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Twisted conjugacy classes
G is a group, ϕ an endomorphism of G .

Definition

Let x , y ∈ G , then x ∼ y ⇔ ∃z ∈ G : x = z · y · ϕ(z)−1.

I Twisted conjugacy classes (Reidmeister classes)

I E.g. when ϕ = 1G , ordinary conjugacy classes

I R(ϕ) = # of Twisted conjugacy classes

E.g. Let G = Cn and ϕ(x) = −x

x ∼ y ⇔ x = z + y − (−z)⇔ x = y + 2z

R(ϕ) =

{
2 if n is even.
1 if n is odd.
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Motivation from topology:
A tiny bit of fixed point theory

Let X be a space and f : X → X a self map.

Fix(f ) = {x ∈ X | f (x) = x}.

Let p : X̃ → X be the universal cover of X , then

Fix(f ) =
⋃
f̃

p
(
Fix(f̃ )

)

where f̃ ranges over all lifts of f to X̃ .

X̃

p

��

f̃ // X̃

p

��
X

f
// X
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Equivalences of lifts
Let Γ ∼= π(X ) be the group of covering transformations.

Two lifts f̃1, f̃2 are equivalent iff

f̃1 = γ ◦ f̃2 ◦ γ−1 for a γ ∈ Γ

equivalence classes = lift classes

I f̃1 ∼ f̃2 ⇒ p
(
Fix(f̃1)

)
= p

(
Fix(f̃2)

)
I f̃1 6∼ f̃2 ⇒ p

(
Fix(f̃1)

)
∩ p

(
Fix(f̃2)

)
= ∅

lift classes ↔ fixed point classes p
(
Fix(f̃ )

)
⊆ Fix(f )

R(f ) = #fixed point classes = # lift classes
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Fixed point classes and Reidemeister classes

Fix a lift f̃ of f .

Any other lift is of the form α ◦ f̃ , for α ∈ Γ

lifts ↔ Γ

There is a morphism f∗ : Γ→ Γ such that

∀α ∈ Γ : f̃ ◦ α = f∗(α) ◦ f̃ .

α ◦ f̃ ∼ β ◦ f̃ ⇔ ∃γ ∈ Γ : α ◦ f̃ = γ ◦ β ◦ f̃ ◦ γ−1

⇔ ∃γ ∈ Γ : α ◦ f̃ = γ ◦ β ◦ f∗(γ)−1 ◦ f̃

⇔ α ∼ β (w.r.t. f∗)

Conclusion R(f ) = R(f∗)
# fixed point classes = # twisted conjugacy classes
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Abelian groups

Let G be abelian and ϕ an endomorphism of G , then

x ∼ y ⇔ ∃z ∈ G : x = z + y − ϕ(z)

⇔ x − y ∈ Im(1G − ϕ)

So
R(ϕ) = #Coker(1G − ϕ)

E.g. Let G ∼= Zk then ϕ ≈ A a k × k–matrix with entries in Z

R(ϕ) =

{
| det(1− A)| ⇔ det(1− A) 6= 0

∞ ⇔ det(1− A) = 0

R(ϕ) =∞ iff 1 is an eigenvalue of ϕ.
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Nilpotent groups

Let G be a finitely generated torsion free nilpotent group and
ϕ ∈ Endo(G ).

Let Z1(G ) = Z (G ) and Zi+1(G ) be s.t.
Zi+i (G )

Zi (G )
= Z

(
G

Zi (G )

)
Lemma

R(ϕ) =∞⇔ ∃i s.t.. induced morphism ϕi on
Zi (G )

Zi−1(G )
has eigenvalue 1

Let Γ1(G ) = G , Γ2(G ) =
√
γ2(G ), . . . , Γi (G ) =

√
γi (G ), then

Lemma

R(ϕ) =∞⇔ ∃i s.t. induced morphism ϕi on
Γi (G )

Γi+1(G )
has eigenvalue 1
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In general? The R∞ property

Given an endomorphism ϕ of G (infinite), question becomes:

Is R(ϕ) finite or infinite?

When ϕ : G → G : x 7→ 1, then R(ϕ) =∞.

A sub case: The above question for ϕ ∈ Aut(G ).

Definition

A group G has property R∞ if and only if R(ϕ) =∞ for all ϕ ∈ Aut(G ).

E.g. A finitely generated abelian group A does not have property R∞.

Let ϕ : A→ A : x 7→ −x , then x ∼ y ⇔ x − y ∈ 2A.

