 \	
	-1	0	0	0	•••	0	0	
	0	0	0	1	•••	0	0	
where $\Omega =$	0	0	-1	0	•••	0	0	
	÷	÷	÷	÷	$\gamma_{i,j}$	÷	÷	
	0	0	0	0		0	1	
	0	0	0	0	• • •	-1	0 /	1

KU LEUVEN kulak

Eigenvalues of the matrices *S*

Lemma

Let $S \in GL_{2g}(\mathbb{Z})$ be matrix satisfying $S^T \Omega S = -\Omega$, then the eigenvalues of S are of the form

$$\lambda_1, -\frac{1}{\lambda_1}, \lambda_2, -\frac{1}{\lambda_2}, \dots, \lambda_g, -\frac{1}{\lambda_g}$$

Eigenvalues of the matrices *S*

Lemma

Let $S \in GL_{2g}(\mathbb{Z})$ be matrix satisfying $S^T \Omega S = -\Omega$, then the eigenvalues of S are of the form

$$\lambda_1, -\frac{1}{\lambda_1}, \lambda_2, -\frac{1}{\lambda_2}, \dots, \lambda_g, -\frac{1}{\lambda_g}$$

Lemma

Let $S \in GL_{2g}(\mathbb{Z})$ be matrix satisfying $S^T \Omega S = \Omega$, then the eigenvalues of S are of the form

$$\lambda_1, \frac{1}{\lambda_1}, \lambda_2, \frac{1}{\lambda_2}, \dots, \lambda_g, \frac{1}{\lambda_g}$$

Eigenvalues of the matrices *S*

Lemma

Let $S \in GL_{2g}(\mathbb{Z})$ be matrix satisfying $S^T \Omega S = -\Omega$, then the eigenvalues of S are of the form

$$\lambda_1, -\frac{1}{\lambda_1}, \lambda_2, -\frac{1}{\lambda_2}, \dots, \lambda_g, -\frac{1}{\lambda_g}$$

Lemma

Let $S \in GL_{2g}(\mathbb{Z})$ be matrix satisfying $S^T \Omega S = \Omega$, then the eigenvalues of S are of the form

$$\lambda_1, \ \frac{1}{\lambda_1}, \ \lambda_2, \ \frac{1}{\lambda_2}, \dots, \lambda_g, \frac{1}{\lambda_g}$$

Remark:
$$\lambda \cdot \frac{1}{\lambda} = 1$$
 and $\lambda \cdot \left(-\frac{1}{\lambda}\right) = -1$.

$$L(\pi_g) = \bigoplus_{i=1}^{\infty} \frac{\gamma_i(\pi_g)}{\gamma_{i+1}(\pi_g)}$$

There is a natural morphism of Lie rings $\psi : L(F_{2g}) \to L(\pi_g)$.

There is a natural morphism of Lie rings $\psi: L(F_{2g}) \to L(\pi_g)$.

Lemma (Labute, 1970)

Let $r = [a_1, b_1][a_2, b_2] \cdots [a_g, b_g] + \gamma_3(F_{2g}) \in L(F_{2g}).$

There is a natural morphism of Lie rings $\psi: L(F_{2g}) \to L(\pi_g)$.

Lemma (Labute, 1970)

Let $r = [a_1, b_1][a_2, b_2] \cdots [a_g, b_g] + \gamma_3(F_{2g}) \in L(F_{2g})$. Then

• $Ker(\psi) = the ideal R of L(F_{2g})$ generated by r.

$$L(\pi_g) = \bigoplus_{i=1}^{\infty} \frac{\gamma_i(\pi_g)}{\gamma_{i+1}(\pi_g)} \qquad L(F_{2g}) = \bigoplus_{i=1}^{\infty} \frac{\gamma_i(F_{2g})}{\gamma_{i+1}(F_{2g})}$$

There is a natural morphism of Lie rings $\psi : L(F_{2g}) \to L(\pi_g)$.

Lemma (Labute, 1970)

Let $r = [a_1, b_1][a_2, b_2] \cdots [a_g, b_g] + \gamma_3(F_{2g}) \in L(F_{2g})$. Then

• $Ker(\psi) = the ideal R of L(F_{2g})$ generated by r.

• All factors
$$\frac{\gamma_i(\pi_g)}{\gamma_{i+1}(\pi_g)}$$
 are torsion free.

$$L(\pi_g) = \bigoplus_{i=1}^{\infty} \frac{\gamma_i(\pi_g)}{\gamma_{i+1}(\pi_g)} \qquad L(F_{2g}) = \bigoplus_{i=1}^{\infty} \frac{\gamma_i(F_{2g})}{\gamma_{i+1}(F_{2g})}$$

There is a natural morphism of Lie rings $\psi : L(F_{2g}) \to L(\pi_g)$.

Lemma (Labute, 1970)

Let $r = [a_1, b_1][a_2, b_2] \cdots [a_g, b_g] + \gamma_3(F_{2g}) \in L(F_{2g})$. Then

• $Ker(\psi) = the ideal R of L(F_{2g})$ generated by r.

• All factors
$$\frac{\gamma_i(\pi_g)}{\gamma_{i+1}(\pi_g)}$$
 are torsion free.

All quotients $\frac{\pi_g}{\gamma_{c+1}(\pi_g)}$ are torsion free.

$$L(\pi_g) = \bigoplus_{i=1}^{\infty} \frac{\gamma_i(\pi_g)}{\gamma_{i+1}(\pi_g)} \qquad L(F_{2g}) = \bigoplus_{i=1}^{\infty} \frac{\gamma_i(F_{2g})}{\gamma_{i+1}(F_{2g})}$$

There is a natural morphism of Lie rings $\psi : L(F_{2g}) \rightarrow L(\pi_g)$.

Lemma (Labute, 1970)

Let $r = [a_1, b_1][a_2, b_2] \cdots [a_g, b_g] + \gamma_3(F_{2g}) \in L(F_{2g})$. Then

• All factors
$$\frac{\gamma_i(\pi_g)}{\gamma_{i+1}(\pi_g)}$$
 are torsion free.

All quotients $\frac{\pi_g}{\gamma_{c+1}(\pi_g)}$ are torsion free.

Important: The Magnus – Karrass – Solitar theorem also holds for $\operatorname{Aut}\left(\frac{\pi_g}{\gamma_{c+1}(\pi_g)}\right)$.

Theorem (D. – Gonçalves)

Let $g \geq 2$: $\pi_g / \gamma_{c+1}(\pi_g)$ has property $R_{\infty} \Leftrightarrow c \geq 4$.

Theorem (D. – Gonçalves)

Let $g \geq 2$: $\pi_g / \gamma_{c+1}(\pi_g)$ has property $R_{\infty} \Leftrightarrow c \geq 4$.

<u>Proof</u>: Let c = 4 and consider any $\varphi \in Aut(\pi_g/\gamma_{c+1}(\pi_g)) \rightsquigarrow S$

Theorem (D. – Gonçalves)

 $\textit{Let } g \geq 2: \quad \pi_g/\gamma_{c+1}(\pi_g) \textit{ has property } R_\infty \Leftrightarrow c \geq 4.$

<u>Proof</u>: Let c = 4 and consider any $\varphi \in Aut(\pi_g/\gamma_{c+1}(\pi_g)) \rightsquigarrow S$

S has eigenvalues $\lambda_1, \pm \frac{1}{\lambda_1}, \lambda_2, \pm \frac{1}{\lambda_2}, \dots, \lambda_g, \pm \frac{1}{\lambda_g}$

Theorem (D. – Gonçalves)

 $\textit{Let } g \geq 2: \quad \pi_g/\gamma_{c+1}(\pi_g) \textit{ has property } R_\infty \Leftrightarrow c \geq 4.$

<u>Proof</u>: Let c = 4 and consider any $\varphi \in Aut(\pi_g/\gamma_{c+1}(\pi_g)) \rightsquigarrow S$

$$S$$
 has eigenvalues $\lambda_1,\ \pm rac{1}{\lambda_1},\ \lambda_2,\ \pm rac{1}{\lambda_2},\ldots,\lambda_g,\pm rac{1}{\lambda_g}$

"Lift" φ to F_{2g}

Theorem (D. – Gonçalves)

Let $g \geq 2$: $\pi_g / \gamma_{c+1}(\pi_g)$ has property $R_{\infty} \Leftrightarrow c \geq 4$.