As [A : 2A] ≤ 2#gens, we have that R(ϕ) <∞.
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Some known cases

I There are f.g. virtually abelian groups with property R∞.
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I There are f.g. torsion free nilpotent groups with property R∞.
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I All non-elementary Gromov hyperbolic groups have property R∞
(e.g. free groups of finite rank > 1).
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I There are f.g. torsion free nilpotent groups with property R∞.
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The case of free nilpotent groups

Let Fr be free on r generators.

Nr ,c =
Fr

γc+1(Fr )

is free c–step nilpotent on r generators.

Theorem (Roman’kov, 2011)

If r 6= 3 then for c ≥ 2r : Nr ,c has property R∞.
If r = 3 then for c ≥ 12: N3,c has property R∞.

Improvement:

Theorem (D. – Gonçalvez)

Nr ,c has property R∞ ⇔ c ≥ 2r .
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Nr ,c has property R∞ ⇔ c ≥ 2r .



The case of free nilpotent groups

Let Fr be free on r generators.

Nr ,c =
Fr

γc+1(Fr )

is free c–step nilpotent on r generators.

Theorem (Roman’kov, 2011)

If r 6= 3 then for c ≥ 2r : Nr ,c has property R∞.
If r = 3 then for c ≥ 12: N3,c has property R∞.

Improvement:

Theorem (D. – Gonçalvez)
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Sketch of proof

Let N be f.g. torsion free nilpotent. Define

L(N) =
∞⊕
i=1

Γi

Γi+1
=
∞⊕
i=1

√
γi (N)√
γi+1(N)

Is a Lie algebra (over Z) with brackets:

[x + Γi+1(N) , y + Γj+1(N)] = [x , y ] + Γi+j+1(N).

ϕ ∈ Aut(N)  ϕL ∈ Aut(L(N))

R(ϕ) =∞⇔ ϕL has eigenvalue 1
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Sketch of proof

L(Nr ,c) is the free c-step nilpotent Lie algebra on r generators.

Let ϕ ∈ Aut(Nr ,c) and

ϕi be the induced automorphism on
Γi (Nr ,c)

Γi+1(Nr ,c)
.

Lemma

If λ1, λ2, . . . , λr are the eigenvalues of ϕ1. Then, the eigenvalues of ϕj are
of the form λi1 · λi2 · · · · · λij

Proof: By taking C⊗ L(Nr ,c), we may assume that we are working over C.

We can also assume that
Γ1

Γ2
– part has basis x1, x2, . . . , xr of eigenvectors.

[xi1 , xi2 ] are basis of
Γ2

Γ3
–part & ϕ[xi1 , xi2 ] = [ϕ(xi1), ϕ(xi2)] = λi1λi2 [xi1 , xi2 ].

etc.
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Sketch of proof

If c ≥ 2r then Nr ,c has property R∞

ϕ1 is an automorphism of
Γ1(Nr ,c)

Γ2(Nr ,c)
∼= Zr .

λ1λ2 · · ·λr = ±1

λ1λ1λ2λ2 · · ·λrλr = 1 is an eigenvalue of ϕ2r

For the other direction, assume that c < 2r

The map Aut(Nr ,c)→ Aut(Zr ) is onto.
So it suffices to find a matrix A ∈ GLr (Z) with eigenvalues λ1, . . . , λr
sucht that

λi1λi2 · · ·λik 6= 1 as long as k < 2r

(We must have det(A) = −1)
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Sketch of proof

Lemma

Let p(x) = x r + ar−1x r−1 + · · ·+ a2x2 + a1x + (−1)r+1, for some integers
ai with |ar−1| > |ar−2|+ · · ·+ |a2|+ |a1|+ 2

Then

1 p(x) has one real root θ1 > 1, other roots lie inside the unit circle.

2 If θ2, θ3, . . . , θr ∈ C are the other roots, then θ1θ2 . . . θr = −1.

3 If for some d1, d2, . . . , dr ∈ Z we have that θd11 θ
d2
2 . . . θdrr = 1, then

there exists an integer z ∈ Z such that d1 = d2 = · · · = dr = 2z.

Example: take p(x) = x r − 3x r−1 + (−1)r+1.

The proof finishes by taking for A the companion matrix of p(x).
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3 If for some d1, d2, . . . , dr ∈ Z we have that θd11 θ
d2
2 . . . θdrr = 1, then

there exists an integer z ∈ Z such that d1 = d2 = · · · = dr = 2z.

Example: take p(x) = x r − 3x r−1 + (−1)r+1.

The proof finishes by taking for A the companion matrix of p(x).



Sketch of proof

Lemma

Let p(x) = x r + ar−1x r−1 + · · ·+ a2x2 + a1x + (−1)r+1, for some integers
ai with |ar−1| > |ar−2|+ · · ·+ |a2|+ |a1|+ 2
Then

1 p(x) has one real root θ1 > 1, other roots lie inside the unit circle.