<u>Proof</u>: Let c = 4 and consider any $\varphi \in Aut(\pi_g/\gamma_{c+1}(\pi_g)) \rightsquigarrow S$

S has eigenvalues λ_1 , $\pm \frac{1}{\lambda_1}$, λ_2 , $\pm \frac{1}{\lambda_2}$, ..., λ_g , $\pm \frac{1}{\lambda_g}$ "Lift" φ to F_{2g} , as $\lambda_i \cdot \frac{1}{\lambda_i} \cdot \lambda_j \cdot \frac{1}{\lambda_j} = 1$, there are a lot of eigenvectors for eigenvalue 1 in $\gamma_4(F_{2g})/\gamma_5(F_{2g})$

Theorem (D. – Gonçalves)

 $\textit{Let } g \geq 2: \quad \pi_g/\gamma_{c+1}(\pi_g) \textit{ has property } R_\infty \Leftrightarrow c \geq 4.$

<u>Proof</u>: Let c = 4 and consider any $\varphi \in Aut(\pi_g/\gamma_{c+1}(\pi_g)) \rightsquigarrow S$

S has eigenvalues λ_1 , $\pm \frac{1}{\lambda_1}$, λ_2 , $\pm \frac{1}{\lambda_2}$, ..., λ_g , $\pm \frac{1}{\lambda_g}$ "Lift" φ to F_{2g} , as $\lambda_i \cdot \frac{1}{\lambda_i} \cdot \lambda_j \cdot \frac{1}{\lambda_j} = 1$, there are a lot of eigenvectors for eigenvalue 1 in $\gamma_4(F_{2g})/\gamma_5(F_{2g})$

Not all of them can lie in R.

Theorem (D. – Gonçalves)

Let $g \geq 2$: $\pi_g / \gamma_{c+1}(\pi_g)$ has property $R_{\infty} \Leftrightarrow c \geq 4$.

<u>Proof</u>: Let c = 4 and consider any $\varphi \in Aut(\pi_g/\gamma_{c+1}(\pi_g)) \rightsquigarrow S$

S has eigenvalues λ_1 , $\pm \frac{1}{\lambda_1}$, λ_2 , $\pm \frac{1}{\lambda_2}$, ..., λ_g , $\pm \frac{1}{\lambda_g}$ "Lift" φ to F_{2g} , as $\lambda_i \cdot \frac{1}{\lambda_i} \cdot \lambda_j \cdot \frac{1}{\lambda_j} = 1$, there are a lot of eigenvectors for eigenvalue 1 in $\gamma_4(F_{2g})/\gamma_5(F_{2g})$

Not all of them can lie in R.

So there are also eigenvectors for eigenvalue 1 in $\gamma_4(\pi_g)/\gamma_5(\pi_g)$, hence $R(\varphi) = \infty$.

Theorem (D. – Gonçalves)

Let $g \geq 2$: $\pi_g / \gamma_{c+1}(\pi_g)$ has property $R_{\infty} \Leftrightarrow c \geq 4$.

<u>Proof</u>: Let c = 4 and consider any $\varphi \in Aut(\pi_g/\gamma_{c+1}(\pi_g)) \rightsquigarrow S$

S has eigenvalues λ_1 , $\pm \frac{1}{\lambda_1}$, λ_2 , $\pm \frac{1}{\lambda_2}$, ..., λ_g , $\pm \frac{1}{\lambda_g}$ "Lift" φ to F_{2g} , as $\lambda_i \cdot \frac{1}{\lambda_i} \cdot \lambda_j \cdot \frac{1}{\lambda_j} = 1$, there are a lot of eigenvectors for eigenvalue 1 in $\gamma_4(F_{2g})/\gamma_5(F_{2g})$

Not all of them can lie in R.

So there are also eigenvectors for eigenvalue 1 in $\gamma_4(\pi_g)/\gamma_5(\pi_g)$, hence $R(\varphi) = \infty$.