2 If θ2, θ3, . . . , θr ∈ C are the other roots, then θ1θ2 . . . θr = −1.

3 If for some d1, d2, . . . , dr ∈ Z we have that θd11 θ
d2
2 . . . θdrr = 1, then

there exists an integer z ∈ Z such that d1 = d2 = · · · = dr = 2z.

Example: take p(x) = x r − 3x r−1 + (−1)r+1.

The proof finishes by taking for A the companion matrix of p(x).



The case of free solvable groups
Let Fr be free on r generators.

Sr ,d =
Fr

F
(d)
r

, where F
(1)
r = [Fr ,Fr ] and F

(d+1)
r = [F

(d)
r ,F

(d)
r ]

is free d–step solvable on r generators.

Theorem (D.—Gonçalves)

Sr ,d has property R∞ ⇔ d ≥ 2.

Proof: Sr ,2 =
Sr ,d

S
(2)
r ,d

, so it is enough to prove that Sr ,2 has property R∞.

Now, consider
Sr ,2

γc+1(Sr ,2)
=

Fr

γc+1(Fr )F
(2)
r

=: Mr ,c .

With the same techniques as for the free nilpotent group, we can show
that Mr ,c has property R∞ iff c ≥ 2r .
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Free groups of infinite rank
Recall

I Fr has R∞ for all r > 1.

I Nr ,c has R∞ if c is big enough.

Perhaps we should expect F∞ to have R∞ too.

Theorem (D. – Gonçalves)

F∞ does not have R∞. In fact, for any positive integer n there is an
automorphism ϕn ∈ Aut(F∞) with R(ϕn) = n.

Proof: (n = 1) Choose θ : {x0, x1, x2, . . .} → F∞ with : θ is onto and
θ(xi ) is a word in {x0, x1, . . . , xi−1}.

Take ϕ ∈ Aut(F∞) with ϕ(xi ) = θ(xi )xi .

∀w ∈ F∞, ∃xi : w = θ(xi ) = ϕ(xi )x−1i .

∀v ∈ F∞, ∃xi : v = xiϕ(xi )
−1 = xi · 1 ·ϕ(xi )

−1 or v ∼ 1⇒ R(ϕ) = 1.
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F∞ does not have R∞. In fact, for any positive integer n there is an
automorphism ϕn ∈ Aut(F∞) with R(ϕn) = n.

Proof: (n = 1) Choose θ : {x0, x1, x2, . . .} → F∞ with : θ is onto and
θ(xi ) is a word in {x0, x1, . . . , xi−1}.

Take ϕ ∈ Aut(F∞) with ϕ(xi ) = θ(xi )xi .

∀w ∈ F∞, ∃xi : w = θ(xi ) = ϕ(xi )x−1i .

∀v ∈ F∞, ∃xi : v = xiϕ(xi )
−1 = xi · 1 ·ϕ(xi )

−1 or v ∼ 1⇒ R(ϕ) = 1.



Free groups of infinite rank
Recall

I Fr has R∞ for all r > 1.

I Nr ,c has R∞ if c is big enough.

Perhaps we should expect F∞ to have R∞ too.

Theorem (D. – Gonçalves)
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F∞ does not have R∞. In fact, for any positive integer n there is an
automorphism ϕn ∈ Aut(F∞) with R(ϕn) = n.

Proof: (n = 1) Choose θ : {x0, x1, x2, . . .} → F∞ with : θ is onto and
θ(xi ) is a word in {x0, x1, . . . , xi−1}.

Take ϕ ∈ Aut(F∞) with ϕ(xi ) = θ(xi )xi .

∀w ∈ F∞, ∃xi : w = θ(xi ) = ϕ(xi )x−1i .

∀v ∈ F∞, ∃xi : v = xiϕ(xi )
−1 = xi · 1 ·ϕ(xi )

−1 or v ∼ 1⇒ R(ϕ) = 1.



General strategy

What did we do?

Given the free group Fr of finite rank r ,

we found the largest c such that
Fr

γc+1(Fr )
does not have R∞.

We can ask the same question in general:

Given a group G , which probably has property R∞,

What is the largest c such that
G

γc+1(G )
does not have R∞?

We solved this question for fundamental groups of closed surfaces.
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Orientable Surface groups
πg = 〈a1, b1, a2, b2, . . . , ag , bg | [a1, b1][a2, b2] · · · [ag , bg ] = 1〉 (g ≥ 2)

Let ā1, b̄1, ā2, b̄2, . . . , āg , b̄g be generators of πg/γ2(πg ) ∼= Z2g .