Then c > 4 also follows.

(Proof ctd.)

When c = 1, 2 or 3, we can take

$$S = \begin{pmatrix} 1 & 2 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 2 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 2 \\ 0 & 0 & 0 & 0 & \cdots & 1 & 1 \end{pmatrix}$$

(Proof ctd.)

When c = 1, 2 or 3, we can take

$$S = \begin{pmatrix} 1 & 2 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 2 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 2 \\ 0 & 0 & 0 & 0 & \cdots & 1 & 1 \end{pmatrix}$$

Then $S_g^T \Omega S_g = -\Omega$ and has eigenvalues $\lambda = 1 + \sqrt{2}$ and $-\frac{1}{\lambda} = 1 - \sqrt{2}$.

KU LEUVEN kulak

$$au_g = \langle a_1, \; a_2, \; \cdots, a_g \; | \; a_1^2 a_2^2 \cdots a_g^2 = 1
angle \; \; (g \geq 1)$$

$$au_g = \langle a_1, \ a_2, \ \cdots, a_g \ | \ a_1^2 a_2^2 \cdots a_g^2 = 1
angle \quad (g \geq 1)$$

Remark:

• $\tau_1 = \pi(\mathbb{R}P^2) \cong \mathbb{Z}_2$ is finite

$$au_g = \langle a_1, \ a_2, \ \cdots, a_g \ | \ a_1^2 a_2^2 \cdots a_g^2 = 1
angle \quad (g \geq 1)$$

Remark:

*τ*₁ = π(ℝP²) ≅ ℤ₂ is finite

 *τ*₂/
 *γ*_{c+1}(*τ*₂) ≅ ℤ_{2c} ⋊ ℤ does not have property *R*_∞, but *τ*₂ does!

$$au_{g}=\langle a_{1},\;a_{2},\;\cdots,a_{g}\mid a_{1}^{2}a_{2}^{2}\cdots a_{g}^{2}=1
angle \ \ (g\geq 1)$$

Remark:

τ₁ = π(ℝP²) ≅ ℤ₂ is finite
 τ₂/γ_{c+1}(τ₂) ≅ ℤ_{2c} ⋊ℤ does not have property R_∞, but τ₂ does!
 τ_g/γ_{c+1}(τ_g) is not torsion free! E.g. τ_g/γ₂(τ_g) ≅ ℤ^{g-1} ⊕ ℤ₂.

$$au_{g}=\langle a_{1},\;a_{2},\;\cdots,a_{g}\mid a_{1}^{2}a_{2}^{2}\cdots a_{g}^{2}=1
angle \ \ (g\geq 1)$$

Remark:

τ₁ = π(ℝP²) ≅ ℤ₂ is finite
 τ₂/γ_{c+1}(τ₂) ≅ ℤ_{2c} ⋊ℤ does not have property R_∞, but τ₂ does!
 τ_g/γ_{c+1}(τ_g) is not torsion free! E.g. τ_g/γ₂(τ_g) ≅ ℤ^{g-1} ⊕ ℤ₂.

Important observation

Important observation

Although
$$\frac{\tau_g}{\gamma_{c+1}(\tau_g)}$$
 is not torsion free, we do have

Lemma $\frac{\tau_g}{\gamma_{c+1}(\tau_g)}$ contains $N_{g-1,c}$ as a characteristic subgroup of finite index.

Important observation

Although
$$rac{ au_{g}}{\gamma_{c+1}(au_{g})}$$
 is not torsion free, we do have

Lemma

 $\frac{\tau_g}{\gamma_{c+1}(\tau_g)}$ contains $N_{g-1,c}$ as a characteristic subgroup of finite index.

Using this we can show

Corollary

If
$$c \geq 2(g-1)$$
 then $rac{ au_g}{\gamma_{c+1}(au_g)}$ has property R_∞ .

Theorem (D. – Gonçalves)

$$rac{\gamma_g}{\gamma_{c+1}(\tau_g)}$$
 has property $R_{\infty} \Leftrightarrow c \geq 2(g-1)$.

Theorem (D. – Gonçalves)

$$rac{\tau_g}{\gamma_{c+1}(\tau_g)}$$
 has property $R_{\infty} \Leftrightarrow c \geq 2(g-1)$.

Proof:

Theorem (D. – Gonçalves)

$$rac{ au_g}{\gamma_{c+1}(au_g)}$$
 has property $R_{\infty} \Leftrightarrow c \geq 2(g-1).$

<u>Proof:</u> The " \Leftarrow " part is given by the corollary.

Theorem (D. – Gonçalves)

$$rac{ au_{g}}{\gamma_{c+1}(au_{g})}$$
 has property $R_{\infty} \Leftrightarrow c \geq 2(g-1).$

Proof:

The " \Leftarrow " part is given by the corollary. The " \Rightarrow " part is quite hard.

Theorem (D. – Gonçalves)

$$rac{ au_{g}}{\gamma_{c+1}(au_{g})}$$
 has property $R_{\infty} \Leftrightarrow c \geq 2(g-1).$

Proof:

The " \Leftarrow " part is given by the corollary.

The " \Rightarrow " part is quite hard.

We do not completely know the structure of $\frac{\tau_g}{\gamma_{c+1}(\tau_{\sigma})}$.

Theorem (D. – Gonçalves)

$$rac{ au_{g}}{\gamma_{c+1}(au_{g})}$$
 has property $R_{\infty} \Leftrightarrow c \geq 2(g-1).$

Proof:

The " \Leftarrow " part is given by the corollary.

The " \Rightarrow " part is quite hard.

We do not completely know the structure of -

But for c < 2(g-1), we need a $arphi \in \mathsf{Au}$

$$\begin{array}{l} \text{re of } \frac{\tau_g}{\gamma_{c+1}(\tau_g)}.\\ \text{ut}\left(\frac{\tau_g}{\gamma_{c+1}(\tau_g)}\right), \text{ with } R(\varphi) < \infty. \end{array}$$

Main result in the non orientable case

Theorem (D. – Gonçalves)

$$rac{ au_{g}}{\gamma_{c+1}(au_{g})}$$
 has property $R_{\infty} \Leftrightarrow c \geq 2(g-1).$

Proof:

The " \Leftarrow " part is given by the corollary.

The " \Rightarrow " part is quite hard.

We do not completely know the structure of -

But for c < 2(g-1), we need a $arphi \in \mathsf{Aut}$ I think

$$\begin{array}{l} \text{re of } \displaystyle \frac{\tau_g}{\gamma_{c+1}(\tau_g)}. \\ \text{ut}\left(\frac{\tau_g}{\gamma_{c+1}(\tau_g)}\right), \text{ with } R(\varphi) < \infty. \end{array} \end{array}$$

Main result in the non orientable case

Theorem (D. – Gonçalves)

$$rac{ au_{g}}{\gamma_{c+1}(au_{g})}$$
 has property $R_{\infty} \Leftrightarrow c \geq 2(g-1).$

Proof:

The " \Leftarrow " part is given by the corollary.

The " \Rightarrow " part is quite hard.

We do not completely know the structure of -

But for c < 2(g-1), we need a $\varphi \in Aut$ I think (hope)

we of
$$\frac{\tau_g}{\gamma_{c+1}(\tau_g)}$$
.
It $\left(\frac{\tau_g}{\gamma_{c+1}(\tau_g)}\right)$, with $R(\varphi) < \infty$.

Main result in the non orientable case

Theorem (D. – Gonçalves)

$$rac{ au_{g}}{\gamma_{c+1}(au_{g})}$$
 has property $R_{\infty} \Leftrightarrow c \geq 2(g-1).$

Proof:

The " \Leftarrow " part is given by the corollary.

The " \Rightarrow " part is quite hard.

We do not completely know the structure of $\frac{\gamma_g}{\gamma_{c+1}(\tau_g)}$.

But for c < 2(g-1), we need a $\varphi \in \operatorname{Aut}\left(\frac{\tau_g}{\gamma_{c+1}(\tau_g)}\right)$, with $R(\varphi) < \infty$. I think (hope) we found such a $\varphi \dots$

Thank you!