Then ϕ ∈ Aut(πg ) ϕ̄ ∈ Aut(Z2g ) so ϕ̄↔ S ∈ GL2g (Z).

Theorem (Magnus – Karrass – Solitar, 1966)

S ∈ GL2g (Z) corresponds to a ϕ̄⇔ STΩS = ±Ω,

where Ω =



0 1 0 0 · · · 0 0
−1 0 0 0 · · · 0 0
0 0 0 1 · · · 0 0
0 0 −1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
0 0 0 0 · · · −1 0


.
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Eigenvalues of the matrices S
Lemma

Let S ∈ GL2g (Z) be matrix satisfying STΩS = −Ω, then the eigenvalues
of S are of the form

λ1, −
1

λ1
, λ2, −

1

λ2
, . . . , λg ,−

1

λg
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Remark: λ · 1

λ
= 1 and λ ·

(
− 1

λ

)
= −1.
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The Lie algebra associated to πg

L(πg ) =
∞⊕
i=1

γi (πg )

γi+1(πg )

L(F2g ) =
∞⊕
i=1

γi (F2g )

γi+1(F2g )

There is a natural morphism of Lie rings ψ : L(F2g )→ L(πg ).

Lemma (Labute, 1970)

Let r = [a1, b1][a2, b2] · · · [ag , bg ] + γ3(F2g ) ∈ L(F2g ).Then

I Ker(ψ) = the ideal R of L(F2g ) generated by r .

I All factors
γi (πg )

γi+1(πg )
are torsion free.

All quotients
πg

γc+1(πg )
are torsion free.

Important: The Magnus – Karrass – Solitar theorem also holds for

Aut
(

πg
γc+1(πg )

)
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Main result for orientable surface groups

Theorem (D. – Gonçalves)

Let g ≥ 2: πg/γc+1(πg ) has property R∞ ⇔ c ≥ 4.

Proof: Let c = 4 and consider any ϕ ∈ Aut(πg/γc+1(πg ))  S

S has eigenvalues λ1, ±
1

λ1
, λ2, ±

1

λ2
, . . . , λg ,±

1

λg

“Lift” ϕ to F2g , as λi ·
1

λi
· λj ·

1

λj
= 1, there are a lot of eigenvectors for

eigenvalue 1 in γ4(F2g )/γ5(F2g )

Not all of them can lie in R.

So there are also eigenvectors for eigenvalue 1 in γ4(πg )/γ5(πg ), hence
R(ϕ) =∞.

Then c > 4 also follows.
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Main result for orientable surface groups

(Proof ctd.)

When c = 1, 2 or 3, we can take

S =



1 2 0 0 · · · 0 0
1 1 0 0 · · · 0 0
0 0 1 2 · · · 0 0
0 0 1 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 2
0 0 0 0 · · · 1 1



Then ST
g ΩSg = −Ω and has eigenvalues λ = 1 +

√
2 and − 1

λ = 1−
√

2.
. . .



Main result for orientable surface groups

(Proof ctd.)

When c = 1, 2 or 3, we can take

S =



1 2 0 0 · · · 0 0
1 1 0 0 · · · 0 0
0 0 1 2 · · · 0 0
0 0 1 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 2
0 0 0 0 · · · 1 1


Then ST

g ΩSg = −Ω and has eigenvalues λ = 1 +
√

2 and − 1
λ = 1−

√
2.

. . .



Non Orientable Surface groups

τg = 〈a1, a2, · · · , ag | a21a22 · · · a2g = 1〉 (g ≥ 1)

Remark:

I τ1 = π(RP2) ∼= Z2 is finite

I
τ2

γc+1(τ2)
∼= Z2coZ does not have property R∞, but τ2 does!

I
τg

γc+1(τg )
is not torsion free! E.g.

τg
γ2(τg )

∼= Zg−1 ⊕ Z2.

This causes quit some problems.
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Important observation

Although
τg

γc+1(τg )
is not torsion free, we do have

Lemma
τg

γc+1(τg )
contains Ng−1,c as a characteristic subgroup of finite index.

Using this we can show

Corollary

If c ≥ 2(g − 1) then
τg

γc+1(τg )
has property R∞.
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Main result in the non orientable case

Theorem (D. – Gonçalves)
τg

γc+1(τg )
has property R∞ ⇔ c ≥ 2(g − 1).

Proof:
The “⇐” part is given by the corollary.
The “⇒” part is quite hard.

We do not completely know the structure of
τg

γc+1(τg )
.

But for c < 2(g − 1), we need a ϕ ∈ Aut

(
τg

γc+1(τg )

)
, with R(ϕ) <∞.

I think (hope) we found such a ϕ . . .
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